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Driven quantum coarsening
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We study the driven dynamics of quantum coarsening. We analyze models of M -component rotors
coupled to two electronic reservoirs at different chemical potentials that generate a current threading
through the system. In the large M limit we derive the dynamical phase diagram as a function of
temperature, strength of quantum fluctuations, voltage and coupling to the leads. We show that
the slow relaxation in the ordering phase is universal. On large time and length scales the dynamics
are analogous to stochastic classical ones, even for the quantum system driven out of equilibrium at
zero temperature. We argue that our results apply to generic driven quantum coarsening.

Phase transitions are central to condensed matter and
statistical physics. Initially, emphasis was put on clas-
sical and quantum equilibrium phase transitions. Later,
attention moved to non-equilibrium phase transitions in
which quantum fluctuations can be neglected. These are
realized when a system is forced in a non equilibrium
steady state (by a shear rate, an external current flow-
ing through it, etc.) [1, 2] or when it just fails to re-
lax (e.g. after a quench) and displays aging phenom-
ena [3, 4]. The study of steady states in small quan-
tum systems driven out of equilibrium [5] has been re-
cently boosted by their relevance for nano-devices. In
contrast, the effect of a drive on a macroscopic system
close to a quantum phase transition is a rather unex-
plored subject. Some works have focused on non-linear
transport properties close to an (equilibrium) quantum
phase transition [6, 7, 8]. Others have studied how the
critical properties are affected by a drive [9, 10, 11]. How-
ever, a global understanding of phase transitions in the
parameter space T (temperature), V (drive), Γ (strength
of quantum fluctuations), and the rôle played by the en-
vironment, is still lacking. Furthermore, experiments in
2d electronic systems [12, 13] show interesting features
in the relaxation toward the quantum non-equilibrium
steady state (QNESS) but these have not been addressed
theoretically yet (except for [14]).

A number of intriguing questions arise in the context
of driven quantum phase transitions, some of which are:
How long does it take to reach the QNESS after one of
the parameters T, V, Γ is changed? Do the systems al-
ways relax to the QNESS or, as for classical systems,
do quenches deep in the T, V, Γ phase diagram lead to
aging phenomena and glassy dynamics? What are the
properties of the latter ‘doubly non-equilibrium’ dynam-
ics? Are quantum quenches, obtained by changing V and
Γ at T = 0, different from their classical counterpart?

The aim of this work is to answer these questions
for a class of analytically tractable models, systems of
M−component quantum rotors that encompass an infi-
nite range spin-glass and its 3d pure counterpart mod-
eling coarsening phenomena. Models of quantum ro-

Γc(V =0) ∼ Tc−T

Γc(T=0) ∼ NA

Tc(Γ=0) ∼ NA

Tc(V =0) ∼ (Γc−Γ)1/2

Vc(T=0) ∼ (Γc−Γ)1/2

Vc(Γ=0) ∼ (T c−T)1/2

FIG. 1: Non-equilibrium phase diagram for reservoirs with a
much larger bandwidth than all other energy scales (h̄ωF ≫

J). Close to the critical point V c = Vc(T = Γ = 0) the
critical lines are non-analytical (NA). Close to T c and Γc

they are power laws with exponents given next to the figure.
The arrow above Γc indicates that the critical surface is pulled
up by increasing the coupling to the leads.

tors are non-trivial but still relatively simple and pro-
vide a coarse-grained description of physical systems such
as Bose-Hubbard models and double layer antiferromag-
nets [15]. The out of equilibrium drive is provided by two
external electron reservoirs that induce a current flowing
through the system. In the simplest setting [9] each ro-
tor is coupled to two independent reservoirs. Using the
Schwinger-Keldysh formalism we analyze the out of equi-
librium dynamics in the large M limit. We find a phase
transition, see Fig. 1, between a QNESS (V 6= 0) and
an ordered phase, we study its critical properties and we
discuss the effect of the environment.

The model we focus on is an infinite-range quantum
disordered system made of N M -component rotors in-
teracting via random Gaussian distributed couplings, Jij ,
with zero mean and variance J2/N . Its Hamiltonian is

HS =
Γ

2h̄2M

N
∑

i=1

L
2
i −

∑

i<j

Jijninj , n
2
i = M ∀i . (1)

nµ
i are the M components of the i-th rotor and Lµν

i =
nµ

i p
ν
i − nν

i p
µ
i , with pµ

i = −ih̄∂/∂nµ
i , are the M(M − 1)

components of the i-th generalized angular momentum
operator with L

2
i =

∑

µ<ν(Lµν
i )2 [15, 16]. Γ controls the

strength of quantum fluctuations; as Γ → 0 the model
approaches the classical M -component Heisenberg fully-
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connected spin-glass. In the largeM limit it is equivalent
to the quantum fully-connected p = 2 spherical spin-
glass [17, 18]. A mapping to ferromagnetic coarsening in
the 3d O(N ) model can be established in the classical
and large N limits [4]. As we shall show, this mapping
holds for the quantum model as well. Thus, it allows us
to extend our results also to the 3d ferromagnetic model
in the large M limit.

The system is coupled to two independent and non-
interacting ‘left’ (L) and ‘right’ (R) electronic reservoirs
in equilibrium at different chemical potentials µL = µ
and µR = µ + eV and the same temperature T . R
and L reservoirs act as source and drain, respectively.
The details of their Hamiltonian are not important since
in the small spin-bath coupling we concentrate on only
the electronic Green functions matter. We focus on
free electrons with the same symmetric density of states,
ρL(ǫ) = ρR(ǫ) = ρ(ǫ), centered at ǫ = 0, and with typical
variation scale around h̄ωF .

Each rotor is coupled non-linearly to its (double) elec-
tron bath. For example, for M = 3 rotors we take

HSB = 1
M

∑

iαll′γγ′ h̄ωγγ′nα
i [c†liLγ

σα
ll′

2 cl′iRγ + L ↔ R]

where c†liR(L)γ , cliR(L)γ are the fermionic operators of

the R(L) reservoirs, h̄ωγγ′ is the electron-bath coupling,
chosen to be constant: h̄ωγγ′ = h̄ωc. σα are the Pauli
matrices (α = 1, ...,M). γ = 1, ...,M is the fermion label
inside the reservoirs.

System and reservoirs are uncoupled at time t < 0 and
evolve with H = HS +HB +HSB at t > 0. The density
matrix at t = 0, ̺ = ̺S ⊗ ̺L ⊗ ̺R, provides the initial
condition. ̺S , ̺L and ̺R correspond to equilibrium of
the system at temperature T0 ≫ 1, and the L and R
reservoirs at temperature T and chemical potentials µ
and µ + eV , respectively. For simplicity, ̺S is taken to
be the identity; this choice is equivalent to any other one
uncorrelated with disorder [19].

We analyze the t > 0 dynamics by using the Schwinger-
Keldysh formalism yielding a functional-integral repre-
sentation of the Heisenberg evolution [19, 20, 21]. Each
field carries a ± index associated to the forward and back-
ward evolution. The action corresponding to Eq. (1) is

SS =
∑

a=±

a

∫

dt





h̄2

2Γ

∑

i

(ṅia)2 +
∑

i<j

Jijnianja



 .

The path-integral runs over paths such that n
2
ia(t) =

M, ∀iat. One may lift this constraint by using the inte-
gral representation of the Dirac delta. This amounts to
introducing auxiliary imaginary fields λia(t) and adding
Sλ =

∑

a=±
a
2

∫

dt
∑

i λia(t)(n2
ia(t) −M) to the action.

After expanding the system-leads interaction up to sec-
ond order in g ≡ ωc/ωF , integrating out the fermionic
fields, and taking the large M limit we obtain a
(Feynman-Vernon-like) action for the rotors. The de-
tailed computation [21] confirms that several system-

reservoir coupling that preserve the O(M) symmetry and
the addition of different LL and RR couplings do not
modify our results qualitatively. In short we obtain

SSB = −1

2

∑

ab=±

∫

dtdt′ ΣB
ab(t, t

′)
∑

i

nia(t)nib(t
′) ,

ΣB
ab(t, t

′) = −iabh̄ω2
c

[

GR
ab(t, t

′)GL
ba(t′, t) + L↔ R

]

.

The electronic Green functions are Gab(t, t
′) ≡

−i〈T ψa(t)ψ†
b(t

′)〉 with ψa(t), ψ†
a(t) the fermionic fields

and T the time-ordering operator on the closed con-
tour. It is convenient to change basis and use retarded,
GB

R = (GB
+−−GB

++)/h̄, advanced, GB
A = (GB

−+−GB
++)/h̄,

and Keldysh, GB
K = i(GB

++ + GB
−−)/2, Green func-

tions. The Σ’s transform in a similar way. For identi-
cal reservoirs at temperature T and chemical potential µ
(V = 0), the self-energy components verify the usual fluc-
tuation dissipation relation of a standard bosonic bath
ΣB

K(ω) = h̄ coth(βh̄ω/2)ℑΣB
R(ω), with β = 1/T and

kB = 1.
Collecting all contributions the total action, S = SS +

Sλ + SSB, is O(MN). Given that the zero-source gener-
ating functional equals one, one can simply compute its
average over quenched randomness [19] and use a saddle-
point evaluation of the resulting path-integral that is ex-
act in the large M and N limits. The value of λia(t)
at the saddle point is a spatially homogenous function
λ(t). Its time-dependence is determined by the condi-
tion 〈n2

ia(t)〉 = M with the average taken over S [21].
The macroscopic dynamic order parameters are the

symmetric two-time correlation and instantaneous lin-
ear response that in the operator formalism are defined
as MC(t, tw) ≡ 〈{ni(t),ni(tw)}/2〉 and MR(t, tw) ≡
δ〈ni(t)〉/δhi(tw)|h=0 = −1/h̄〈[ni(t),ni(tw)]〉θ(t − tw).
The field hi couples linearly to the i-th rotor and the
last identity is the Kubo formula valid in linear response.
The exact Schwinger-Dyson equations then read:

D(t)R(t, tw) = δ(t− tw) +

∫ t

tw

dt′′ ΣR(t, t′′)R(t′′, tw) ,

D(t)C(t, tw) =

∫ t

0

dt′′ ΣR(t, t′′)C(t′′, tw)

+

∫ tw

0

dt′′ ΣK(t, t′′)R(tw, t
′′) , (2)

with D(t) = h̄2Γ−1∂2
t + λ(t), the retarded and

Keldysh self-energies given by ΣR = ΣB
R + J2R and

ΣK = ΣB
K+J2C, and λ(t) = −h̄2Γ−1∂2

t2C(t, tw →
t−)+

∫ t

0
dt′′ [ΣR(t, t′′)C(t, t′′)+ΣK(t, t′′)R(t, t′′)].

In the QNESS, the dynamics are stationary but they
do not satisfy the fluctuation-dissipation theorem (FDT)
when V 6= 0. The Lagrange multiplier approaches a
constant, λ(t) → λ∞, and the linear response satisfies
a closed equation that once Fourier transformed reads
R(ω) = −[h̄2Γ−1ω2 − λ∞ + ΣB

R(ω) + J2R(ω)]−1. The
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physical solution to this quadratic equation is the one
that satisfies R(ω → ∞) = 0. The correlation is given
by C(ω) = ΣK(ω)|R(ω)|2 and the spherical constraint,
C(t, t) = 1, implies

∫ ∞

0

dω

2π

ΣB
K(ω)

ℑΣB
R(ω)

ℑR(ω) = 1/2 . (3)

The phase transition occurs when R(ω = 0) =
∫

dtR(t)
ceases to be real, indicating that the stationary condition
necessary to Fourier transform is no longer valid. Con-
comitantly, the derivatives of R(ω) in ω = 0 diverge and
hence the real-time response function shows a power law
decay. This happens when λ∞ = λc = 2J + ΣB

R(ω = 0).
Inserting λc in Eq. (3), we then obtain the equation for
the critical manifold in the T, V,Γ space (for a given g
and h̄ωF ). We shall derive the critical manifold for dif-
ferent reservoirs in full detail in [21]; we summarize here
some of the salient features.

We first consider g → 0 after the long-time limit such
that the asymptotic regime has been established and we
take h̄ωF much larger than any other energy scale. For
Γ = V = 0 we recover the classical critical temperature,
T c = J [16, 17]. At V = T = 0 we obtain Γc = (3π/4)2J ,
as for the p = 2 quantum spherical model in equilib-
rium [16] and its dynamics coupled to an equilibrium
oscillator bath [18]. Finally, the critical point V c on the
Γ = T = 0 line is determined by

∫ µ+eV c

µ

dǫ

[

ρL(ǫ)

2J
− ρ̇L(ǫ)

]

ρR(ǫ) = ρL (µ) ρR (µ)

that can be solved numerically and also analytically in
some special cases. In the large bandwidth limit h̄ωF ≫
J and we find eV c = 2J for the ρL = ρR = ρ symmetric
case, with µ = 0 and differentiable at the origin. The
form of the critical lines are shown in Fig. 1.

As for finite h̄ωF we find that V c varies (contrary
to T c and Γc) upon decreasing h̄ωF /J , the critical line
Vc(T,Γ = 0) is re-entrant and, for a single band, eV is
bounded when the R reservoir is filled.

When the coupling to the electronic reservoirs, g, is
finite the critical line in the Γ = 0 plane remains unal-
tered but the critical surface on the Γ direction is pulled
‘upwards’ enlarging the low temperature phase for in-
creasing values of g. This is similar to what was found
for quantum oscillator Ohmic baths and is due to a spin-
localization-like effect [18, 22].
We now turn to the dynamics. Our numerical and ana-

lytical analysis of Eqs. (2) show that after a quench in the
low-T , weak-Γ and weak-V phase, the dynamics do not
reach a QNESS [21]. There is a separation of two-time
scales typical of aging phenomena [4]. First, a stationary
regime for short time differences t − tw with respect to
the waiting-time after the quench, tw, in which the sym-
metric correlation approaches a plateau asymptotically
in the time-difference. Later, an aging regime in which
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FIG. 2: Dynamics in the driven coarsening regime: numerical
solution to Eqs. (2) after a quench to T = 0.2J, V = 0.2J ,
Γ = 1, g = 1 with h̄ωF = 10J . (a) The symmetric correla-
tion C(t, tw). (b) The integrated linear response, χ(t, tw) =
∫

t

tw
dt′R(t, t′) against C, for tw = 1024 and using t as a pa-

rameter. The curved part corresponds to the stationary and
oscillatory regime with (t− tw)/tw → 0 while the straight line
is for times in the monotonic aging decay of C.

C depends on the two times explicitly. This behavior
is shown in Fig. 2(a). The plateau value qEA, so-called
Edwards-Anderson parameter, measures the fraction of
frozen rotor fluctuations on timescales much smaller than
tw. The stationary decay depends on all control param-
eters. qEA approaches one at T = Γ = V = 0 and zero
on the critical manifold as in a second order transition.
In the aging regime, the correlation normalized by qEA is
identical to the classical one [17]:

C(t, tw)/qEA ≃ 2
√

2 (tw/t)
3/4 (1 + tw/t)

−3/2 (4)

for 0 < t/tw < 1. We shall prove this result and unveil
the connection with coarsening anticipated previously by
exploiting the quadradic form of the full action in the n

fields. Under the Keldysh rotation (n+,n−) → (in̂,n)
with in̂ ≡ i(n+ − n

−)/h̄ and n ≡ (n+ + n
−)/2 the

action is identical to the Martin-Siggia-Rose one for
a classical Langevin process in a harmonic potential
∑

ij(Jij − λ(t)δij)ni · nj . The noise statistics is, how-
ever, peculiar: because of the quantum origin of the en-
vironment it has memory, depends on h̄ and satisfies the
quantum FDT in the V = 0 case. The Langevin equa-
tions are rendered independent – apart from a residual
coupling through the Lagrange multiplier – by a rotation
onto the basis that diagonalizes the interaction matrix
Jij : nµ =

∑

j v
j
µnj and in̂µ =

∑

j v
j
µin̂j with vj

µ the
eigenvector associated to the eigenvalue Jµ. The analy-
sis then follows the same route as in [17], see [21]. One
finds quite naturally that the long-time dynamics cor-
respond to a Bose-Einstein-like condensation process of
the M N -dimensional ‘vectors’ ni on the direction of the
edge eigenvector. The relaxation is then controlled by
the decay of ρ(Jµ) close to its edge. For Gaussian i.i.d.
couplings ρ(Jµ) ∝ (2J − Jµ)1/2. This coincides with the
distribution of the modulus of the Laplacian eigenvalues,
dk2k2(d/2−1) = dk2k2×1/2 in d = 3. For this reason all
models with a square root singularity of the distribution
of ‘masses’ Jµ, as the ferromagnetic rotor model in d = 3
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and the completely connected spin glass rotor model, are
characterized by the same long-time dynamics. Now let
us show that the aging dynamics are indeed equivalent
to their classical counterpart. In the ordered phase, tak-
ing the long tw and t − tw limits with t/tw fixed (low
frequency aging regime) the second-time derivatives in
the effective Langevin equations can be neglected. Fur-
thermore, only the low-frequency (ω ≪ 1/βh̄) behavior
of the kernels plays a rôle in this regime. In this ω → 0
limit, ΣB

K(ω) → ct ∈ ℜ, and ΣR(ω) is linear. Therefore
the noise kernels approach a classical Ohmic white-noise
limit with ‘temperature’

T ∗ = lim
ω→0

ΣB
K(ω)/[2∂ωℑΣB

R(ω)] . (5)

At V = 0 one gets T ∗ = T . Instead, at T = 0 and
eV ≪ h̄ωF , one has T ∗ = eV/2: the voltage plays the
rôle of a bath temperature. This fact has already been
reported and it is at the root of the derivation of the
stochastic Gilbert equation for a spin under bias [23].
Having argued that the long-time dynamics is governed
by a classical Langevin equation at temperature T ∗, it
is justified that the correlation scales as the one in [17]
for t/tw = O(1), see Eq. (4), a result with two inter-
esting consequences. In the case of (large M) quantum
3d coarsening the classical-quantum mapping extends to
space-time correlations [21] and proves the existence of

a growing coherence length ξ(tw) ∝ t
1/2
w over which the

rotors are oriented in the same direction and provides a
real-space interpretation of aging. Moreover, in the same
long-time regime, the linear response also scales as in the
classical problem. Therefore, the quantum fluctuation-
dissipation relation between integrated linear-response,
χ, and symmetric correlation approaches the classical
one, χ ∼ ct + (qEA − C)/Teff , with an infinite effec-
tive temperature [25], Teff → ∞, as shown in Fig. 2(b)
(see also [19, 24]). In short, the asymptotic aging dy-
namics are universal, in the sense that the scaling func-
tions do not depend on T,Γ, V in the coarsening phase
and, hence, are equivalent to the classical un-driven ones
(Γ = V = 0) [26]. This result mirrors the one obtained
in [9] for steady state dynamics.

The environment plays a dual rôle: its quantum char-
acter basically determines the phase diagram but the
coarsening process at long times and large length-scales
only ‘feels’ a classical white bath at temperature T ∗.
The two-time dependent decoherence phenomenon (ab-
sence of oscillations, validity of a classical FDT when
t/tw = O(1), etc.) is intimately related to the develop-
ment of a non-zero (actually infinite) effective temper-
ature, Teff , of the system as defined from the deviation
from the (quantum) FDT [25]. Teff should be distin-
guished from T ∗ as the former is generated not only by
the environment but by the system interactions as well
(Teff > 0 even at T ∗ = 0 [19, 24]). Moreover, we found
an extension of the irrelevance of T in classical ferromag-

netic coarsening (T = 0 ‘fixed-point’ scenario): after a
suitable normalization of the observables that takes into
account all microscopic fluctuations (e.g. qEA) the scal-
ing functions are independent of all parameters including
V and Γ. Although we proved this result through a map-
ping to a Langevin equation that applies to quadratic
models only, we expect it to hold in all instances with
the same type of ordered phase, say ferromagnetic, and
a long-time aging dynamics dominated by the slow mo-
tion of large domains. Thus, a large class of coarsening
systems (classical, quantum, pure and disordered) should
be characterized by the same scaling functions. It could
be worth studying carefully systems evolving by barrier
crossing, a rapid process in which not only the low fre-
quency behavior of the bath may be relevant.
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