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Abstract

We study theoretically the non-linear response properties of glass formers. We establish several

general results which, together with the assumption of Time-Temperature Superposition, lead to

a relation between the non-linear response and the derivative of the linear response with respect

to temperature. Using results from Mode-Coupling Theory (MCT) and scaling arguments valid

close to the glass transition, we obtain the frequency and temperature dependence of the non-

linear response in the α and β-regimes. These results are extended to the case of inhomogeneous

perturbing fields and confirmed by an exact analysis of the non-linear response of the spherical

p-spin model.
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I. INTRODUCTION AND MOTIVATIONS

There is mounting evidence that the glass transition is a collective phenomenon, possibly

related to the appearance and growth of amorphous long range order [1, 2, 3]. Standard

two-body correlations are blind to this strange type of order and declare the glass to be,

structurally, a frozen liquid. The signature of such an exotic scenario must be sought for in

higher order, spatio-temporal correlation functions. A natural candidate, which also appears

in the context of spin-glasses, is the four-body correlation function which can be thought of a

the spatial correlation of the local two body temporal correlation [4, 5]. Its integral over space

defines a ‘dynamical susceptibility’ called χ4, which has been intensively studied in the past

few years, both theoretically and numerically [6, 7, 8, 9, 10, 11]. One finds that χ4 reaches a

peak value for time scales of the order of the relaxation time of the system τα, and the height

of this peak increases as the temperature is reduced, as a clear sign of the growth of some

dynamical correlation length as the glass transition is approached. From an experimental

point of view, however, four-point correlation functions are very difficult to measure directly,

except in cases where one can monitor the trajectory of individual particles – for example

granular systems where χ4 can be measured directly and again shows interesting features as

the system jams [12, 13, 14]. It is therefore important to investigate alternative quantities

that can both be measured experimentally and probe the non standard nature of the glassy

correlations.

One possibility, advocated in [15], is to study the non linear response to a small external

field. In spin-glasses, it is well known that the (cubic) non-linear magnetic susceptibility

χ3(ω) is the natural probe for the appearance of spin-glass order [16, 17, 18]. The static non-

linear susceptibility actually diverges at the spin-glass transition, signaling the appearance

of long range amorphous order in these systems. For glasses, it was argued in [15], on the

basis of physical and heuristic arguments, that the non-linear dielectric susceptibility χ3(ω)

should exhibit a growing peak around ωτα = 1, while χ3(ω = 0) should remain trivial, in

contrast with the case of spin-glasses. However, the detailed shape of χ3(ω) in the glassy

region is beyond the grasp of these heuristic arguments. Since the corresponding experiments

are currently being performed [19, 20], it is quite important to get more precise predictions

on the expected shape of χ3(ω). This is the primary aim of the present study, where we

obtain for the first time, within the context of the Mode Coupling Theory (MCT) of the
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glass transition, some precise information on the non-linear susceptibility, concerning both

its frequency and temperature dependence.

Another interesting quantity, extensively studied in the past few years, is the derivative

of the standard two-body correlation C(τ) or susceptibility χ1(ω) with respect to the tem-

perature (or the density) – a quantity called χT = T∂C(τ)/∂T (or χρ = ρ∂C(τ)/∂ρ) in

[21]. This is clearly an easily accessible quantity, which also shows a peak at times of the

order of τα and whose height grows as the temperature is lowered [21, 22]. This has lead to

direct estimates of the size of the dynamical correlation length in supercooled liquids and

glasses [21, 22, 23]. The relation between χ4 and χT is however highly non-trivial and has

been investigated thoroughly in [10, 11]. It was realized in these papers that the existence of

conserved quantities (energy, density) crucially affects the properties of χ4, which depends

both on the thermodynamic ensemble (NVE vs. NPT for example) and on the dynamics

(Brownian vs. Newtonian for example). The true glassy correlation length, on the other

hand, does not depend on these choices, and therefore the direct interpretation of χ4(t) in

terms of a correlation volume is somewhat obscured. At a deeper level, the basic ingredient

leading to the critical behaviour of χ4 turns out to be entirely contained in the response

function χT itself, as the field theoretical analysis of [10] explicitely demonstrates and the

numerical results presented there fully confirm. For example, for Brownian dynamics or for

Newtonian dynamics in the NVE ensemble, χ4 ≈ χT , whereas for Newtonian dynamics in

the NVT ensemble, one rather finds χ4 ≈ χ2
T , see [10, 11] for a detailed discussion.

A natural question is therefore the relation between the non-linear susceptibility χ3(ω)

and the dynamical susceptibilities χT and χ4. The conclusion of this present study is that

the complications brought about by conserved quantities that affect χ4 do not contribute

to the non-linear susceptibility which is again controlled by the critical properties of χT .

We establish simple identities between χ3 and χT which hold whenever Time-Temperature

superposition holds, i.e. all dependence of the linear response of the system on external

parameters (temperature, density, electric field, . . . ) comes through the dependence of the

relaxation time on these parameters. This is a strict statement within MCT, where a true

dynamical phase transition takes place.

Whenever this property holds, our central result is that χ3(ω) takes in the α-region the
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scaling form conjectured in [15]:

χ3(ω) ≃ ξ2−η
α G(ωτα), (1)

where ξα is the dynamical correlation length which also appears in χT , and η a certain

critical exponent that within MCT is equal to minus 2.

For symmetry reasons, the quadratic non-linear susceptibility χ2(ω) is zero for unpo-

larized systems. This would not be the case for example for polarized systems, or when

considering the response to a density perturbation. The non-linear response to a density

perturbation contains a quadratic term. The arguments presented below make it clear that

in that case χ2(ω) itself is directly related to χT . We therefore expect that all the results

presented below apply to describe the long-wavelength (q → 0) non-linear compressibility of

supercooled liquids or colloids. By adapting the arguments presented below to the explicit

results obtained for Inhomogenous Mode Coupling Theory [24] we also extend these results

to finite wavevectors q.

The organisation of the paper is as follows. We first introduce the theoretical framework

needed to deal with non-linear response to an external field and establish some general

relations between different quantities that naturally appear (Section II). We then exploit

the Time-Temperature superposition (TTS) properties of the correlation function of glassy

system to establish the scaling form of the non-linear susceptibility (Section III). Using

scaling arguments, explicit expressions can be easily derived with the context of MCT, where

TTS holds asymptotically. We summarize our central results at the end of Section III, see in

particular Fig. 1. In the second, more technical part of the paper (Section IV), we provide a

more rigorous analysis of the Mode-Coupling equations in the presence of an external field,

and analyze the solutions to second order in the field, in order to obtain in a more rigorous

way the results given in Section III on the basis of a scaling analysis. We end by a conclusion

with open problems, possible extensions and experimental suggestions.

II. NON-LINEAR SUSCEPTIBILITY: GENERAL FRAMEWORK

In this Section, we introduce the formalism needed to deal with non-linear response and

establish a general relation between the non-linear susceptibility and a dynamical response

function recently introduced in the literature, which was argued to capture the critical spatio-
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temporal correlations of the dynamics in the glassy region. In order to remain close to recent

and ongoing experiments on glycerol, we use below the language of dielectric susceptibility.

However, as mentioned in the Introduction, our arguments and results apply to more general

non-linear susceptibilities (mechanical, magnetic, etc.).

A. Linear and non linear response: small field expansion

Let us consider a dipolar molecular liquid in presence of a small external electric field

oscillating at frequency ω in the z-direction. We denote it as:

E(t) = zE(t) ≡ zE cos(ωt), (2)

where z is the unit vector in the z direction and E(t) = E cos(ωt) is its z-component with

peak field amplitude E

When the external field is sufficiently small, the polarization vector (per particle) P(t, E)

can be expanded in powers of E. In the following we will denote P (t, E) its z-component.

Due to the rotational symmetry in the x-y plane the other components are identically zero.

Furthermore, because of the up-down symmetry in the z direction, the polarization must be

an odd function of E, i.e., P (t,−E) = −P (t, E). As a consequence, the expansion of P in

powers of E contains only odd terms:

P (t, E) = P1(t)E + P3(t)E
3 + O(E5), (3)

where P1(t) and P3(t) can be expressed as functional derivatives of the magnetization with

respect to the external field:

P1(t) ≡
∫

t1<t

dt1
δP (t)

δE(t1)

∣

∣

∣

∣

E=0

cos(ωt1) (4)

P3(t) =
1

6

∫

t1,t2,t3<t

dt1 dt2 dt3
δ3P (t)

δE(t1) δE(t2) δE(t3)

∣

∣

∣

∣

E=0

cos(ωt1) cos(ωt2) cos(ωt3).

It is important to remark that the linear and non-linear response kernels in the above

integrals are time translation invariant (TTI), i.e. they do not change if all time variables

are shifted by the same amount. This comes from the fact that they are equilibrium response

functions. Using this result and the specific form of the external field, Eq. (2), one finds:

P (t, E) = E ℜ
(

χ1(ω) eiωt
)

+
E3

4
ℜ

(

χ1,2(ω) eiωt + χ3(ω) e3iωt
)

+ O(E5). (5)
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which defines the usual frequency dependent linear susceptibility, χ1(ω), and the frequency

dependent non-linear susceptibility, χ3(ω), while χ1,2(ω) is the E2 correction to the first

harmonic susceptibility χ1(ω).

Following the same procedure, one can expand the (z-component) polarization correlation

and linear response functions in powers of the electric field. The up-down symmetry in the

z direction implies that they both are even functions of E. Therefore their expansion in

power of E contains only even terms:

C(t, t′) = C0(t, t
′) + C2(t, t

′)E2 + O(E4)

R(t, t′) = R0(t, t
′) + R2(t, t

′)E2 + O(E4). (6)

C0 and R0 are the unperturbed correlation and response functions in absence of the external

field. At equilibrium, they are functions only of the time difference τ = t−t′ ≥ 0: C0(t, t
′) =

C0(t − t′) and R0(t, t
′) = R0(t − t′). Moreover, the Fluctuation-Dissipation theorem (FDT)

holds for the unperturbed correlation and response functions:

R0(τ) = − 1

T

∂C0(τ)

∂τ
. (7)

The second-order correlation and response functions appearing in Eq. (6) are defined as:

C2(t, t
′) =

1

2

∫

t1,t2<t

dt1 dt2
δ2C(t, t′)

δE(t1) δE(t2)

∣

∣

∣

∣

E=0

cos(ωt1) cos(ωt2). (8)

R2(t, t
′) =

1

2

∫

t1,t2<t

dt1 dt2
δ2R(t, t′)

δE(t1) δE(t2)

∣

∣

∣

∣

E=0

cos(ωt1) cos(ωt2). (9)

The second order correlation function, C2(t, t
′), was introduced in the context of spin-glasses

by Huse [18] in the static limit, and more recently studied in details in [26, 27]. Neither

TTI nor FDT holds for C2(t, t
′) and R2(t, t

′), which are explicit functions of both t and t′.

However, the response kernels appearing inside the above integrals are TTI. Therefore, one

finds that C2(t, t
′) and R2(t, t

′) are periodic function in the time variable t + t′ with period

2π/ω. As a consequence, they be expanded in Fourier series as follows:

C2(t, t
′) =

∞
∑

n=−∞

einω(t+t′) c(ω)
n (t − t′)

R2(t, t
′) =

∞
∑

n=−∞

einω(t+t′) r(ω)
n (t − t′). (10)

Since the correlation and response function have to be real, we also have that c
(ω)
n (τ) =

c
(ω)
−n(τ)⋆ and r

(ω)
n (τ) = r

(ω)
−n(τ)⋆.
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B. Relation between non-linear susceptibility and second-order response

In the following we aim at establishing a relation between the second order response func-

tion defined above and the non-linear susceptibility. By definition, the electric polarization

is given by the convolution of the response function with the external field:

P (t) =

∫ t

−∞

dt′ R(t, t′) E(t′). (11)

Therefore, using Eqs. (3) and (6), we simply get that:

EP1(t) =

∫ t

−∞

dt′ R0(t − t′) E(t′), (12)

and

EP3(t) =

∫ t

−∞

dt′ R2(t, t
′) E(t′). (13)

Thus, the component of order E3 of the polarization (related to χ3) turns out to be just

the convolution of the field with the function R2(t, t
′) defined in Eq. (8). As a consequence,

using the above expression, together with the Fourier expansion Eq. (10) up to order E3,

we find, for an oscillating field at frequency ω:

P3(t) =
1

2

{[

eiωt
(

r̃
(ω)
0 (ω) + r̃

(ω)
1 (0)

)

+ c.c.
]

+
[

e3iωtr̃
(ω)
1 (2ω) + c.c.

]}

, (14)

where we denoted r̃
(ω)
0 (ω′) and r̃

(ω)
1 (ω′) the semi-Fourier transform (with respect to τ) at

frequency ω′ of the coefficients appearing in the Fourier expansion, r
(ω)
0 (τ) and r

(ω)
1 (τ). The

previous equation allows us to establish a general relation between χ3(ω) and the Fourier

transform of r
(ω)
n=1(τ):

χ3(ω) = 4 r̃
(ω)
1 (2ω) = 4

∫

∞

0

dτ e−2iωτ r
(ω)
1 (τ). (15)

This relation will be very useful. Using scaling arguments we will now obtain the critical

behavior of r
(ω)
1 (τ) within MCT. The relation above will then allow us to obtain straightfor-

wardly the scaling behaviour of χ3(ω).

C. Analysis of the low frequency limit

In the following we focus on the evolution of the correlation and response function for

time differences τ = t − t′ much smaller than the period of oscillation of the external field,
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in other words in the low-frequency limit ωτ ≪ 1. By definition all degrees of freedom

relevant for this time-sector of the response or correlation relax on timescales much smaller

than ω−1. As a consequence the correlation/response functions are expected to be given

by their equilibrium expression in the presence of a quasi-constant external field E cos(ωt).

Therefore, in this regime:

C(t, t′) = Ceq(t − t′, E cos(ωt)) (16)

R(t, t′) = Req(t − t′, E cos(ωt)).

Since we are interested in the small E behavior, we can expand the above expression up to

second order in E. For the response function, for instance, this yields:

Req(τ, E cos(ωt)) ≈ R0(τ) +
E2 cos2(ωt)

2

∂2Req(τ, E)

∂E2

∣

∣

∣

∣

E=0

, (17)

where R0(τ) is the unperturbed equilibrium response function, and the derivative is com-

puted with respect to a constant external field. Comparing the last equation with Eq. (10)

in the stationary regime (t, t′ → ∞ with τ = t − t′ finite) we find a very simple expression

for the n = 1 component of the expansion r
(ω)
1 (τ) in the regime ωτ ≪ 1:

r
(ω)
1 (τ) =

1

8

∂2Req(τ, E)

∂E2

∣

∣

∣

∣

E=0

(ωτ ≪ 1) (18)

An analogous relation holds for the correlation function:

c
(ω)
1 (τ) =

1

8

∂2Ceq(τ, E)

∂E2

∣

∣

∣

∣

E=0

(ωτ ≪ 1) (19)

These general results provide important insights to understand the behaviour of the non-

linear susceptibility. First of all, since the correlation and response functions appearing in

Eq. (16) are defined in equilibrium in presence of a constant field, they must obey FDT.

Therefore one can establish a sort of generalized Fluctuation-Dissipation relation between

the second order correlation and response functions, which reads:

r
(ω)
1 (τ) = − 1

T

∂ c
(ω)
1 (τ)

∂τ
, (ωτ ≪ 1) (20)

which is however only valid in the low frequency domain ωτ ≪ 1.
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III. CRITICAL BEHAVIOUR OF THE NON-LINEAR SUSCEPTIBILITY: SCAL-

ING ARGUMENTS

In this section we analyze the behaviour of the non-linear susceptibility using general

physical and scaling arguments, later confirmed by our exact analysis of the Mode Coupling

(p-spin) equations.

A. Time-temperature superposition principle

This results in the previous Section allow us to establish an interesting relation between

the second order correlation and response functions and the dynamical response χT (τ) ≡
T∂Ceq(τ)/∂T that was recently introduced and extensively studied in [10, 11, 21, 22, 23,

24], in particular in relation with the behaviour of the four-point dynamical correlation

function. The key idea is that in the glassy dynamics regime, the equilibrium correlation

function Ceq(τ) satisfies to a good approximation the time-temperature superposition (TTS)

principle. This means that the normalized correlation function for different temperatures,

densities, external fields, etc., can be written as a function of τ/τα(T, ρ, E), and the whole

T, ρ, E dependence is captured by the structural relaxation time τα(T, ρ, E). This becomes

actually an exact statement within the α-regime of MCT, when the system approaches the

dynamical critical point.

Now, since τα(T, ρ, E) is expected to be an even function of E because of the up-down

symmetry, it should rather be written as τα(T, ρ, Θ), with Θ = E2. Then TTS immediately

leads to:
∂Ceq(τ)

∂Θ
=

∂τα/∂Θ

∂τα/∂T

∂Ceq(τ)

∂T
. (21)

Now, around E = 0 one has ∂2Ceq/∂E2 = 2∂Ceq/∂Θ; using the above results one finds the

very interesting relation (valid for ωτ ≪ 1):

c
(ω)
1 (τ) =

κ

4

∂Ceq(τ)

∂T
=

κ

4T
χT (τ),

where κ = ∂τα

∂Θ
/∂τα

∂T
. Analogously one finds for the response function (using the FDT relation

(20)):

r
(ω)
1 (τ) = − κ

4T 2

∂χT (τ)

∂τ
. (22)
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Within MCT one can understand these results by noticing that the dynamical critical tem-

perature is expected to show a quadratic dependence on the external field (for small fields)

of the form:

TMCT (E) ≈ TMCT (E = 0) + κE2. (23)

Close to the critical point, a small field changes slightly the critical temperature. Since the

only thing that matters for the critical behaviour is the distance from the critical point, one

finds that applying a small field is equivalent to a small change in temperature (up to the

constant κ). Note that this implies that the relations found above carry over, within MCT,

to the β regime as well.

More generally, the amplitude of the correlation function also depends on temperature and

electric field, and this dependence brings extra contributions that affect the above equalities.

However, in glassy systems, it is the relaxation time τα which is most sensitive to external

parameters, and these correction terms can be discarded. This is not the case in spin-glasses

for example, where the correlation amplitude itself depends critically on temperature.

Provided the Fourier transform of Eq. (15) is dominated by the region ωτ ≪ 1, one finds,

using again FDT, that the non-linear susceptibility χ3(ω) is given by:

χ3(ω) ≈ κ
∂χ1(2ω)

∂T
, (24)

a relation expected to hold at low enough frequencies, at least when the deviations from

TTS are weak.

B. Physical consequences within MCT

The results above establish a clear connection between the dynamical response χT and the

non-linear susceptibility χ3. In the following, we will exploit the consequences of this con-

nection within the MCT framework, using scaling arguments which will be fully confirmed

by the detailed analysis of Section IV below.

The behaviour of χT (τ) has been studied in great detail within MCT [11, 24], where two

critical relaxation regimes occur close to the MCT transition: the β-regime, with relaxation

time τβ ∼ τ0ǫ
−1/2a, and the α-regime, with relaxation time τα ∼ τβǫ

−1/2b ≫ τβ. [ǫ = T − Tc

is the distance from the Mode Coupling critical temperature Tc, τ0 is a microscopic time

scale, and a, b are known MCT exponents.] The critical properties of χT (τ) have been
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derived in terms of scaling functions both in the α and β-regimes. Using these results, the

relations established above and the FDT of Eq. (20), one can obtain the scaling behaviour

of c
(ω)
1 (τ) and r

(ω)
1 (τ) close to the MCT transition. Let us analyse in turn the β-regime and

the α-regime.

1. The β-regime

Let us first analyze the regime ωτ ≪ 1 where the above quasi-stationary results are valid.

When τ0 ≪ τ ∼ τβ ≪ τα, one finds [11, 24]:

c
(ω)
1 (τ) ≈ 1√

ǫ
cβ

(

τ

τβ

)

(25)

r
(ω)
1 (τ) ≈ 1√

ǫ

1

τβ

rβ

(

τ

τβ

)

,

where the scaling function cβ(x) behaves asymptotically as xa for x ≪ 1 and as xb for x ≫ 1,

whereas rβ(x) behaves as xa−1 for x ≪ 1 and as xb−1 for x ≫ 1.

For very large frequencies, such that ωτ ≫ 1, one expects very small second order corre-

lation and response functions. The reason is that, despite the fact that the system is close

to the critical point, the field oscillates so fast that the system has no time to respond and

so the change due to the field is very small. Close to the critical point, one expects a scaling

behavior in the β-regime generalizing the one above:

c
(ω)
1 (τ) ≈ 1√

ǫ
f̂β

(

τ

τβ
, ωτ

)

(26)

r
(ω)
1 (τ) ≈ 1√

ǫ

1

τβ
ĝβ

(

τ

τβ
, ωτ

)

. (27)

The most general assumption compatible with previous results is a factorized form for f̂β

and ĝβ in both regimes τ ≫ τβ and τ ≪ τβ . In the late β-regime, one has (with L for ‘late’):

c
(ω)
1 (τ) ≃ 1√

ǫ

(

τ

τβ

)b

fL
β (ωτ) (28)

r
(ω)
1 (τ) ≃ 1√

ǫ

1

τβ

(

τ

τβ

)b−1

gL
β (ωτ). (29)

where both functions fL
β , gL

β tend to a constant when their argument ωτ is small, and tend

to zero when ωτ is large. In the early β-regime, a similar result holds, with a priori different

11



scaling functions fE
β , gE

β (E for ‘early’):

c
(ω)
1 (τ) ≃ 1√

ǫ

(

τ

τβ

)a

fE
β (ωτ) (30)

r
(ω)
1 (τ) ≃ 1√

ǫ

1

τβ

(

τ

τβ

)a−1

gE
β (ωτ). (31)

These new functions fE
β , gE

β again tend to a constant when their argument ωτ is small, and

tend to zero when ωτ is large.

In this regime, the explicit dependence with τ and ω occurs only through the rescaled

time and frequency τ/τβ and ωτβ. In the rest of the text, we will frequently use the variables

τ̂ = τ/τβ , ω̂ = ωτβ and x = ωτ .

2. The α-regime

The behaviour of c
(ω)
1 , r

(ω)
1 in the α-regime follows similar scaling laws. When ωτ ≪ 1,

the results of [11, 24] allow one to obtain:

c
(ω)
1 (τ) ≈ 1

ǫ
cα

(

τ

τα

)

(32)

r
(ω)
1 (τ) ≈ 1

ǫ

1

τα
rα

(

τ

τα

)

,

The matching between the late β-regime and the α-regime determine the asymptotic be-

haviour of the scaling functions defined above. One finds that cα(x ≪ 1) behaves as xb and

rα(x ≪ 1) as xb−1, whereas both functions tend exponentially fast to zero for x ≫ 1.

When ωτ is not small, the scaling behaviour in the α−regime reads:

c
(ω)
1 (τ) ≈ 1

ǫ
fα

(

τ

τα
, ωτ

)

(33)

r
(ω)
1 (τ) ≈ 1

ǫ

1

τα

gα

(

τ

τα

, ωτ

)

. (34)

In the early α−regime, that is when τ ≪ τα, one finds:

c
(ω)
1 (τ) ≃ 1

ǫ

(

τ

τα

)b

fE
α (ωτ) (35)

r
(ω)
1 (τ) ≃ 1

ǫ

1

τα

(

τ

τα

)b−1

gE
α (ωτ). (36)

Furthermore, by requiring the matching between the two regimes of large τ/τβ and small

τ/τα, one finds that the scaling functions fE
α (x) and gE

α (x) are the same as fL
β (x) and gL

β (x).

12



As in the β−regime, the explicit dependence with τ and ω occurs only through the

rescaled time and frequency τ/τα and ωτα. In the rest of the text, we will frequently use the

variables τ = τ/τα, ω = ωτα (and also x = ωτ).

C. Scaling behavior of χ3(ω)

In the previous section we have determined the scaling forms governing the time and

temperature dependence of r
(ω)
1 (τ) and c

(ω)
1 (τ). Using these results we can now easily analyze

the critical behaviour of the non-linear susceptibility, by computing its Fourier transform at

frequency 2ω, according to Eq. (15). We again focus in turn on the β-regime and then on

the α-regime, before commenting on the zero and infinite frequency limits.

1. The β-regime

Let us first consider probing frequencies of the order of the inverse of the β-relaxation

time. We set ω̂ = ωτβ and assume that only the β-regime of r
(ω)
1 (τ) contributes in this

regime. This assumption will be fully justified by the exact analysis of the schematic Mode

Coupling equations of Sec. IV. Indeed one can show that r
(ω)
1 (τ ∼ τα) is small due to the

fact that the scaling function gα(x), introduced in Eq. (35), vanishes as 1/x1+b at large

x. Therefore, for probing frequencies of the order of the inverse of the β-relaxation time,

the contribution to the non-linear susceptibility coming from the time integral α-regime is

negligible in Eq. (15).

One then finds that:

χ3(ω) ≃ 1√
ǫ
F(ω̂) (37)

where the function F(x) is defined as:

F(ω̂) =
4

ω̂

∫

∞

0

du e−2iu ĝβ

(u

ω̂
, u

)

The asymptotic behaviour of the scaling function F can easily be obtained from the results

of the previous section. One finds:

F(ω̂) ≃ 4ω̂−b

∫

∞

0

du ub−1e−2iugL
β (u) ωτβ ≪ 1 (38)

≃ 4ω̂−a

∫

∞

0

du ua−1e−2iugE
β (u) ωτβ ≫ 1. (39)
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Using the asymptotic properties of gL
β (u), gE

β (u) and the fact that a, b are between zero

and one insures the convergence of the integrals appearing in the above equation, at both

small and large u. This confirms that the scaling behaviour of χ3(ω) in this region is

indeed dominated by the β-regime of r
(ω)
1 (τ). Note that in the high frequency region the ǫ

dependence of χ3(ω) drops out, as it should in order to match the non critical τ−1
0 frequency

regime.

2. The α-regime

We now consider the α-regime, where we set ω = ωτα, and again assume that only the

scaling form of r
(ω)
1 (τ) in this same regime, Eq. (33), contributes significantly to Eq. (15).

Indeed, the contribution due to the time integral in the β-regime is at least a factor
√

ǫ

smaller than the one coming from the α-regime, and yields a subleading contribution to the

critical behavior of χ3(ω). We then find that the non-linear susceptibility scales as:

χ3(ω) ≃ 1

ǫ
G(ω) (40)

where the function G(x) is defined as:

G(ω) =
4

ω

∫

∞

0

du e−2iu gE
α

(u

ω
, u

)

Clearly, because of the matching of gα for small first arguments with ĝβ at large first argu-

ments, we find that the scaling of the early α-regime (ωτα ≫ 1) of the non-linear suscepti-

bility matches with that of the late β-regime (ωτβ ≪ 1), with:

χ3(ω) ∝ ǫ(b−a)/2aω−b. (41)

3. Low frequency limit

In the low frequency limit, one finds that χ3(ω) decreases from its peak value ǫ−1 reached

for ω ∼ 1/2τα to a non critical, finite value given by Eq. (24). As discussed in [15], contrary

to the case of spin-glasses, the non-linear susceptibility is critical only for small but non zero

values of the frequencies. Zero frequency corresponds to a static equilibrium response (or

correlation, via FDT). In glasses, these are not expected to have any critical behavior.
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In particular, in the low frequency limit, one can expand Eq. (15) up to second order in

ω. Using Eq. (17) we have:

χ3(ωτ ≪ 1) ≈ κ

∫

∞

0

dτ
(

1 − 2iωτ − 2ω2τ 2
) ∂Req(τ)

∂T
(42)

≈ κ
d

dT

(

χ1(0) − 2iωA1
τα

T
− 4ω2A2

τ 2
α

T

)

,

where the zero frequency limit of the linear susceptibility, χ1(0), equals the static po-

larization fluctuations (along the z-axis) divided by temperature, N〈P 2〉/T . A1 and A2

are two temperature-independent constants defined as A1 =
∫

∞

0
d(τ/τα) Ceq(τ/τα) and

A2 =
∫

∞

0
d(τ/τα) (τ/τα) Ceq(τ/τα) (here we have used again the time-temperature super-

position principle). The last equations allows us to determine the low frequency behavior of

the real and imaginary part of the non-linear susceptibility:

ℜ (χ3(ωτ ≪ 1)) ≈ κ
dχ1(0)

dT
+ B1ω

2 + O(ω4)

ℑ (χ3(ωτ ≪ 1)) ≈ B2ω + O(ω3),

with B1 = −4κA2ω
2 d(τ 2

α/T )/dT > 0 and B2 = −2κA1ω d(τα/T )/dT > 0.

4. Large frequency limit

At very large frequencies (very small timescales) the non-linear susceptibility is vanishing

because the system has not enough time to respond to the oscillating field. One could argue

that the analysis of Eq. (4) at very large frequencies yields:

P3(t) ∼
δ3P

δE3(0)

∣

∣

∣

∣

E=0

[
∫ t

0

dt1 (eiωt1 + e−iωt1)

]3

. (43)

As a result, at very large frequency the non-linear susceptibility behaves as:

χ3(ω → ∞) ∼ 1

(iω)3

δ3P

δE3(0)

∣

∣

∣

∣

E=0

. (44)

This analysis is oversimplified and assumes analytic properties of the function δ3P
δE(t1)δE(t2)δE(t3)

that are not granted and may depend strongly on the microscopic dynamics. For instance,

in the case of Ising spins with a Monte Carlo heath bath dynamics one can easily verify

that the previous arguments do not apply and the large frequency behavior is proportional

to 1/(iω). The conclusion is that the high frequency behavior depends on the underlying
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FIG. 1: Sketch of log |χ3(ω)| as a function of log ω, showing five different frequncency regimes:

ωτα ≪ 1, ωτα ∼ 1, τβ/τα ≪ ωτβ ≪ 1, ωτβ ≫ 1, ωτ0 ∼ 1. Note that the low frequency limit is non

zero but much smaller than the peak value for T close to Tc.

microscopic dynamics and, likely, on the type of the non-linear response considered. In the

case of non-linear dielectric susceptibility the underlying microscopic dynamics should be

provided by Langevin equations for dipoles in a non-polar solvent (this is an approximation

since at extremely high frequency inertia effects will play a role). To work out the high

frequency behavior one can neglect interactions with other dipoles and the coupling to

structural relaxation. Thus, the analysis of the non-linear response of a single dipole in a

non-polar solvent worked out in [25] should apply. The outcome is the 1/(iω)3 behavior

discussed above.
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D. Summary of the main results

We summarize the main results of this paper on the frequency dependent non linear

susceptibility χ3(ω) in Fig. 1, where the logarithm of the absolute value of χ3(ω) is sketched

as a function of the logarithm of the frequency of the probing field. Five different frequency

regimes are identified: χ3(ω) exhibits a peak around frequencies of the order of a half of the

inverse of the structural relaxation time of the system τα, whose height grows as (T − Tc)
−1

as the critical temperature is approached. For higher frequencies, χ3(ω) decays as power

laws, with an exponent equal to −b, then to −a, and finally to −3. Note that the absolute

value of both the real and the imaginary parts of χ3 are expected to show a similar behavior.

One may wonder about the role of conserved variables like energy or density on the

above results. As recalled in the introduction, we know that these conserved variables can

dramatically change the scaling behaviour of χ4 for example, which also diverges as (T−Tc)
−1

within a p-spin framework with Langevin dynamics, but diverges as (T − Tc)
−2 when the

contribution of conserved variables is taken into account [10, 11]. From a diagrammatic point

of view, this is due to the presence of ‘squared ladder’ diagrams which gives the dominant

contribution to χ4. One can check that due to the causality of the response functions, these

diagrams in fact are absent when one computes the non-linear susceptibility and the above

results are expected to hold for a bona fide MCT theory of liquids. Beyond MCT, we expect

that in the α-regime, χ3(ω) will take the following scaling form [15]:

χ3(ω) ≃ ξ2−η G(ωτα), (45)

where ξ is the dynamical correlation length which also appears in χT . One could in fact

generalize the Inhomogeneous MCT calculation of [24] to account for a space and time

dependent source term, that would describe the non-linear response to an oscillating field

with wave-vector q and frequency ω. The corresponding behaviour of χ3(ω, q) can be guessed

by adapting the above scaling arguments to the explicit results of [24] on the wavevector-

dependent dynamical response. This leads to the following predictions for χ3(ω, q). In the

β regime one finds:

χ3(ω, q) = ξ2Hβ(ωτβ, qξ) ξ = ǫ−1/4, τβ = ǫ−
1

2a

where the scaling function Hβ(x, y) is equal to F(x) for y = 0, i.e. for a uniform electric field

one finds back Eq. (37). For large y one expects a power law behavior such as
hβ(x)

y2 (where
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hβ(x) is a certain scaling function). As discussed in [24] this is needed to cancel out the

diverging prefactor ξ2 and match the critical behavior to the non-critical one taking place

for q ∝ O(1). The asymptotic behavior with respect to x is identically to the one already

described for homogeneous fields. Very small x correspond to the matching between α and

β regimes. Since in the α regime χ3 is expected to diverge as ξ4, the matching imposes the

behavior at small x:
hL

β
(y)

xb (where hL
β (y) is another scaling function). For large x values, the

field varies so rapidly that the system has not enough time to adjust and to respond to the

field. Again, in order to cancel the diverging prefactor and match the non-critical behavior

one expects a large x behavior such as
hE

β
(y)

xa (where hE
β (y) is a third scaling function). It

would be interesting to specify in more details the shape of the scaling functions hβ, h
L
β , hE

β .

In the α regime one expects:

χ3(ω, q) = ξ4Hα(ωτα, qξ) ξ = ǫ−1/4, τα = ǫ−
1

2a
−

1

2b

where the scaling function Hα(x, y) is equal to G(x) for y = 0, i.e. for a uniform electric field

one finds back eq. (40). The same kind of arguments used above suggests for large y a power

law behavior: Hα(x, y) ≃ hα(x)
y4 (where hα(x) is a scaling function). For very small x the

scaling function vanishes in order to match the x = 0 value corresponds to the non-critical

(non diverging) static non-linear susceptibility. For large x values in order to match the β

regime one expects a behaviour such as hE
α (y)
xb (where hE

α (x) is another scaling function).

IV. THE p-SPIN IN FULL GLORY

In this section we study a specific microscopic model which allows one to check the

assumptions discussed in the previous section and to derive analytically, in a simplified

setting, the critical behaviour of the non-linear susceptibility. The model we consider is the

spherical p-spin model, a mean field model with quenched disorder and p-body interactions,

which belongs to the universality class of the discontinuous spin glasses. This class of

analytically solvable models is able to reproduce many features of glass-forming liquids, and

provides a mean-field paradigm of the glass transition [1]. In particular, the spherical p-spin

glass shows a dynamical transition as the temperature is lowered below Tc, described by the

schematic Mode Coupling Theory for supercooled liquids. At Tc the structural relaxation

time of the system diverges as a power law, due to the emergence of an exponentially large
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number of metastable states (which, in mean field, are separated by infinite barriers). As in

MCT, the dynamical transition is accompanied by the divergence of dynamical correlations

[5]. Since the model is completely connected one can probe these correlations only through

the dynamical susceptibility, χ4(t), which indeed diverges in a critical way at the transition

[5, 28] (for the full MCT one can also obtain real space dynamic correlations, see [24]). In

the following we will compute the non-linear susceptibility for the p-spin model and show

that it allows one to probe the same divergent dynamical correlations captured by χ4. A

previous work [29] has already considered the effect of an oscillating field on the dynamics of

this model but it focused on non-equilibrium dynamics and not on dynamical correlations.

A. The model and the Langevin dynamics

The Hamiltonian of the model is:

H = −
∑

i1<...<ip

Ji1...ipSi1 · · ·Sip, (46)

where Ji1...ip are Gaussian quenched random couplings with zero mean and variance J2
i1...ip =

p!J2
p/2Np−1. We consider the spherical version of the model, where the N spins are contin-

uous real variables with a global constraint:
∑

i S
2
i = N .

We assume that the dynamics of the model is described by the Langevin equation:

dSi

dt
= −∂H

∂Si

+ ηi(t), (47)

where ηi(t) is a Gaussian white noise, with zero mean, 〈ηi(t)〉 = 0 and variance 〈ηi(t)ηj(t
′)〉 =

2Tδijδ(t − t′). We shall use the Martin-Siggia-Rose formalism to derive the dynamical

effective action [32]. The probability of a given dynamical trajectory of the spins is thus

equal to:

P ({Si}) =

∫

DηW(η)
∏

i

δ

(

dSi

dt
+

∂H
∂Si

− ηi(t)

)

,

where W(η) ∝ exp{−1/2
∑

i

∫

dt dt′ ηi(t)2Tδ(t−t′)ηi(t
′)}. Using the integral representation

of the delta functions, introducing the new variables Ŝi(t), and integrating over the noise,

the partition function of the dynamical process reads [33]:

Z =

∫

DS P ({Si}) =

∫

DS DŜ (48)

× exp

{

−
∑

i

∫

dt iŜi(t)

[

Ṡi(t) − T iŜi(t) +
∂H
∂Si

]

}

.
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All the dynamical observables can be derived from the generating functional Z by intro-

ducing two (time-dependent) fields hi(t) and ĥi(t) conjugated to Si and Ŝi and taking the

appropriate derivatives of Z with respect to these fields.

In order to study the critical behaviour of the non-linear susceptibility, χ3(ω), we intro-

duce an external oscillating uniform “magnetic” field, coupled to all the spins of the system,

of the form h(t) = h cos(ωt). The partition function, Eq. (48), can be written in terms of

an effective action as Z =
∫

DS DŜ exp{L(S, Ŝ)}, where

L(S, Ŝ) = −
∑

i

∫

dt
{

iŜi(t)
[

Ṡi(t) − T iŜi(t) + Z(t)Si(t) − h(t)
]

+ Li
J(S, Ŝ)

}

. (49)

∑

i Li
J(S, Ŝ) is the part of the effective action which depends on the quenched disorder (which

we evaluate below), Z(t) is a Lagrange multiplier which enforces the spherical constraint,

and h(t) is the external magnetic field.

By using the fact that
∑

i1<...<ip
= 1

p!

∑

i1,...,ip
, the derivative of the Hamiltonian, Eq. (46),

with respect to the spin Si reads:

Li
J(s, Ŝ) =

1

(p − 1)!

∑

i2,...,ip

Jii2...ipiŜi(t)Si2(t) · · ·Sip(t).

We can now perform the integral over the quenched disorder which yields:

exp{
∑

i

LJ(S, Ŝ)} ∝ exp

{

NpJ2
p

4

∫

dt1 dt2

×
(

S(t1) · S(t2)
)p−2

[

(

iŜ(t1)) · iŜ(t2)
)(

S(t1) · S(t2)
)

+(p − 1)
(

iŜ(t1) · S(t2)
)(

S(t1) · iŜ(t2)
)

]}

,

where we have introduced the notation:

S(t1) · S(t2) =
1

N

N
∑

i=1

Si(t1)Si(t2).

B. Equations of motion of the magnetization, the correlation function, the re-

sponse function, and the function Z(t)

In the thermodynamic limit (N → ∞) we can take the saddle point value of the effective

action and determine the equations of motion of all the dynamical observables. For instance,

20



from the equality 〈∂L/∂iŜi〉 = 0, we obtain the equation of motion of the magnetization,

m(t) = (1/N)
∑

i〈Si(t)〉:

∂L
∂iŜi(t)

= −Ṡi(t) − Z(t)Si(t) + h(t) + 2T iŜi(t) (50)

+
pJ2

p

4

∫

dt1

[

2iŜi(t1)
(

S(t) · S(t1)
)p−1

+ 2(p − 1)Si(t1)
(

S(t) · iŜ(t1)
)(

S(t) · S(t1)
)p−2

]

,

Using the fact that 〈Ŝi〉 = 0, and the definition of the correlation and response functions:

C(t, t′) =
1

N

N
∑

i=1

〈Si(t)Si(t
′)〉 (51)

R(t, t′) =
1

N

N
∑

i=1

∂〈Si(t)〉
∂h(t′)

∣

∣

∣

∣

hi=0

= 〈Si(t)iŜi(t
′)〉,

we get:

ṁ = −Z(t)m(t) + h(t)
p(p − 1)J2

p

2

∫ t

−∞

dt1 m(t1)R(t, t1) [C(t, t1)]
p−2 . (52)

Here, we have replaced the fluctuating two points functions by their average (correlation and

response). This is exact in the large N limit. We have also used the fact that R(t1, t2) = 0

for t2 > t1 due to causality. Finally, notice that we have applied the field at a very distant

time in the past, equal to minus infinity for all practical purposes. In this way we are sure

that the system has reached a steady state on times t ∝ O(1) and above Tc.

By multiplying Eq. (50) by Si(t
′), using that 〈Si(t

′) ∂L

∂iŜi(t)
〉 = 0 and averaging over the

sites, we get the equation of motion for the correlation function:

∂C(t, t′)

∂t
= −Z(t)C(t, t′) + h(t)m(t′) + 2TR(t′, t) (53)

+
∑

p

pJ2
p

2

{
∫ t′

−∞

dt1R(t′, t1) [C(t, t1)]
p−1 + (p − 1)

∫ t

−∞

dt1 R(t, t1)C(t1, t
′) [C(t, t1)]

p−2

}

.

Similarly, multiplying Eq. (50) by Ŝi(t
′), using that 〈iŜi(t

′) ∂L
∂iŜi(t)

〉 = δ(t′ − t) and averaging

over the sites, one gets the equation for the evolution of the response function:

∂R(t, t′)

∂t
= −Z(t)R(t, t′) + δ(t − t′) (54)

+
p(p − 1)J2

p

2

∫ t

t′
dt1 R(t1, t

′)R(t, t1) [C(t, t1)]
p−2

Notice that we used the fact that 〈iŜi(t)iŜi(t
′)〉 = 0. We can now also obtain the equation

of motion of the Lagrange multiplier, Z(t), by enforcing the constraint C(t, t) = 1, i.e.,
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[∂tC(t, t′) + ∂t′C(t, t′)]t=t′ = 0, which yields:

Z(t) = h(t)m(t) + T +
p2J2

p

2

∫ t

−∞

dt1R(t, t1) [C(t, t1)]
p−1 . (55)

When h(t) = 0, one sees from this equation that Z(t) tends to a time independent constant

Z0 in the stationary regime, T > Tc, t → ∞.

C. Small field expansion

In this section we discuss the small field expansion of the magnetization, the correlation

and the response function, and derive the equation of motion of the second-order correlation

and response functions introduced in the previous section.

Because of the up-down symmetry in the direction of the field, the effective action L(S, Ŝ),

Eq. (49), is invariant under the transformation h → −h and S → −S, Ŝ → −Ŝ. This yields

m(t, h) = −m(t,−h), i.e., the magnetization is an odd function of the magnetic field, and

thus only the odd derivatives of m with respect to h are non-zero. Conversely, the correlation

and response functions are even functions of the external field (as well as the function Z(t)),

and their expansion in powers of h contains only even terms. Therefore, up to the third

order in h, one can write:

m(t) = m1(t)h + m3(t)h
3 + O(h5)

C(t, t′) = C0(t, t
′) + C2(t, t

′)h2 + O(h4) (56)

R(t, t′) = R0(t, t
′) + R2(t, t

′)h2 + O(h4)

Z(t) = Z0 + Z2(t)h
2 + O(h4)

where C0 and R0 are the correlation and response functions in absence of the oscillating

magnetic field. In the stationary regime (t, t′, τ = t − t′ ∝ O(1)), TTI and FDT hold for

the unperturbed correlation and response function, which satisfy the following equation for

τ > 0:
dC0(τ)

dτ
+ TC0(τ) +

p

2T

∫ τ

0

du [C0(τ − u)]p−1 dC0(u)

du
= 0. (57)

This is basically the schematic Mode Coupling equation for the density-density correlation

functions in supercooled liquids, which leads to the well known shape of C0(τ) characterized

by two power-law relaxation regimes (β-relaxation and α-relaxation) and an intermediate

plateau.

22



Plugging the previous equation, together with Eqs. (56), into Eqs. (52), (53), (54) and

(55), we easily obtain a system of coupled integro-differential equations for m1(t), m3(t),

C2(t, t
′), R2(t, t

′) and Z2(t). In particular, up to O(h), from Eq. (52) we get:

d

dt
m1(t) = −Z0m1(t) + cos(ωt) +

p(p − 1)J2
p

2

∫ t

0

dt1 m1(t1)R0(t, t1) [C0(t, t1)]
p−2 . (58)

As expected, the Green’s function of the equation above satisfies exactly the same equation

as R0(t, t
′). As a result we have that [see Eq. (12)]:

m1(t) =

∫ t

0

dt′ R0(t, t
′) cos(ωt′) (59)

Furthermore, from Eqs. (51b), (56c) and (59) we have that [see Eq. (13)]:

m3(t) =

∫ t

0

dt′ R2(t, t
′) cos(ωt′). (60)

As a matter of fact, the equation of motion of the magnetization is superfluous. Indeed, by

taking the derivative of Eq. (52) with respect to h(t′) we get exactly the equation for the

dynamical evolution of the response function. Therefore, in the following we will only focus

on the three equations (53)-(55).

Let us define the vector:

V(t, t1) = [C2(t, t1), R2(t, t1), Z2(t)] .

Eqs. (53)-(55) can be rewritten as:

O.V = S, (61)

where O is an integro-differential operator and S is a source term which reads:

S(t, t′) = {cos(ωt)m1(t
′), 0, cos(ωt)m1(t)} (62)

=

{

1

4

[

R0(ω)
(

eiω(t+t′) + 1
)

+ c.c.

]

, 0,
1

4

(

R0(ω)
(

e2iωt + 1
)

+ c.c.
)

}

.

We now write down the explicit expressions of the nine elements of the linear operator O,

omitting (t, t′) in the l.h.s.. From the equation of the dynamical evolution of the correlation

function, Eq. (53), we get:

O11 · C2 =

(

∂

∂t
+ Z0

)

C2(t, t
′) −

p(p − 1)J2
p

2

[
∫

dt1

(

R0(t
′, t1) [C0(t, t1)]

p−2 (63)

+(p − 2)R0(t, t1)C0(t1, t
′) [C0(t, t1)]

p−3
)

C2(t, t1) −
∫

dt1 R0(t, t1) [C0(t, t1)]
p−2 C2(t1, t

′)

]

.
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Analogously, we can determine the other elements:

O12 · R2 = −2TR2(t
′, t) (64)

−
pJ2

p

2

[

(p − 1)

∫

dt1C0(t1, t
′) [C0(t, t1)]

p−2 R2(t, t1) +

∫

dt1 [C0(t, t1)]
p−1 R2(t

′, t1)

]

and

O13 · Z2 = C0(t, t
′)Z2(t). (65)

In the same way, we can analyze the equation for the response function, Eq. (54), which

yields:

O21 · C2 = −
p(p − 1)(p − 2)J2

p

2

∫

dt1 R0(t1, t
′)R0(t, t1) [C0(t, t1)]

p−3 C2(t, t1), (66)

O22 · R2 =

(

∂

∂t
+ Z0

)

R2(t, t
′) (67)

−
p(p − 1)J2

p

2

{
∫

dt1 R0(t1, t
′) [C0(t, t1)]

p−2 R2(t, t1)

+

∫

dt1 R0(t, t1) [C0(t, t1)]
p−2 R2(t1, t

′)

}

,

O23 · Z2 = R0(t, t
′)Z2(t). (68)

Finally, considering the equation for Z(t), Eq. (55), one gets:

O31 · C2 = −
p2(p − 1)J2

p

2

∫

dt1 R0(t, t1) [C0(t, t1)]
p−2 C2(t, t1), (69)

O32 · R2 = −
p2J2

p

2

∫

dt1 [C0(t, t1)]
p−1 R2(t, t1), (70)

O33 · Z2 = Z2(t). (71)

The above expressions can be greatly simplified by noting that in presence of an oscillating

field of frequency ω, R2(t, t
′) and C2(t, t

′) are invariant under the shift of both times t and t′

by any multiple of π/ω. Similarly, the function Z2(t) turns out to be a periodic function of

t of frequency 2ω. Therefore, as discussed in the previous section, the correlation function,

the response function and the function Z2(t) can be expanded in Fourier series [see Eq. (10)].

Notice that the source term have exactly the same periodicity as R2, C2 and Z2, but contains

only the 0-th and the first harmonics (i.e., n = 0, 1,−1). This implies that:

R2(t, t
′) = r

(ω)
0 (τ) + eiω(t+t′)r

(ω)
1 (τ) + e−iω(t+t′)r

(ω)
−1 (τ)

C2(t, t
′) = c

(ω)
0 (τ) + eiω(t+t′)c

(ω)
1 (τ) + e−iω(t+t′)c

(ω)
−1 (τ) (72)

Z2(t) = z
(ω)
0 + e2iωtz

(ω)
1 + e−2iωtz

(ω)
−1 ,
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where τ ≡ t − t′. Here we recall that, plugging Eq. (72) into Eq. (60) we get that the non-

linear susceptibility is given by the Fourier transform of r
(ω)
1 (τ) at frequency 2ω [Eq. (15)].

Using these properties, the integrals of Eqs. (63-71) can be simplified. Notice that, as

expected (due to the fact that the correlation and the response function have to be real),

r
(ω)
−1 turns out to be equal to r

(ω)⋆
1 , and similar identities hold for c

(ω)
−1 and z

(ω)
−1 . Therefore, we

are left with three coupled integro-differential equations for r
(ω)
1 , c

(ω)
1 and z

(ω)
1 . Up to order

h2, Eq. (55) reads:

z
(ω)
1 −

p2J2
p

2

∫

∞

0

dσ e−iωσ [C0(σ)]p−2 [

C0(σ) r
(ω)
1 (σ) + (p − 1)R0(σ) c

(ω)
1 (σ)

]

= R0(ω) (73)

Analogously, for the first equation, Eq. (53), we have:

R0(ω) =

(

Z0 + iω +
d

dτ

)

c
(ω)
1 (τ) + eiωτ C0(τ) z

(ω)
1 (74)

−
pJ2

p

2

{

∫ t′

−∞

dσ
[

e−iω(σ+τ) C0(σ + τ) r
(ω)
1 (σ) + (p − 1) e−iωσ R0(σ) c

(ω)
1 (σ + τ)

]

[C0(σ + τ)]p−2

+(p − 1)

∫ t

−∞

dσ
[

eiω(τ−σ) C0(τ − σ)
(

C0(σ) r
(ω)
1 (σ) + (p − 2) R0(σ) c

(ω)
1 (σ)

)

+e−iωσ R0(σ) C0(σ) c
(ω)
1 (τ − σ)

]

[C0(σ)]p−3

}

.

Finally, Eq. (54) becomes the central equation that we will need to solve to get r
(ω)
1 (τ):

0 =

(

Z0 + iω +
d

dτ

)

r
(ω)
1 (τ) + eiωτ R0(τ) z

(ω)
1

−
p(p − 1)J2

p

2

∫ τ

0

dσ [C0(σ)]p−3

{

e−iωσ R0(σ) C0(σ) r
(ω)
1 (τ − σ) (75)

+eiω(τ−σ)R0(τ − σ)
[

C0(σ) r
(ω)
1 (σ) + (p − 2) R0(σ) c

(ω)
1 (σ)

]

}

D. ω → 0 limit

Let us first consider the ω → 0 limit (i.e. ω much smaller than the inverse of all charac-

teristic times), where the system is subjected to an adiabatically varying external magnetic

field, h. In this case, at stationarity, both TTI and FDT hold for the full correlation and

response functions. As a result, one has that C(t, t′) = C(t− t′) and R(t, t′) = R(t− t′); and

−(1/T ) ∂[C(τ)]/∂τ = R(τ). Since FDT holds for the unperturbed response and correlation
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functions, C0(τ) and R0(τ), we have that:

− 1

T

∂[c
(ω=0)
1 (τ)]

∂τ
= r

(ω=0)
1 (τ) (76)

at all times. Using this property, Eqs. (73)-(75) reduce to a single equation for r
(ω=0)
1 (τ).

(Note that z
(ω=0)
1 = ∂Z/∂h2 = 1/T ). It is straightforward to show that this equation is

exactly given by the derivative with respect to h2
0 of the equation for the full correlation

function in presence of a constant external field [30]. Indeed, by definition we have that

c
(ω=0)
1 (τ) = ∂C(τ)/∂h2, and r

(ω=0)
1 (τ) = ∂R(τ)/∂h2.

Since the dynamical transition temperature of the spherical p-spin model in the T -h plane

is (at small fields) of the form Tc = T
(h=0)
c + κh2 [30], taking the derivative with respect to

h2 is equivalent (up to a constant) to taking the derivative with respect to temperature [see

Eq. (23)]:

c
(ω=0)
1 (τ) ∝ ∂C(τ)

∂T
=

1

T
χT (τ). (77)

As a result c
(ω=0)
1 (τ) behaves exactly as the non-linear susceptibility χT (τ), whose critical be-

havior is well known [10, 11, 21, 22, 24], and whose critical properties close to the dynamical

transition have been reviewed in the previous section and are summarized in FIG. 3. Thanks

to FDT, the critical behaviour of r
(ω=0)
1 (τ) can be obtained by taking the time derivative of

χT (τ) with respect to temperature.

E. β-regime

We now focus on the behaviour of the second order correlation and response function in

the case where the frequency of the external oscillating field is finite. We start by analyzing

the integrals in the β-regime close to the dynamical transition (τ ∼ τβ ; τβ ∼ ǫ−1/2a). In this

regime the equilibrium response and correlation functions satisfy the following scaling laws,

up to subleading terms:

C0(τ) ≃ q +
√

ǫ c0β

(

τ

τβ

)

, (78)

R0(τ) ≃
√

ǫ

τβ
r0β

(

τ

τβ

)

.

We first consider the case of small enough frequencies, such that ωτ ≪ 1 (e.g., for frequencies

of the order of the inverse α-relaxation time). In this regime, as discussed in the previous
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section, one can establish relations between c
(ω)
1 , r

(ω)
1 and χT , that lead to:

c
(ω)
1 (τ) =

1√
ǫ
cβ

(

τ

τβ

)

, (79)

r
(ω)
1 (τ) =

1√
ǫ

1

τβ
rβ

(

τ

τβ

)

,

with scaling functions cβ(x), rβ(x) that we have already discussed above.

For larger values of the frequency, close to the critical point one expects that the most

general scaling behavior for the response and correlation functions is given by Eq. (26), in

terms of scaling functions of two variables τ/τβ and ωτ . However, as discussed in Sec. III B 1,

in the early and late β-regime the τ/τβ and the ωτ dependences are expected to factorize,

and one has [see Eqs. (28-31)]:

c
(ω)
1 (τ) ≃ 1√

ǫ
cβ (τ̂) f

E(L)
β (ω̂τ̂ ) (80)

r
(ω)
1 (τ) ≃ 1√

ǫ

1

τβ
rβ(τ̂) gE(L)(ω̂τ̂) . (81)

where f
E(L)
β is either fE

β or fL
β , depending whether we study the early or late β−regime.

The function f
E(L)
β (x) is expected to be of order 1 for x ≪ 1, and to drop to zero for x ≫ 1.

The cut-off function g
E(L)
β (ω̂τ̂ ) has asymptotic behavior similar to f

E(L)
β (ω̂τ̂ ). In partic-

ular, since for ω̂τ̂ ≪ 1 FDT must hold, we have that g
E(L)
β (x) ≈ f

E(L)
β (x) when x ≪ 1.

In the following we shall check that indeed these scaling forms are correct. In order to

do that we need to analyze in detail Eqs. (74) and (75). Since this is rather technical and

requires cutting integral in different pieces in order to analyze their scaling behaviour, we

leave the details for Appendix 1 and skip directly to the final results. Let us start with the

analysis of eq. (75). The contribution of all the dominant terms (computed in Appendix 1

and proportional to r
(ω)
1 (τ)) can be simplified into:

[

Z0 − p
1 − qp−1

2T
− p(p − 1) qp−2 1 − q

2T

]

r
(ω)
1 (τ). (82)

Using the fact that Z0 = T + p/2T , and the equation for the plateau at the dynamical

transition q = (p− 2)/(p− 1) [30], we find that the quantity in the square bracket is exactly

zero at Tc. (We recall that Tc = [p(p−2)p−2/2(p−1)p−1]1/2). More precisely, at temperature

T = Tc + ǫ, the first subleading terms are of the order 1/τβ, see Eqs. (95) and (97). Since

this term is of order
√

ǫ/τβ can be dropped. Putting all the terms of order 1/τβ together we
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get the following equation for the scaling functions in the β-regime:

p(p − 1) qp−2

{
∫ τ̂

τ̂ /2

ds cos (ω̂s) r0β(s) ĝβ(τ̂ − s, x − ω̂s)

+

∫ τ̂/2

0

ds cos (ω̂s) r0β(s) [ĝβ(τ̂ − s, x − ω̂s) − ĝβ(τ̂ , x)]

}

+
p(p − 1)(p − 2)

2
qp−3 1 − q

T

[

r0β(τ̂) f̂β(τ̂ , x) + c0β(τ̂) ĝβ(τ̂ , x)
]

= 0. (83)

In a similar way, from the equation for the second order correlation function, Eq. (74) we

can derive another equation for the scaling function f̂β in the β-regime. Using the fact that

c
(ω)
1 (τ) = c

(ω)
1 (−τ), it is more convenient (when deriving the equations) to write down the

scaling equation for [c
(ω)
1 (τ) + c

(ω)
1 (−τ)]/2.

We find that the leading order is O(1). Neglecting all the subleading contributions, this

equation reads:

r0(ω) = − p(p − 1)(p − 2)

2
qp−3 1 − q

T
f̂β(τ̂ , x) c0β(τ̂) (84)

−p(p − 1) qp−2

{
∫ τ̂ /2

0

ds cos (ω̂s) r0β(s)
[

f̂β(τ̂ − s, x − ω̂s) + f̂β(τ̂ + s, x + ω̂s)
]

+

∫

∞

τ̂ /2

ds cos (ω̂s) r0β(s)
[

f̂β(τ̂ − s, x − ω̂s) + f̂β(τ̂ + s, x + ω̂s)
]

}

.

We now analyse Eq. (83) in the different regimes. In order to get simplified scaling equations,

we use the hypothesis we have made above and check the consistency of the assumptions.

First let us consider the x = ω̂τ̂ → 0 behaviour for τ̂ both in the late and early β regime.

In all these cases one can show that plugging our scaling ansatz into the equations one

finds f
E(L)
β (0) = 1 and g

E(L)
β (0) = 1 and that cβ(τ) and rβ(τ) verifies the same equations as

∂Ceq(τ)/∂h2 and ∂Req(τ)/∂h2 in the β regime. This is indeed very much expected, actually

unavoidable, from our analysis of the ω = 0 limit and therefore we do not reproduce the

details.

Let us focus now on the large x behaviour. The analysis of the large x behaviour is very

similar for all the scaling functions. Thus, we detail it only for one of them, fL
β (x). In

order to obtain the equation verified by this function we consider the limit τ̂ ≫ 1, keeping

x finite, of eq. (84). In this limit we have that c
(ω)
1 (τ̂) ≈ τ̂ b/

√
ǫ fL

β (x), c0β(τ̂) ≈ −Bτ̂ b and
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FIG. 2: Sketch of the real and imaginary part of the function fL
β as a function of x = ωτ .

r0β(τ̂ ) ≈ (Bb/T )τ̂ b−1. In this regime, the leading terms are of order τ̂ 2b:

0 =

{

(p − 2)(1 − q)

2
fL

β (x) − bqfL
β (x)

∫ 1/2

0

du cos(ux) ub+1

−bq

∫ 1

1/2

du cos(ux) ub−1
[

(1 + u)bfL
β (x(1 + u)) + (1 − u)bfL

β (x(1 − u))
]

(85)

−bq

∫

∞

1

du cos(ux) ub−1
[

(1 + u)bfL
β (x(1 + u)) + (u − 1)bfL

β (x(u − 1))
]

}

τ̂ 2b .

This implies that the term into the curl brackets must vanish for all x. This defines an

eigenvector equation for fL
β (x). For this eigenvector equation to be obeyed, fL

β (x) must go

to zero for large x as cos(x + ϕ)/x1+b (ϕ is a phase obtained from Eq. (85)), coming from

the neighborhood of u = 1 in the above integrals. The other functions fE
β , gL

β , gE
β behave

exactly in the same way.

Finally, it is important to notice that the functions fL
β (x), gL

β (x), fE
β (x), gE

β (x) are in

principle complex functions. As before, we only discuss fL
β (x), since other functions behave

similarly. In the limit ω → 0, since c
(ω)
1 (τ) is nothing but the derivative with respect to a

constant field of the correlation function, c
(ω)
1 (τ), r

(ω)
1 (τ) and, hence, fL

β (0) must be real.

As a consequence, we expect that while the real part of fL
β (x) is of O(1) at small x and

decreases to zero as x ≫ 1, the imaginary part of fL
β (x) is equal to zero for x = 0, then it

reaches a maximum around x ∼ 1, and it decreases to zero at large x. The behavior of the

real and the imaginary part of the function fL
β (x) are schematically sketched in FIG. 2.
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F. α-regime

We now consider the α-regime, where the unperturbed correlation and response functions

can be expressed as scaling functions of the variable τ/τα. The α relaxation time τα diverges

as ǫ−1/2a−1/2b as the dynamical transition is approached. We consider frequencies ω of order

of the inverse of τα and set: ω = ω/τα, τ = τ/τα. In this regime one has:

C0(τ) ≃ q + c0α (τ ) , (86)

R0(τ) ≃ 1

τα
r0α (τ ) .

In the following we will focus on the early α-regime, where c0α(τ) = c0β(τ) ≈ −Bτ b and

r0α = r0β ≈ (Bb/T )τ b−1. As discussed in Sec. III B 2, close to the critical point the most

general scaling form for the second order correlation and response functions in the α-regime

corresponds to the one of Eq. (33). However, in the early α-regime the scaling laws for c
(ω)
1

and r
(ω)
1 can be factorized in the following way [see Eq. (35)]:

c
(ω)
1 (τ) ≃ 1

ǫ
cα (τ) fE

α (ωτ), (87)

r
(ω)
0 (τ) ≃ 1

ǫ

1

τα
rα (τ ) gE

α (ωτ).

As before we shall verify that this scaling ansatz is consistent with the dynamical equations

and obtain the asymptotic behavior of fE
α and gE

α . This turns out to be particularly easy

since plugging the scaling Ansatz into the full equations one finds that fE
α and gE

α verify the

very same equations than fL
β and gL

β . This is expected from the physical point of view since

early α and late β behavior should match. As a consequence, their asymptotic behavior is

the same one discussed in the previous section.

In Fig. 3 we show a sketch of the behavior of |c(ω)
1 (τ)| that summarizes all our previous

findings.

One can now easily derive explicitely the critical behaviour of the non-linear susceptibility,

χ3ω(ω) close to the dynamical transition, as done in Sec. III.

V. CONCLUSION

In this work, we have studied in detail the non-linear response of supercooled liquids.

Although we are able to provide precise statements within a Mode-Coupling approach, some
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FIG. 3: Sketch of log |c(ω)
1 (τ)| as a function of log τ . In the ω → 0 limit c

(ω)
1 (τ), behaves as χT (τ),

i.e., it scales as 1/
√

ǫ (τ/τβ)a in the early β-regime and as 1/
√

ǫ (τ/τβ)b in the late β-regime (or,

equivalently, as 1/ǫ(τ/τα)b in the early α-regime). In the α-regime |c(ω)
1 (τ)| reaches a maximum of

order 1/ǫ. At finite frequency ω, |c(ω)
1 (τ)| drops to values of O(1) as τ & 1/ω (red curves).

of our results are in fact more general and only require Time-Temperature Superposition to

hold. An important theoretical result is the relation (24) between the non-linear response

χ3(ω) and the temperature derivative of the usual linear susceptibility, dχ1(2ω)/dT , valid at

small frequencies. This emphasizes again that the non trivial collective properties encoded in

three- and four-point correlations and susceptibilities are revealed (at zero wave-vector) by

the temperature (or density) derivative of standard two-body correlations and response. For

larger frequencies, the main results of this paper are summarized in Fig. 1, where the MCT

predictions are sketched. Five different frequency regimes are identified: χ3(ω) exhibits a

peak around frequencies of the order of half the inverse of the structural relaxation time of

the system τα. The height of the peak grows as (T − Tc)
−1 as the critical temperature is
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approached. For higher frequencies, χ3(ω) decays as power laws, with an exponent equal to

−b in the late β regime, to −a in the early β regime, and finally to −3 at high frequencies.

Our results should be directly applicable to the non-linear dielectric constant of molec-

ular glasses in the weakly supercooled regime where MCT is expected to be relevant, and

for describing the non-linear compressibility of hard-sphere colloids close to the glass tran-

sition, where MCT does a fair job at describing their relaxation properties. However, it

is well known that MCT fails for deeply supercooled liquids, when activated events start

playing a major role in the relaxation. The detailed shape of χ3(ω) would require a full

theoretical description of the dynamics in this regime, which is unavailable to date. Still,

the general low frequency relation between χ3 and dχ1/dT , supplemented with the property

of Time-Temperature superposition, allows one to give a firmer basis to the scaling relation

conjectured in [15], namely that:

χ3(ω) ≈ χ∗

3 G(ωτα), (88)

where G is a scaling function, and χ∗

3 ∝ d ln τα/d lnT is the peak value of the temperature

derivative of χ1(ω), as measured in [21, 22, 23]. Following [10, 11, 21], we expect χ∗

T to

increase as a power of the dynamical correlation length ξ(T ). The detailed shape of G would

obviously be worth knowing in order to compare with upcoming experimental results. As a

guide, we give the result obtained assuming a Havriliak-Nagami form for the susceptibility

and the validity of the relation between χ3 and dχ1/dT at all frequencies, which has no

justification apart from suggesting possible fitting functions. One finds:

GHN(u) =
(iu)b

(1 + (iu)b)1+c
, (89)

where b, c are fitting exponents.

Among open problems worth investing is the extension of the present theory to the aging

regime of glasses and spin-glasses. From an experimental point of view, a detailed study

of the role of the electric field on the glass properties of dipolar liquids (such as glycerol)

would be very interesting. For example, the evolution of the glass transition temperature

as a function of the field E would allow one to measure the proportionality coefficient κ

appearing in Eq. (24). In spin-glasses, a detailed measurement of χ3(ω) would allow to

shed light on the existence of spin-glass transition at non zero field, as argued in [15]. The

behaviour of χ3(ω, tw) in the aging phase would furthermore be a very useful probe of the
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aging process in spin-glasses, in particular during rejuvenation cycles. Numerical simulations

of χ3(ω, tw), using the zero-field techniques developed in [26, 27], would be worth pursuing.
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Appendix 1: Analysis of Eq. (75)

For simplicity, and because in this appendix ω is just an external parameter, we omit the

second argument of f̂β and ĝβ, writing for instance ĝβ(τ/τβ) for ĝβ(τ/τβ , ωτ).

We start by analyzing the first integral appearing in Eq. (75). Since R0(τ) is singular at

small times, it is convenient to rewrite it in the following way:

(p − 1)

∫ τ

0

dσ e−iωσ [C0(σ)]p−2 R0(σ)
[

r
(ω)
1 (τ − σ)

−r
(ω)
1 (τ) θ

(τ

2
− σ

) ]

+ (p − 1) r
(ω)
1 (τ)

∫ τ/2

0

dσ e−iωσ [C0(σ)]p−2 R0(σ).

Using FDT one can easily evaluate the second integral which, up to subleading terms equals:

(p − 1) r
(ω)
1 (τ)

∫ τ/2

0

dσ e−iωσ [C0(σ)]p−2 R0(σ)

=
1 − [C0(τ/2)]p−1

T
r
(ω)
1 (τ) (90)

=

[

1 − qp−1

T
+

qp−1 − [C0(τ/2)]p−1

T

]

r
(ω)
1 (τ).

In order to evaluate the first integral, it is useful to split the integration domain into four

time intervals: (0, δτβ), (δτβ , τ/2), (τ/2, τ − ητβ), (τ − ητβ, τ), where δ and η will be sent to
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zero at the end of the calculation. The contribution due to the first interval reads:

(p − 1)

∫ δτβ

0

dσ e−iωσ [C0(σ)]p−2 R0(σ)

×
[

r
(ω)
1 (τ − σ) − r

(ω)
1 (τ)

]

≃ 1

T

∫ δτβ

0

dσ
d

dσ
[C0(σ)]p−1

[

1√
ǫ

1

τβ

rE
β

(

σ

τβ

)

σ

τβ

]

∝ ǫ1/a−1/2δ,

which turns out to be a subleading contribution in the δ → 0 limit. We now evaluate the

integral in the interval (τ − ητβ, τ):

(p − 1)

∫ τ

τ−ητβ

dσ e−iωσ [C0(σ)]p−2 R0(σ) r
(ω)
1 (τ − σ)

= (p − 1) qp−2 e−iωτ R0(τ)

∫ ητβ

0

dσ r
(ω)
1 (σ)

= − (p − 1)

T
qp−2 e−iωτ R0(τ) c

(ω)
1 (ητβ) ∝ ηa

√
ǫ
,

which vanishes in the limit η → 0. The last equality has been derived using the generalized

FDT, Eq. (20), which holds for small enough times (such that ωτ ≪ 1).

We are now left with the computation of the integral in the two central intervals. The

integral in the interval (τ/2, τ − ητβ) is given by:

(p − 1)

∫ τ−ητβ

τ/2

dσ e−iωσ [C0(σ)]p−2 R0(σ) r
(ω)
1 (τ − σ)

= (p − 1) qp−2

∫ τ−ητβ

τ/2

dσ e−iωσ

√
ǫ

τβ

r0β

(

σ

τβ

)

× 1√
ǫ

1

τβ

ĝβ

(

τ − σ

τβ

)

(91)

=
(p − 1)qp−2

τβ

∫ τ̂

τ̂ /2

ds e−iω̂s r0β(s) ĝβ (τ̂ − s) .

Here we have taken the limit η → 0 directly. Analogously, we can evaluate the integral in

the last interval (δτβ, τ/2):

(p − 1)

∫ τ/2

δτβ

dσ e−iωσ [C0(σ)]p−2 R0(σ) (92)

×
[

r
(ω)
1 (τ − σ) − r

(ω)
1 (τ)

]

=
(p − 1)qp−2

τβ

∫ τ̂ /2

0

ds e−iω̂s r0β(s)

× [ĝβ(τ̂ − s) − ĝβ(τ̂)] .
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Now we consider the other two integrals of Eq. (75). In order to do that it is convenient

to change the integration variable σ → τ − σ and to rewrite them as (up to subleading

terms):

(p − 1)

∫ τ

0

dσ eiωσ R0(σ)

×
[

[C0(τ − σ)]p−2 r
(ω)
1 (τ − σ)

+(p − 2) [C0(τ − σ)]p−3 R0(τ − σ) c
(ω)
1 (τ − σ)

− [C0(τ)]p−2 r
(ω)
1 (τ) θ

(τ

2
− σ

)

−(p − 2) [C0(τ)]p−3 R0(τ) c
(ω)
1 (τ) θ

(τ

2
− σ

) ]

+(p − 1) [C0(τ)]p−2 1 − q

T
r
(ω)
1 (τ)

+(p − 1)(p − 2) [C0(τ)]p−3 1 − q

T
R0(τ) c

(ω)
1 (τ).

Again, one can show that the contribution at short time can be neglected in the δ → 0 limit.

The integrals in the interval (0, δτβ) yield:

(p − 1)

∫ δτβ

0

dσ eiωσ R0(σ)

×
[

[C0(τ − σ)]p−2 r
(ω)
1 (τ − σ) − qp−2 r

(ω)
1 (τ)

]

=
(p − 1)qp−2

√
ǫτβT

(

τ

τβ

)
∫ δτβ

0

dσ
σ

τβ

d

dσ
C0(σ)

∝ ǫ1/a−1/2δ.

and,

(p − 1)(p − 2)

∫ δτβ

0

dσ eiωσ R0(σ) (93)

×
[

[C0(τ − σ)]p−3 R0(τ − σ) c
(ω)
1 (τ − σ)

−qp−3 R0(τ) c
(ω)
1 (τ)

]

≈ (p − 1)(p − 2)

T
R0(τ)

d

dτ

(

R0(τ)c
(ω)
1 (τ)C0(τ)p−3

)

×
∫ δτβ

0

dσ σ
d

dσ
C0(σ) ∝ ǫ1/aδ.
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Similarly, in the interval (τ − ητβ, τ), using the generalized FDR relation, one has:

(p − 1)

∫ τ

τ−ητβ

dσ eiωσ R0(σ)
[

[C0(τ − σ)]p−2 r
(ω)
1 (τ − σ)

+(p − 2) [C0(τ − σ)]p−3 R0(τ − σ) c
(ω)
1 (τ − σ)

]

= − (p − 1)

T
eiωτ R0(τ)

×
∫ ητβ

0

dσ
d

dσ

(

[C0(σ)]p−1 c
(ω)
1 (σ)

)

= − (p − 1)

T
eiωτ R0(τ) c

(ω)
1 (ητβ) ∝ ηa

√
ǫ

We have now to evaluate the two integrals in the two central intervals. We first consider

the following term:

(p − 1)

∫ τ−ητβ

τ/2

dσ eiωσ R0(σ) [C0(τ − σ)]p−2 r
(ω)
1 (τ − σ)

= (p − 1) qp−2

∫ τ−ητβ

τ/2

dσ eiωσ (94)

×
[√

ǫ

τβ
ĝβ

(

σ

τβ

)

√
ǫ

1

τβ
ĝβ

(

τ

τβ
− σ

τβ

)]

=
(p − 1)qp−2

τβ

∫ τ̂

τ̂ /2

ds eiω̂s r0β(s) ĝβ(τ̂ − s),

which, together with Eq. (91) gives a contribution of the form:

2(p − 1)qp−2

τβ

∫ τ̂

τ̂ /2

ds cos (ω̂s) r0β(s) ĝβ(τ̂ − s) (95)

We then consider the same integral in the interval (δτβ, τ/2), which yields:

(p − 1)

∫ τ/2

δτβ

dσ eiωσ R0(σ) (96)

×
[

[C0(τ − σ)]p−2 r
(ω)
1 (τ − σ) − qp−2r

(ω)
1 (τ)

]

≃ (p − 1)qp−2

τβ

∫ τ̂ /2

0

ds eiω̂s r0β(s)

× [ĝβ(τ̂ − s) − ĝβ(τ̂ )] ,

which, together with Eqs. (92) gives

2(p − 1)qp−2

τβ

∫ τ̂ /2

0

ds cos (ω̂s) r0β(s) (97)

× [ĝβ(τ̂ − s) − ĝβ(τ̂ )] ,
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Finally, we analyze the two integrals which contains c
(ω)
1 (τ − σ). The first one reads:

(p − 1)(p − 2)

∫ τ−ητβ

τ/2

dσ eiωσ R0(σ) [C0(τ − σ)]p−3

×R0(τ − σ) c
(ω)
1 (τ − σ)

= (p − 1)(p − 2) qp−3

∫ τ−ητβ

τ/2

dσ eiωσ

√
ǫ

τβ
r0β

(

σ

τβ

)

×
√

ǫ

τβ

r0β

(

τ

τβ

− σ

τβ

)

1√
ǫ
f̂β

(

τ

τβ

− σ

τβ

)

=

√
ǫ(p − 1)(p − 2)qp−3

τβ

∫ 1−η

τ̂/2

ds eiω̂s

× r0β(s) r0β(τ̂ − s) f̂β(τ̂ − s) ∝
√

ǫ log η

τβ
.

This term is
√

ǫ smaller than the contributions given by Eqs. (95) and (97), and can thus

be neglected. The second term is given by:

(p − 1)(p − 2)

∫ τ/2

δτβ

dσeiωσ R0(σ)

[

[C0(τ − σ)]p−3 R0(τ − σ) c
(ω)
1 (τ − σ)

−qp−3 R0(τ) c
(ω)
1 (τ)

]

=

√
ǫ (p − 1)(p − 2)qp−3

τβ

∫ τ̂ /2

δ

ds eiω̂s r0β(s)

×
[

r0β(τ̂ − s) f̂β(τ̂ − s) − r0β(τ̂) f̂β(τ̂)
]

,

which again leads to a subleading contribution.

In order to get the scaling equation for r
(ω)
1 (τ) from Eq. (75), one should also evaluate

z
(ω)
1 . However, we notice that z

(ω)
1 must be of order one in the whole frequency domain, as it

is just the quantity which enforce the spherical constraint. For instance, in the ω → 0 limit

it is proportional to the energy per spin and it is equal to 1/T . As a consequence, we can

skip the explicit evaluation of z
(ω)
1 , keeping in mind that it should result in a contribution

of O(1), which is, thus, negligible in Eq. (83).
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