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Abstract – We derive the Mode-Coupling Theory (MCT) of the glass transition as a Landau
theory, formulated as an expansion of the exact dynamical equations in the difference between the
correlation function and its plateau value. This sheds light on the universality of MCT predictions.
While our expansion generates higher-order non-local corrections that modify the standard MCT
equations, we find that the square-root singularity of the order parameter, the scaling function in
the β regime and the functional relation between the exponents defining the α and β time scales
are universal and left intact by these corrections.

Copyright c© EPLA, 2009

The Mode-Coupling Theory of glasses (MCT), devel-
oped since the mid-eighties following the seminal work of
Götze [1] and Leutheusser [2], has significantly contributed
to our understanding of the slowing-down of supercooled
liquids. One of its cardinal predictions is the appearance
of a non-trivial β-relaxation regime where dynamical
correlation functions pause around a plateau value before
finally relaxing to zero. In the vicinity of this plateau
value, the theory predicts two power-law regimes in time
(or in frequency), and the divergence of two distinct relax-
ation times, τα and τβ , at the MCT critical temperature
Td. Although this divergence is smeared out by activated
events in real liquids, the two-step relaxation picture
suggested by MCT seems to account quite well for exper-
imental and numerical observations [3], at least in weakly
supercooled liquids and for hard sphere colloidal systems.
Originally, MCT was obtained as an uncontrolled

self-consistent approximation within the Mori-Zwanzig
projection operator formalism for Newtonian particles.
This scheme yields an integro-differential equation for
the dynamic structure factor C(k, t) that captures math-
ematically the slowing-down of the dynamics and the
appearance of a two-step relaxation at equilibrium. It
provides very detailed predictions for the scaling proper-
ties of C(k, t) in the vicinity of the plateau value fkSk,
where Sk is the static structure factor and fk is called the
non-ergodicity parameter (akin to the Edwards-Anderson
parameter in spin glasses). Alternative derivations of

(a)E-mail: a.andreanov1@physics.ox.ac.uk

MCT based on field theory have been sought for [4] and
research on this topic has continued until now [5–8].
It was also realized that the same integro-differential
equations describe the exact evolution of the correlation
function of mean-field p-spin glasses [9]. This is important
for at least two reasons:

– Technically, it shows that the MCT approximation is
realizable: there is a well-defined system for which it
is exact; hence MCT does not violate basic physical
constraints.

– Physically, it brings in a very useful interpretation
of the MCT freezing transition in the “energy land-
scape” parlance. Above the transition Td, the dynam-
ics is dominated by unstable saddles that become
progressively less and less unstable as one approaches
the transition; below the transition, there are only
local minima that are separated by infinite barriers in
the mean field, so that the system is forever trapped
in one of them [9]. For non–mean-field systems, these
barriers are finite and the transition is smoothed.
MCT can be naturally embedded within the broader
Random First-Order Theory [10] of the glass transi-
tion. In this context it describes the high-temperature
region where metastable states are still in embryo.

However, this analogy shows that MCT is (at best) an
incomplete theory of real supercooled liquids, and needs
to be corrected and enhanced. An important question is to
know to what extent the quantitative predictions of MCT
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are stable with respect to the ignored contributions. In
fact, it is generally accepted that the quantitative value of
the critical temperature (or the critical density) obtained
solving MCT equations is incorrect, as is the interaction
parameter λ, which is a functional of the static structure
factor and fixes the value of critical exponents. However,
when MCT is used to fit empirical data, it is assumed
(without much justification) that the predictions about
the critical behavior remain correct if Td and λ are treated
as adjustable parameters. This implicitly assumes that
some MCT predictions are universal, e.g. the square-root
singularity of fk and the relation between the exponents
describing the divergence of τα and τβ , and others which
are not, e.g. Td and the actual value of the exponents!
Clearly, the present theoretical understanding of MCT

needs to be improved. Assessing the degree of structural
stability of the theory and its universality properties is a
crucial issue to resolve both for theoretical and practical
purposes. One step in this direction has been performed
by Szamel [11] and then later generalized by Mayer et al.,
where a schematic version of MCT including higher-order
correlations was proposed and analyzed [12]. The result
is that whenever the theory is truncated at any finite
order in the n-body correlations, the phenomenology of
MCT is exactly recovered with a finite Td, whereas Td = 0
when the theory is treated exactly to all orders. Another
approach was followed in [6], based on a field-theoretical
formulation of MCT consistent with the Fluctuation-
Dissipation Theorem, which suggests closure schemes
different from standard MCT.
The aim of this work is to argue that MCT can be

rephrased as a Landau theory of the glass transition,
based on general assumptions about the nature of the
dynamical arrest but without relying on any particular
model. Therefore, some predictions of MCT are indeed
generic and should be useful in a certain regime of time
and temperature. Note that a Landau theory for the glass
transition has been developed also in [13], but it has a very
different starting point and it does not focus on MCT.
The Landau theory is a general phenomenological

approach to equilibrium phase transitions [14,15]. It relies
on a number of natural hypotheses, such as symmetry,
genericity and regularity. In the classic example of the
Ising model for ferromagnets, the expansion of the free
energy as a function of the magnetization m reads, in
the homogeneous case and subject to external field h:
F [m] = F0−mh+ b2 (T −Tc)m2+ g

4!m
4+ . . . , from which

a certain number of well-known mean-field properties can
be derived. Including the first gradient corrections in the
inhomogeneous case also allows one to show that close to
Tc, the divergence of the uniform susceptibility χ(q= 0)
is accompanied by the divergence of the correlation length
ξ, over which magnetization fluctuations are correlated.
The Landau construction can falter in three distinct ways:

1) Higher-order terms, neglected in the expansion of
F [m] as a series of m, could qualitatively change

the above predictions (structural instability). This
happens, for example, close to a multicritical point
where g(Tc) = 0. But if the transition remains second
order, higher-order terms are truly negligible when
ε= |T −Tc| → 0 and the predictions are universal.

2) The non-linear feedback of spatial fluctuations on the
divergence of the susceptibility can change all the
critical exponents when the dimension of space is
smaller than du = 4 in the case of the Ising model.
For d> du, on the other hand, one can prove that the
low-q behavior of χ(q) is (close to the critical point)
identical to that predicted by Landau’s theory.

3) Non-perturbative effects can wipe out the transition.
This is the case for example of the spinodal transition:
the system is not able to reach the critical point
because of nucleation, which is an activated process.

Even the analogue of point 1) is difficult in the case of
MCT; the basic reason being that the order parameter
is a not a scalar, but it is a time-dependent function
C(k, t). The proof that MCT is structurally stable with
respect to the addition of higher-order terms is already
quite complex and this will be the scope of the present
paper. Once this is achieved, one should still worry about
points 2) and 3) above. As already mentioned, it was
recently realized that diverging fluctuations and an upper
critical dimension du also exist for MCT [16–18] (see
also [19,20] for earlier insights). In order to complete
our proof that MCT is stable, one should prove that
spatial fluctuations can be safely neglected in d> du
and understand how close one can get to the critical
point before non-perturbative (activated) effects impair
the transition. We will completely disregard these issues
in the present paper, and focus only on point 1).
The case of the glass transition is quite different from

standard critical phenomena. Several physical and formal
problems prevent a direct analogy. The glass transition
seems to be a purely dynamical phenomenon: simple
static, thermodynamical properties do not present any
peculiarities as the liquid freezes into a glass1. The above
Landau construction simply does not make sense in the
absence of the clear analogy of the free energy. This means
that the order parameter in glasses cannot be a one-
point function (such as the magnetization) but, instead,
it is likely to be a two point dynamic correlation. The
slowing-down of the dynamics in glasses is found to be
accompanied by the appearance of a plateau value fk in
the relaxation pattern of the dynamical structure factor
C(k, τ). Since the appearance of a plateau coincides with
increasing time scales, one expects that within a very long
time interval (to be specified), the correlation function can
be approximately written as

C(k, τ)≈ fkSk+ δC(k, τ), δC(k, τ)� 1. (1)

1It has, however, been argued that highly non-trivial static
correlations, called point to set correlations, increase approaching
the glass transition [21].
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The idea underlying our construction of a Landau theory
for glasses is to consider δC(k, τ) as the analogue of
the order parameter m and construct a general, struc-
turally stable, dynamical equation for δC(k, τ). A way
to construct such an equation is to start from the exact
dynamical evolution for C and the response function R
that can be derived in the framework of various dynamical
field theories, for example based on Dean’s equation [22]
for Brownian dynamics, on Fluctuating Hydrodynam-
ics for Newtonian dynamics [4] (see also [5–8]), or on
Langevin equations for p-spin models [9]. Although these
theories give very different sets of equations, they can all
be reduced to the following single equation in the ergodic
region

∂τC(k, τ)+TC(k, τ)+

τ∫
0

duΣ(k, τ −u)∂uC(k, u)= 0 (2)

with initial condition C(k, 0) = Sk. The self-energy
Σ(k, τ) (or memory kernel in MCT terminology) is given
by the sum of 2-particle irreducible (2-PI) diagrams built
with C and R lines, see e.g. [6]. We do not specify the
details of the field theory underlying this equation, nor
the Feynman rules for the diagrams contributing to Σ:
we just need that such a theory exists. We also stay in
the high-T region, so that the system is at equilibrium:
both C and R are then time translation invariant and the
Fluctuation-Dissipation theorem holds at a diagrammatic
level: T R(k, τ) =−∂τC(k, τ). In this case the self-energy
is a functional of the correlation function only. Equa-
tion (2) has exactly the structure of the standard MCT
equation for liquids, although there is no well-defined
prescription to build a consistent approximation for Σ; in
this sense MCT is rather arbitrary and difficult to improve
upon in a systematic way. The standard MCT results
corresponds to a self-consistent 1-loop approximation for

Σ, Σ(k, t− s) = ∫ d3p
(2π)3V (k,p)C(k−p, t− s)C(p, t− s),

where V (k,p) is an effective vertex2. When generalized to
higher-order diagrams, an important difficulty emerges:
the non-locality in time of the corrections. Our goal is
to prove that the main results of the standard MCT (or
1-loop) approximation still hold. The proof is done as
for usual theories. We start from some conjectures about
the critical properties, such as the nature of the order
parameter and its critical properties, that are motivated
by experimental and numerical findings. Then we show
that they result from a Landau-like expansion, which
allows one to assess their universal character and to fix
the value of the critical exponents. We therefore assume
that the order parameter is the dynamical correlation
function and that displays the following features:

– There is structural arrest: below some temperature
Td, lim

τ→∞C(k, τ) = fkSk with fk > 0.

2Note, however, that there are complications related to fluctua-
tion dissipation relations [5–8].
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Fig. 1: (Colour on-line) A set of relaxation curves C(τ) close
to the MCT transition for the so-called schematic model of
MCT [3] and several values of ε, which quantifies the deviation
from the transition and is defined in the text. As ε→ 0 a
shoulder develops in the relaxation pattern corresponding to
the emerging β-relaxation regime.

– When ε= (T −Td)/Td� 1, the correlation function
exhibits a two-step pattern with three well-separated
characteristic time scales, see fig. 1. We assume that
there exists a diverging time scale τβ(ε) where the
difference δC(k, τ) between C and the plateau value
is small, of order r(ε)� 1. More precisely, the corre-
lation function decay is decomposed into: i) a short-
time regime, τ ∼ τ0, where C(k, τ) =C0(k, τ), with
C0(k, τ � 1)→ fkSk; ii) a β regime, τ = sτβ(ε) with
s=O(1): δC(k, sτβ) = r(ε)Sk(1− fk)2G(k, s); iii) an
α regime, τ = s′τα(ε) with s′ =O(1): C(k, s′τα) =
Cα(k, s

′) describes the final fall-off of the relaxation.

We assume further (and justify later) that the function
G(k, s) can itself be expanded in powers of r(ε): G(k, s) =∑∞
n=1 r

n−1Gn(k, s) (see footnote 3). All functions Gn
are a priori singular at s= 0 and s=∞, reflecting the
fact that the behavior of C must match the short-time
regime and α regime, where the deviation from the plateau
ceases to be small. A crucial remark for the following
is that any function Gn will appear with a prefactor
rn(ε). These hypotheses turn out to be sufficient to
generalize the MCT results in the β regime. First, it
is clear that the above expansion of G(k, s) generates a
similar expansion of the self-energy Σ[C] in the β regime:
Σ(k, s) =

∑∞
n=1 r

n−1Σn(k, s), where the Σn do not depend
on ε, but are some functionals of C(p, τ). The most generic
functional form for Σ a priori includes contributions from
all three regimes and all momenta p:

Σ(k, s) =Σ[{C0(p, s′τβ), r(ε)G(p, s′), Cα(p, s′τβ/τα)}],
(3)

but since the Σn should not depend on ε, general argu-
ments can be used to restrict the actual functional form
3One could have also some regular (in ε) contributions. However,

as we shall show, the only two possible values of r(ε) are
√
ε or ε. As a

a consequence, regular contributions will be automatically contained
in the expansion.
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of Σn. Note that we have used the notation s
′ to stress that

this equation is a functional relation which is non-local in
time. Also, even if we had assumed that δC(k, sτβ) only
contains a single term of the order of r(ε) then we would
have generated corrections of all orders in r(ε) anyway.
The reason is that the self-energy will contain all orders
in r(ε) as it can be found by expanding the above equa-
tion to all order in r(ε)G(p, s); this will feed back, via the
Schwinger-Dyson equations, on G(p, s) itself.
We now illustrate how this works for the lowest-order

terms Σ0, Σ1 and Σ2. As we shall see higher orders are in
fact irrelevant for our purpose. Clearly, the zeroth-order
term Σ0(k, s) can only be a function of the wave vector k
since in the limit ε→ 0 time scales separate: τβ→∞ and
τβ/τα→ 0 and therefore the previous equation implies that
in Σ0(k, s) all dependence on s drops out. The first-order
contribution Σ1(k, s) must read:

Σ1(k, s) =

∞∫
0

du

∫
p

K1(k,p; s, u)G1(p, u), (4)

where, henceforth, we shall use the notation
∫
p
=
∫
d3p
(2π)3 .

Any other combination containing some Gn gives an extra
factor rn(ε) and thus it corresponds to a higher-order
contribution. In the original time variables, the kernel K1
must have some regular shape with a span fixed by the
microscopic time scale. Therefore, in the rescaled variables
u, s, K1 must be local in u− s and, to lowest order, is a
δ-function; higher derivatives of the δ-function correspond
to corrections smaller by at least a factor τ0/τβ which, as
we shall see, turn out to be negligible even at order r2.

Therefore, Σ1(k, s) =
∫
d3p
(2π)3K1(k,p)G1(p, s).

The second-order term has a richer structure. First,
there is a term similar to the first-order one with G2
instead ofG1:

∫
d3p
(2π)3K2(k,p)G2(p, s). But since the kernel

K2 is obtained, as K1, from the first derivative of the
self-energy with respect to r(ε)G(p, s), one finds K2 =K1.
Second, there are terms quadratic in G1:

∫
k1,k2

∞∫
0

du

∞∫
0

dv K11(q,k1,k2; s, u, v)G1(k1, u)G1(k2, v).

For the same reasons outlined above, time dependence
of K11(q,k1,k2; s, u, v) is composed of δ-functions and
their derivatives. Some thinking about the underlying
diagrammatic structure of the theory allows one to be
convinced that the general structure of K11 is, to leading
order:

K11(s, u, v) = K11,�δ(s−u)δ(s− v)
+K11,n�δ(u+ v− s)(∂u+ ∂v)
+K̃11,n�(∂u+ ∂v)δ(u+ v− s),

where to simplify the notation we have dropped all wave
vector dependence in the above equation. The fact that

only the combination u+ v− s enters comes from causality
and the separation of time scales. The full justification of
the above form and other technical details4 are presented
in [23]. The first local term (in s), K11,�, is like the usual
MCT contribution, but the other two terms do not appear
within standard MCT. The third term actually reduces to
the second one plus local terms via integration by parts.
This expansion is the main result in the construction

of the Landau theory. The zeroth-order equation in r(ε)
fixes the non-ergodic parameter such that Tdfk1−fk =Σ0(k),
as in standard MCT. Substituting the expansion of Σ up to
second order in r into (2) and using the expansion of C in
the β time scale, one finally obtains, for T = Td(1+ ε) and
in Laplace space within the β regime (we have dropped
zeroth order, as discussed above):

r

[
Td(1+ ε)Ĝ1(k, z)−

∫
p

K1(k,p)Ĝ1(p, z)

]

+r2
[
Td(1+ ε)Ĝ2(k, z)−

∫
p

K1(k,p)Ĝ2(p, z)

]

+
Tdfkε

z(1− fk) + r
2Td(1+ ε)(1− fk)zĜ21(k, z) =

r2
∫
p

K2(k,p)Ĝ2(p, z)

+r2
∫
k1

∫
k2

K11,�(k,k1,k2)L[G1(k1, τ)G1(k2, τ)](z)

+r2
∫
k1

∫
k2

K11,n�(k,k1,k2)zĜ1(k1, z)Ĝ1(k2, z), (5)

Identifying the coefficients order by order produces a
series of equations. The first order fixes the yet unknown
function r(ε): the expansion (5) only contains terms
with integer powers of ε. They should be matched with
powers of r(ε). Inspection of (5) shows that there are
two possibilities5: either r= ε, or r=

√
ε. The first choice

yields a time-independent solution for G1 which is in
contradiction with our hypothesis of a two-step relaxation
with diverging time scales. Hence r(ε) =

√
ε, precisely as

for usual MCT, or at 1-loop order. This follows from the
presence of a regular in T term in (2).
The equation to order r=

√
ε now reads

TdĜ1(k, z) =

∫
d3p

(2π)3
K1(k,p)Ĝ1(p, z). (6)

This is the standard eigenvalue problem found within
MCT that fixes the value of the critical temperature Td.
It constrains G1 to be a product of wave-vector–dependent

4In particular one could think that the separation of time scales
not only leads to delta function terms but also to constants.
The latter are absent. This can be shown using the general field-
theoretical expression of the self-energy, see [23].
5Actually, there are other possibilities that correspond to higher-

order MCT singularities, which have been called An [24]. In a usual
Landau theory these correspond to tricritical, or even higher-order,
critical points. We will neglect them here since they require some
fine tuning of the coupling constants.
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and time-dependent amplitudes, thus reproduc-
ing the well-known MCT “factorization property”:
Ĝ1(k, z) = ĝ(z)H1R(k), where H1R is the right eigenvec-
tor of K1 with largest eigenvalue Λ= Td. At this order,
however, the scaling function ĝ(z) remains unfixed. The
second-order equation is trickier:

TdĜ2(k, z)−
∫
k

K1(k,p)Ĝ2(p, z) =

− Tdfk

z(1− fk) −Td(1− fk)zĝ
2(z)H21 (k)

+

∫
k1

∫
k2

K11,�(k,k1,k2)L[g2](z)H1(k1)H1(k2)

+zĝ2(z)

∫
k1

∫
k2

K̂11,n�(k,k1,k2)H1(k1)H1(k2). (7)

Following [25], we now multiply (7) by H1L(k), the left
eigenvector of K1 with the same eigenvalue Λ= Td, and
integrate over k. Using the eigenvalue equation on H1L(k)

TdĤ1L(p, z) =

∫
d3k

(2π)3
H1L(k)K1(k,p)

one finds that the G2 part of the equation vanishes. The
remainder yields an equation on ĝ(z). After some algebra
and a proper rescaling of z and ĝ one finds

1

z
+
z

λ
ĝ2(z) =L[g2](z), (8)

where λ is a constant that includes a non-local contri-
bution as compared to MCT. But the structure of the
equation on the scaling function g is exactly the same
as in standard MCT. The properties of solution are well
known: g has a singular power law asymptotics at z→∞:
ĝ(z)∼ za−1 and z→ 0: ĝ(z)∼ z−1−b. The short-time
exponent a and long-time exponent b characterize the
decay of δC(k, τ) to and away from the plateau fk. The
exponents a and b are related by the famous equation:

Γ2(1− a)
Γ(1− 2a) =

Γ2(1+ b)

Γ(1+2b)
= λ, (9)

which is a genuinely non-trivial and clear-cut prediction
of MCT that constrains the range of values of a and b
to: 0� a< 1/2 and 0� b� 1, in good agreement with
experimental and numerical results. We have thus found
that this relation has a much broader degree of validity
and survives the introduction of an arbitrary number
of loop corrections. The values of a and b are however
different from the standard MCT (or 1-loop) result, in the
sense that, evaluating λ from first principles using MCT
equations, as done in [26], or within another higher-loop
approximation would yield different values. This makes
little difference in the end since, as alluded to above, the
parameter λ is usually taken as an adjustable parameter
anyway.
The fact that the form of the scaling function g is the

same as at 1-loop (MCT) has two consequences. First, it

fixes the functional dependence of the time scales exactly
as for MCT:

τβ = ε
−1/2a; τα = ε

−γ , (10)

γ = 1/2a+1/2b. This is clear from the matching of
C(k, sτβ) at both ends of the β regime. Second, it can be
used to show that some superficial divergences encoun-
tered in the calculation are in fact innocuous (see [23] for
more details). Note that the only extra contribution that
appear in the generic case to second order in g(s), namely
the non-local term proportional to

∫
dug′(u)g(s−u), does

not modify the basic MCT equation, eq. (8).
The conclusion, which is the main result of this work, is

that although Td and λ are modified by taking into account
corrections to MCT, the relation between the exponent a
and b, the square-root singularity as well as the scaling
function g are truly universal properties. This universality
with respect to higher-order local (in time) corrections was
of course already shown by Götze long ago; here we have
proved that this result is robust with respect to general
non-local corrections as well, and suggesting that MCT
has the status of a Landau theory of the glass transition6.
The above schematic arguments can be made precise

within the context of specialized model. We have in
particular studied in full details the finite N corrections to
mean-field 3-spin glass model, where the structure of the
perturbation theory can be used to check that the above
conclusions hold in that case, see [23] for details.
It was recently understood how MCT equations should

be generalized in the presence of spatial inhomogeneities,
where the correlation function C can be space dependent:
C(k, �r; τ), where �r is the average of the two points �r1, �r2
between which the correlation is computed, and k is
the Fourier vector corresponding to �r1−�r2. When the
wavelength of inhomogeneities is large, one can estab-
lish a gradient expansion of the MCT equations. In the
schematic limit where all dependence on k is discarded, the
self-energy reads, to the lowest order: Σ[C](s) =C(�r, s)2+

w1C(�r, s)∇2C(�r, s)+w2�∇C(�r, s) · �∇C(�r, s), where w1
and w2 are some coefficients [17]. As mentioned in the
introduction, these gradient terms are very important
because they show how the MCT transition is in fact
associated with a diverging correlation length, which
corresponds to the scale over which a localized pertur-
bation affects the surrounding dynamics [17]. The
long-ranged critical fluctuations renormalise the value
of the MCT exponents in d< du = 8 [18]. The above
analysis, which was done in the homogeneous limit
∇→ 0, should be repeated in the inhomogeneous case to
complete our proof. We expect that the same conclusion
will hold, namely that the results about dynamical
correlation obtained within inhomogeneous MCT [17] are
stable against the addition of higher-order corrections.

6As a consequence, it has a very different status compared to
the mode-coupling theories developed to compute critical exponents
beyond the mean-field theory for standard critical phenomena.
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In conclusion, we have shown that MCT, which
describes a specific slowing-down mechanism through the
progressive disappearance of unstable directions, has the
status of a Landau theory and is therefore expected to
make generic predictions, albeit polluted by activated
events and critical fluctuations in finite dimensions. The
interplay between critical fluctuations and activated
events when d< du, and the crossover to low-temperature
dynamics is still largely an exciting open problem [27].
Note also that even for the exact MCT equations, the
critical region where the asymptotic scaling predictions
are valid is unusually narrow [28,29]. It would be inter-
esting to generalize our Landau approach to the aging
regime and show what are the truly universal properties
of the mean-field and MCT-like description of the aging
dynamics [9].
In constructing the Landau theory, we have assumed

that the freezing transition is discontinuous, with a
finite value fk of the plateau at the transition. A viable
alternative is of course that of a continuous transition of
the spin-glass type, which leads to a completely different
phenomenology. This raises the question of the possible
realization of this second scenario in the context of
supercooled liquids. All short-range interacting glasses
seem to be characterized by rather small Lindemann
parameters at the transition, meaning that it is hard
to maintain any kind of amorphous long-range order
when individual molecules move substantially, and that
the glass transition is therefore discontinuous [30]. This
argument suggests that continuous glasses can only exist
for long-ranged interacting particles or quantum systems.
In the quantum case, it is imaginable that amorphous
density waves can indeed form with a vanishing modula-
tion amplitude (see [31]). It would be very interesting to
find experimental realizations of such a scenario.
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Mech. (2006) P07008.

[7] Kim B. and Kawasaki K., J. Stat. Mech. (2008) P02004.
[8] Nishino T. H. and Hayakawa H., Phys. Rev. E, 78
(2008) 061502.

[9] Bouchaud J. P., Cugliandolo L., Kurchan J. and
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