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The building blocks of dynamical heterogeneities in dense granular media
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We investigate experimentally the connection between short time dynamics and long time dy-
namical heterogeneities within a dense granular media under cyclic shear. We show that dynamical
heterogeneities result from a two timescales process. Short time but already collective events consist-
ing in clustered cage jumps concentrate most of the non affine displacements. On larger timescales
such clusters appear aggregated both temporally and spatially in avalanches which eventually build
the large scales dynamical heterogeneities. Our results indicate that facilitation plays an important
role in the relaxation process although it does not appear to be conserved as proposed in many
models studied in the literature.

PACS numbers:

Mechanically driven grains exhibit a dramatic slow-
ing down of their dynamics when their volume fraction
is increased above a certain value. This phenomenon,
generically called jamming transition, shares a lot of ex-
perimental features with the glass transition and, indeed,
it has been suggested that they are both governed by sim-
ilar underlying physical mechanisms [1]. Whether such
mechanisms originate from an ideal transition of any kind
remains however a matter of debate [2, 3, 4]. One of
the major recent advances in these fields has been the
discovery of dynamic heterogeneity (DH). Experimental
and numerical works have shown that the dynamics be-
come increasingly correlated in space approaching the
glass and the jamming transitions (see [5] for a recent
review, and [6, 7, 8, 9, 10] more specifically for granu-
lar media). This clearly shows that the slowing down of
the dynamics is related to a collective phenomenon, pos-
sibly to a true phase transition. Different theories have
been developed in order to explain quantitatively this
phenomenon. The crucial last missing piece consists in
understanding what is the underlying mechanism lead-
ing to dynamic heterogeneity and, hence, responsible for
the slow relaxation. Many different possible origins have
been highlighted in the literature: dynamic facilitation
[11], soft modes [12, 13], proximity to a mode coupling
transition [14, 15], growing amorphous order [16, 17], etc.
At this stage, it is therefore crucial to perform detailed
studies aimed at unveiling what are the building blocks
of DH.

The aim of this letter is to perform such type of analy-
sis for a granular system close to its jamming transition.
Our starting point consists in identifying the elementary
irreversible relaxation processes, that we shall call cage
jumps in reference to the well known interpretation of
the slowing down of the dynamics in term of caging [5].
Our analysis shows that DH is the result of two processes
taking place on different timescales. On short timescales,
clustered cage jumps concentrate most of the non affine
displacements. On larger timescales such clusters, that
are already collective events, aggregate both temporally

and spatially in avalanches and ultimately build the large
scales dynamical heterogeneities. We find that dynamic
facilitation [11, 18] clearly plays a major role in the de-
velopment of the avalanche process although it seems to
be irrelevant in triggering it. A detailed discussion of our
findings on the basis of the current theoretical literature
is presented in the conclusion.

The experimental setup, the same as in [6, 7] con-
sists in an horizontal monolayer of about 8300 bi-disperse
steel cylinders of diameter 5 and 6 mm in equal propor-
tions quasi-statically sheared at constant volume frac-
tion φ = 0.84. The shear is periodic, with an amplitude
θmax = ±5◦. A high resolution camera takes images each
time the system is back to its initial position θ = 0◦.
Both the camera resolution and a better control of the
lightening uniformity now allow the tracking of N = 4055
grains in the center of the device, without any loss. A
typical experiment lasts 10 000 cycles. We choose the
time unit to be one back and forth cycle, and the length
unit to be the diameter of small particles. Redoing the
same analysis as in previous studies [6, 7] we observe that:
(i) the dynamics is isotropic, subdiffusive at short times
and diffusive at long times; subdiffusion stems from the
trapping of the particles within cages of size σc = 0.1, a
value slightly smaller than in [6, 7] presumably because
of small changes in packing fraction and/or shear ampli-
tude; (ii) introducing

Qp,t(a, τ) = exp

(

−
||∆~rp(t, t + τ)||2

2a2

)

, (1)

where ∆~rp(t, t + τ) is the displacement of the particle
p between t and t + τ and a is a probing length scale.
The computation of the four points correlation function
χ4(a, τ) = N(< Qt(a, τ)2 > − < Qt(a, τ) >2), where
Qt(a, τ) = 1

N

∑

p Qp,t(a, τ) reveals that the dynamical
correlation length is maximal for τ∗ = 720 and a∗ = 0.15.

In the present study, we first segment the trajectories
in separated cages introducing a novel algorithm. Con-
sider a trajectory S(t)t∈[0,T ] on a total time T and split
it at an arbitrary cut time tc into two sets of successive
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FIG. 1: Left: 3D visualization of the trajectory of a single
particle. The color changes every time the algorithm detects
a cage jump. Right: Comparison between the relative av-
eraged relaxation Qt(a

∗, τ∗)/ < Qt >t (in gray/cyan online)
and the relative percentage Pt(τ

∗)/ < Pt >t of particles that
haven’t jumped between t and t + τ∗ (in dark), τ∗ = 720.

points : S1 for t1 ∈ [0, tc] and S2 for t2 ∈]tc, T ]. Then we
measure how well separated are the two sets of points:

p(tc) = ξ(tc).
(

< d1(t2)
2 >t2∈S2

. < d2(t1)
2 >t1∈S1

)1/2

(2)

where dk(ti) is the distance between the point at time
ti and the center of mass of the subset Sk. The av-
erage <>Sk

is computed over the subset Sk. ξ(tc) =
√

tc/T ∗ (1 − tc/T ), the standard deviation of the num-
ber of steps in a given set for a uniformly distributed pro-
cess is the natural normalisation that eliminates the large
fluctuations arising when tc is too close to the bounds of
[0, T ]. We define a cage jump at tc when p(tc) is maximal.
The procedure is then repeated iteratively for every sub-
trajectory until pmax(tc) < σ2

c . Fig. 1-left illustrates how,
using the above algorithm, we successfully segment the
trajectories into cages separated by jumps. Cage jumps
are defined within a resolution of 10 cycles. A direct
and important observation is that the distribution of the
time spent in each cage is exponential and characterized
by an average ”cage time” τc = 1160. For comparison,
Qt(a

∗, τ = 1000) ≃ 0.5 [7]. This means that in average
a particle jumps only once on the timescale over which
Qt(a

∗, τ) relaxes. Fig. 1-right displays the relative values
of Qt(a

∗, τ∗) together with Pt(τ
∗) the relative percent-

age of particles that have not jumped during τ∗. The
correlation is straightforward : the bursts of cage jumps
caught by the algorithm are responsible for the major
relaxation events of the system. Anticipating on the fol-
lowing, one can also check that the cage jumps detected
by the algorithm are also exactly located in the areas
where the decorrelation is maximal (compare fig. 4 mid-
dle and right).

Fig. 2-left reveals that cage jumps occur intermittently
both in space and time. There are very long intervals
without a jump in a whole region of space separated by
sudden and collective relaxation events. When cluster-
ing the cage jumps which are adjacent in space – neigh-

FIG. 2: Left: Spatio-temporal position of the cage jumps;
only one direction in space is shown (x-axis). Each point
represents a cage jump. The very flat clouds of points are
clusters of collective and instantaneous cage jumps. Right:

Probability distribution of clusters sizes.

bouring particles – and time – separated by less than
the jump resolution, 10 cycles – one can extract two im-
portant features. The duration of these clusters follows
an exponential distribution with an average value which
remains small, typically of the order of 10 cycles. On
the contrary, cage jumps are not isolated in space: the
cluster size distribution has very fat tails. In the regime
of sizes experimentally available, it is well described by
a power law ρ(Nc) ≃ N−α

c , where Nc is the number of
grains within a cluster and α ∈ [3/2, 2] (see fig. 2-right).
Experimentally the average cluster size equals 18 and has
a standard deviation of 34. We now compute the square
difference between the actual local deformation around a
grain i, and the one it would have if it were in a region
of uniform strain ε:

D2
i (t, τ) =

∑

j

(

~rij(t + τ) − ε.~rij(t)
)2

, (3)

where the index j runs over the neighbouring grains of

FIG. 3: Left: Clusters of cage jumps concentrate the highly
non-affine domains : the distance to affinity parameter ∆(t, τ )
(in levels of gray) is compared to the location of clusters of
collective cage jumps (with red boundaries) (τ=30). Right:

Zoom on a highly non-affine region (box on the left figure).
The displacements of the particles, magnified by a factor 2,
are in light grey (yellow online). For convenience, the main
streams creating intense local shears are eye-guided.
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FIG. 4: Left: Cumulated probability distribution of the duration between spatially adjacent clusters (color online). Experi-
mental data are in red circles while green squares stand for a set of equal cardinality generated from an exponential distribution
with the same mean value. The black curve is the analytical version of this same distribution. The actual distribution and the
exponential ones cross at the lag time τ∗ = 720. Inset: Distribution of the lags below τ∗ (blue triangles) and above (magenta
crosses). Middle: Spatial location of successive clusters of cage jumps. Colors correspond to the time at which clusters occur.
Right: Spatial field of the two point correlation function Qp,t(a

∗, τ∗).

reference grain i and ~rij(t) = ~rj(t) − ~ri(t). ∆2
i (t, τ) =

Minε

(

D2
i (t, τ)

)

is the local deviation from affine defor-

mation during the time interval τ (see [19] for details).
We observe (fig.3) that the clusters of cage jumps con-
centrate the highly-non affine deformations and can be
identified as the elementary irreversible events of the dy-
namics.

We shall now unveil how the above short term events
build up large collective relaxation on long time scales.
The heavy tails in the distribution of the cluster sizes
(fig. 2-right) suggests that the collective cage jumps ag-
gregate into some kind of avalanche process : a first clus-
ter triggers the apparition of successive bursts nearby
shortly after, which in turn trigger other nearby bursts.
Such avalanches would provide a natural mechanism for
the formation of the long term dynamical heterogeneities,
as we shall see now. Fig. 4-left compares the cumula-
tive distribution (cPdf)of the lag times between adjacent
clusters (red circles) to that of independent events follow-
ing a Poissonian process with the same average lag time
(dark line). Both cumulative distributions intersect at a
lag time corresponding precisely to the timescale of the
dynamical heterogeneities τ∗: compared to the Poisso-
nian process, there is an excess of short lag times when
τ < τ∗ i.e. Prob(lag < τ) = cPdf(τ) is larger than for
the Poissonian process , and an excess of large lag times
when τ > τ∗ i.e. Prob(lag > τ) = 1 − cPdf(τ) is again
larger than for the Poisonian process , leading to an under
representation of intermediate lag times1. In the inset,

1 Note that the Poissonian distibution computed from a randomly
generated data set with the same cardinality and the same aver-
age (green squares) is identical to the analytical curve, excluding
any finite size effect in the above observation.

one can see the two lag time distributions corresponding
to events separated by respectively less and more than τ∗;
these exponential distributions reveals two very different
typical decay times (τs = 120 and τl = 1190). This sepa-
ration of times underlines the aggregation of the clusters
of cage jumps into separated avalanches. The short time
scale τs corresponds to the delay between two successive
events within a given avalanche, whereas the long one τl is
the time separating two avalanches at a similar location.
τl nicely corresponds to the typical cage time of individ-
ual particles τc = 1160, indicating that almost no particle
jumps twice within the same avalanche. Spatially, note
that the minimal distance between avalanches2 points
toward an average distance of 27 and a standard devi-
ation of 14, indicating a clear spatial separation between
avalanches. Also, the fractal dimension of clusters dF

gives a geometrical characterization of the structure of
the dynamically correlated regions. Within the statisti-
cal accuracy, dF increases from 1.3 towards 2 during the
aggregation process. Thus, as in numerical studies on
glass-forming liquids [20, 21], we find that dynamically
correlated regions becomes thicker on larger timescales.
Finally, selecting a time interval of length τ∗, initiated
at the beginning of a given avalanche, fig. 4 compares
the spatial organization of the clusters in the avalanche
and the local relaxation of the system as measured by
the field Qp,t(a

∗, τ∗). The correspondence is very good:
the aggregation of all the clusters within an avalanche is
ultimately building a large decorrelation area, also seen
on the correlation function Qp,t(a

∗, τ∗). More interest-

2 We compute the distance between avalanches as the minimal
distance between all the couples of clusters separated of a lag
time less than 2τs and belonging to different avalanches.
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ingly, each cluster in fig. 4-middle is colored according
to a color gradient corresponding to the time at which it
occurs, thereby underlining the way a first cluster of cage
jumps has given rise to successive neighbouring clusters.

To summarize, we have identified a two timescales pro-
cess that give rise to dynamical heterogeneities (DH) and
is responsible for macroscopic relaxation. At short times,
the particles collectively jumps within clusters whose
sizes are very largely distributed. These clustered jumps
trigger other ones nearby within an avalanche process.
The lifetime of such avalanches is much smaller than the
timescale between two avalanches in a similar location
or, analogously, between succesive cage jumps of a given
grain. DH are strongest on a timescale which corresponds
to the crossover between these last two. It is interesting
to discuss our results within the perspectives provided
by current theoretical approaches. Dynamic facilitation
(DF) is one mechanism put forward to explain slow and
glassy dynamics. Theoretical approaches based on DF
usually focus on Kinetically Constrained Models (KCM)
[11, 22, 23]. They are characterized by a common mech-
anism leading to slow dynamics: relaxation is due to mo-
bile facilitating regions that are rare and move slowly
across the system. Here, we find a dynamics character-
ized by avalanches inside which clusters are facilitating
each other. It is important to remark that the fraction of
particles relaxing because of facilitation, i.e. belonging
to a cluster but the first one (in time) of an avalanche,
is close to 0.85. However, in our system facilitation is
not conserved as in KCMs since the first cluster of an
avalanche is far from any other possible facilitating re-
gion. Why then particles jump in the first cluster of an
avalanche? This is hardly a pure random event since
it is already a collective phenomenon clustered in space
and time. Promising candidates to explain it are the
so called soft modes or soft regions. It has been shown
that for hard spheres close to jamming [12] and for mod-
erately supercooled liquids [13] a significant fraction of
the dynamical evolution takes place along the soft modes
and dynamic heterogeneity is strongly correlated with the
softest regions. One can then conjecture that the first
clusters of avalanches correlate with the softest regions
of the system. The resulting scenario is a mixture of the
one based on soft modes and the one based on DF: dy-
namical evolution starts from the softest regions but then
propagate on larger lengthscales by dynamic facilitation.
Note that the relationship between these two pictures has
been also discussed recently in an analysis of a kinetically
constrained model [24]. Still, without having computed
the soft modes in a frictional packing one cannot elimi-
nate other possible (maybe complementary) mechanisms
such as hopping between local minima in energy land-
scape [25]. It is also interesting to remark that the Mode
Coupling Theory of the glass transition is based on the
emergence of soft modes and predicts [26], as we find,
that dynamical correlated structures thicken in time. Ob-

viously, all such conjectures call for further investigation.
From the experimental point of view, one would like to
identify the soft modes and check their correlation with
the clusters we identified. Repeating the present study
in simulations of glass-forming liquids would be certainly
very instructive. One could check whether the building
blocks of DH are the same ones we identified for granu-
lar media. Finally, it would be interesting to know how
the processes we identified evolved with density and in
particular which of DF and soft modes becomes more
important when increasing the density.

We would like to thank J. P. Bouchaud, P. Harrowell,
S. Aumaitre, F. Lechenault for helpful discussions as well
as V. Padilla and C. Gasquet for technical assitance on
the experiment.
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