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We consider the question of thermalization for isolated quantum systems after a sudden parameter change,
a so-called quantum quench. In particular we investigate the pre-requisites for thermalization focusing on the
statistical properties of the time-averaged density matrix and of the expectation values of observables in the
final eigenstates. We find that eigenstates, which are rare compared to the typical ones sampled by the micro-
canonical distribution, are responsible for the absence of thermalization of some infinite integrable models and
play an important role for some finite size non-integrable systems, such as the Bose-Hubbard model. We stress
the importance of finite size effects for the thermalization of isolated quantum systems and propose a condition,
relying on the Kullback-Leibler entropy, to obtain thermalization.
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The microscopic description of many particle systems is
very involved. In many situations, in particular at equilibrium,
one can rely on statistical ensembles that provide a framework
to compute time-averaged observables and obtain general re-
sults like fluctuation-dissipation relations. The use of statisti-
cal ensembles relies on the hypothesis that on long timescales
physical systems thermalize. In the context of classical statis-
tical physics a very good understanding of the issue of ther-
malization was reached in the last century [1]: under certain
chaoticity conditions, an isolated system thermalizes at long
times within the micro-canonical ensemble. Furthermore, a
large single portion of a (much larger) isolated system ther-
malizes within the grand-canonical ensemble.

Instead for quantum systems, it is fair to state that the com-
prehension of thermalization and its pre-requisites are still
open problems [2, 3], except for important results obtained in
the semi-classical limit [4, 6] or under the assumption of the
coupling to a thermal bath [7] [27]. And this is the case despite
a lot of effort especially in the mathematical physics literature
starting from the Quantum Ergodic Theorem of von Neumann
[8] (see [3] for a very recent account and new results).

The interest in these fundamental questions revived re-
cently due to their direct relevance for experiments in ultra-
cold atomic gases [9]. The almost perfect decoupling of these
gases from their environment enables the investigation of the
quantum dynamics of isolated systems. In a fascinating ex-
periment by Kinoshita et al. [10] it was observed that two
counter-oscillating clouds of bosonic atoms confined in a one-
dimensional harmonic trapping potential relax to a state differ-
ent from the thermal one.

Up to now the absence of thermalization to Gibbs ensem-
bles [28] has been mainly attributed to the presence of in-
finitely many conserved quantities, i.e. to the integrability
of the system (see [11] and references therein). For non-
integrable isolated models the presence of thermalization af-
ter a global quench, i.e. a sudden global parameter change,
is still debated [12, 13, 14, 15, 16, 17]. The origin of
thermalization after a global quench was proposed to stem

from statistical properties of the time averaged density ma-
trix and the so-called ’eigenstate-thermalization hypothesis’
(ETH) [4, 18, 19, 20] which we state later on. In our work
we will reconsider these claims both for integrable and non-
integrable models with short-range interactions and show that
although some of them are indeed valid, the underlying pre-
requisite for thermalization is more subtle than what was sur-
mised in Ref. [19, 20]. We will do so by considering a sud-
den parameter change of the Hamiltonian at time t = 0 for a
system that is in the ground state for t < 0. The following
time-evolution of any observable O can be expressed as〈

O
〉
(t) =

∑
α,β

cαc
∗
βe
−it(Eα−Eβ)〈β|O|α〉.

Here |α〉 are the eigenvectors of the Hamiltonian at t = 0+

with corresponding eigenvaluesEα (we use ~ = 1). The over-
lap cα = 〈α|ψ0〉 is taken between the eigenstate |α〉 and the
ground state |ψ0〉 of the initial Hamiltonian (t = 0−). The
typical time behavior of

〈
O
〉
(t) consists in damped or over-

damped oscillations that converge towards a constant average
value at long times. Assuming no degeneracy in eigenener-
gies, the long-time value of

〈
O
〉
(t) can be computed using the

time averaged density matrix, ρ =
∑
α |cα|2|α〉〈α| [8] [29].

Following the terminology of [19] we will call ”diagonal en-
semble averages” all averages with respect to ρ and we will
use the notation

〈
O
〉
D

= Tr(ρO) =
∑
αOα|cα|2 with

Oα = 〈α|O|α〉.
An important property of the diagonal ensemble is that un-

der very general conditions [19] the energy per particle has
vanishing fluctuations:

∆e :=

√
〈E2〉D − 〈E〉2D

L
→ 0 for L→∞. (1)

Here L denotes the number of sites and the thermodynamic
limit is taken at constant particle density N/L. From a statis-
tical point of view, property (1) means that the distribution of
intensive eigenenergies with weights |cα|2 is peaked for large
system sizes.
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In [19] it was argued, based on previous work on semiclas-
sical quantum systems [4, 18], that for generic non-integrable
interacting many body systems the matrix elements Oα of a
few body observable with respect to any eigenstate |α〉 with
eigenenergy Eα equals the microcanonical ensemble average
taken at that energy Eα, the so-called ”eigenstate thermaliza-
tion hypothesis”. Were this true, an immediate consequence of
property (1) would be that averages in the diagonal ensembles
coincide with averages in the microcanonical ensemble at the
same energy per particle. This was the explanation of thermal-
ization for generic non-integrable systems of finite size [19].
In contrast a finite width distribution for specific observables
was found numerically for a finite size integrable system and
claimed to be at the origin of the absence of thermalization for
this model.

Actually, one can prove a general property that resembles,
at first sight, ETH: the matrix elements Oα of intensive local
few body Hermitian operator (or observable) have vanishing
fluctuations over eigenstates close in energy [30]:

(∆Oe)2 =
∑
eO2

α∑
e

−
(∑

eOα∑
e

)2

→ 0 for L→∞. (2)

Here the sum
∑
e is taken over eigenstates |α〉 with eigenen-

ergies Eα/L ∈ [e − ε; e + ε] where e is the considered en-
ergy per particle and ε is a small number that can be taken
to zero after the thermodynamic limit. The detailed proof of
this property will be presented in a longer version of this work
[25] but the main steps are easy to grasp: using the Cauchy-
Schwarz inequality (O2)α ≥ (Oα)2 one finds that (∆Oe)2
is bounded from above by the fluctuations of O within the
micro-canonical ensemble characterized by the same intensive
energy. Using the general thermodynamic result, valid both
for non-integrable and integrable finite dimensional systems,
that an intensive local observableO has vanishing fluctuations
in the micro-canonical ensemble one obtains (∆Oe)2 → 0.

Even though property (2) resembles ETH, it is actually dif-
ferent in a subtle way: a state |α〉 taken at random between all
states with the same energy per particle will have with prob-
ability one (approaching one in the thermodynamic limit) a
value of Oα equal to its microcanonical average. However,
states with different values Oα may and actually do exist, as
we shall show in the following. They are just rare compared
to the other ones. This is not a minor fact and shows that the
reason of thermalization (or its absence) is more subtle than
what surmised in [19]. Indeed, if the |cα|2s distribution gives
an important weight to these rare states, the diagonal ensem-
ble averages will be different from the micro-canonical one.
In this case thermalization will not take place, despite the fact
that the overall majority of states is characterized by a value
of Oα equal to the microcanonical average. In the following
we shall show, in concrete examples, that this is indeed what
happens in some integrable infinite systems and in some finite
size non-integrable models, such as the Bose Hubbard one.
Conjectures on thermalization of infinite size non-integrable
models are discussed in the conclusion.

Our first example is a chain of L harmonic oscillators charac-
terized by a mass m and coupling strength ω described by the
Hamiltonian

H =
1
2

∑
x

[
π2
x +m2φ2

x +
∑
y=±1

ω2(φx+y − φx)2
]
.

We assume periodic boundary conditions and the usual com-
mutation relations between the operators πx and φy given by
[φx, πy] = iδx,y . Using a suitable standard transformation one
can rewrite the Hamiltonian as H =

∑(L−1)/2
k=0 Ωk(R†kRk +

I†kIk) with the new creation and annihilation operatorsRk, R
†
k

and Ik, I
†
k and Ω2

k = m2 +2ω2(1−cos(2πk/L)). As a conse-
quence the eigenstates of the Hamiltonian at t = 0+ are char-
acterized by occupation numbers {nIk}, {nRk } for the I and
R operators. Following Calabrese and Cardy [11], we con-
sider now a quantum quench where the system is in the ground
state at a certain initial value of m = mi that we switch in-
stantaneously to the final value mf , i.e. Ωik → Ωfk . In order
to discuss thermalization and property (2), we focus on the
coupling between next-nearest neighbour R-oscillators which
reads G2 = 1

N

∑
k g(k)R†kRk with g(k) = cos(4πk/N).

The diagonal matrix element for a state α = {nIk, nRk } is
simply (G2)α = 1

N

∑
k g(k)nRk . In the large system size

limit the number of eigenstates with (G2)α and Eα/L respec-
tively between G2 and G2 + dG2 and e and e + de has the
form of a large deviation function, i.e. it is proportional to
exp(LSe(G2))dedG2. The explicit expression of Se(G2) will
be shown elsewhere [25]. Physically Se is just related to the
entropy of the system with intensive energy e and an average
coupling between next-nearest neighbour equal to G2. Thus
we find that although the distribution of G2 is strongly peaked
(with a width of the order 1/

√
L) rare states do exist, but they

are exponentially less numerous than the typical ones. For
this simple integrable models all the weights |cα|2 can also be
computed exactly. Using that the modes k are decoupled be-
fore and after the quench and that nRk , n

I
k and all their powers

are conserved quantities, we find that the diagonal ensemble is
characterized by weights that read

∏
k Pk(nIk)Pk(nRk ) for the

state {nIk, nRk }. Pk(nk) is equal to the square of the overlap
between the ground state of the k-mode harmonic oscillator
before the quench and the quantum state after the quench with
occupation nk. We computed this scalar product by using its
integral expression in terms of Hermite polynomials. Our re-
sult reads:

Pk(nk) =

(
Ωik
Ωfk

)1/2
1

A2nk
nk!

(nk/2)!2
(−1+1/A)nkEnk (3)

where Enk = 1 for nk even and 0 otherwise and A =
(1 + Ωik/Ω

f
k)/2. This distribution decreases exponentially

in nk for any k. It is interesting to remark that the ex-
act distribution (3) is very different from the one assumed
to hold for integrable systems within the Generalized Gibbs
Ensemble approach [21]. The expression of the weights,



3∏
k Pk(nIk)Pk(nRk ), makes clear that their typical value is ex-

ponentially small in the size of the system and hence they
can bias significantly the micro-canonical distribution. This
is indeed what happens as it can be explicitly checked by
computing the average value of G2 in the diagonal ensem-
ble:

〈
G2

〉
D

= 1
N

∑
k f(k)〈nk〉D. We find, in agreement with

[11], that the distributions of (G2)α in the two ensembles be-
come infinitely peaked but around two different values. A
general way to understand this phenomenon is to rewrite the
average of an observable O as:∑

α

|cα|2Oα =
∫
doN (o)ZD(o)o

where ZD(o) =
∑
α |cα|2δ(Oα − o)/N (o) and N (o)dode

is the number of states |α〉 with a value of Oα between o
and o+ do and intensive energy between the micro-canonical
average e and e + de. As discussed previously in the case
of G2, N (o) is exponentially large in the size of the system,
i.e. it is proportional to exp(LSe(o))) where Se(o) is an en-
tropy like function. As a consequence, the micro-canonical
distribution of Oα is peaked around the value that maximizes
Se and has 1/

√
L fluctuations around it. However, ZD(o)

is exponentially small in the system size and proportional to
exp(−LCe(o)), as it can be checked explicitly [25]. This
leads to a diagonal ensemble distribution for Oα which is
peaked at the value that maximizes Se(o) − Ce(o) and it has
a width of the order 1/

√
L.

The other example we focus on is the one-dimensional ex-
tended Bose-Hubbard model with one particle per site:

H = −
∑

j,d=1,2

Jd

(
b†jbj+d + h.c.

)
+
U

2

∑
j

n̂j(n̂j − 1),

where b†j and bj are the bosonic creation and annihilation
operators, and n̂j = b†jbj the number operators on site j.
For J2 = 0 and most values of U and J1, this model has
been shown to be non-integrable [22]. Only in special points,
e.g. (U = 0) and (J1 = J2 = 0), this model is integrable. At
the integrable point U = 0 one can obtain results similar to
the previous example by quenching the value of J2 and show
that a non-thermal steady state is reached due to the occupa-
tion of rare states. Furthermore, one can also study how these
results change going away from integrability by increasing U .
The details will be published elsewhere [25] and here we fo-
cus directly on the non-integrable situations Uf/J1 = 10 and
J2 = 0. In Fig. 1 (upper panel) we show the correlations
(G1)α =

∑
j〈α|b

†
jbj+1|α〉/L versus energy Eα/L.

At low energies an (overlapping) bandstructure is seen. The
center of the bands are separated by the interaction energy
U/L and have a width proportional to J1/L. Within these
low energy bands (G1)αs decay almost linearly. For interme-
diate energies a mixing of these energy bands starts to show
up (cf. Fig. 1 upper panel Eα/L ≈ 5) which is weak for small
systems and becomes stronger for larger system sizes (cf. al-
ready L = 11). In most fixed energy intervals the values of
the correlations (G1)α are spread considerably.

FIG. 1: Full diagonalization results of (G1)α versus energy Eα in
the even parity, k = 0 momentum sector for the final Hamiltonian
characterized by J2 = 0 and Uf/J1 = 10 (upper panel) and cor-
relation of |cα| versus (G1)α for a quench from Ui/J = 2 (lower
panel). Additionally the average energy (dashed-dotted line) after
the quench and the average value of G1 obtained from the t-DMRG
time-evolution (L = 100) (solid line) and the diagonal ensemble
for L = 11 (dashed line) are shown. The t-DMRG calculations are
performed as detailed in Ref. [12]

Let us considered a quench from the superfluid state
Ui/J1 = 2 to the interaction strength Uf/J1 = 10. For this
quench a non-thermal steady state has been found [12, 16]. In
Fig. 1 we compare the longtime value extracted from the time-
evolution of G1(t) after the quench in systems between 10 to
100 sites (solid horizontal line) and the average taken in the
diagonal ensemble (L = 11, dashed horizontal line). These
two values agree astonishingly well which supports strongly
that – at least for the small system sizes – the long-time steady
state has been reached. Additionally the average energy after
the quench is marked by a vertical line. The microcanonical
average around this energy value (shaded region [31]) deviates
from the long-time average forUf/J1 = 10. This supports the
previous finding [12, 16] that the long-time correlation func-
tions after the quench to Uf/J1 = 10 cannot be described by
a thermal average.

As shown in the lower panel of Fig. 1, the weight of the
initial state on the final eigenstates is strongly correlated with
the values of the (G1)α. The weights are much larger for larger
values of (G1)α, which correspond to higher values of |cα| at
the lower energy band edges [16]. A general decay of the
weights towards lower values of the correlations is evident.
All that leads to a larger long-time correlation (G1)α than the
one expected from the microcanonical distribution (shaded re-
gion). Concerning finite size effects, we note that the long
time average which we calculated up to 100 sites is almost
system size independent on the time-scales considered (be-
side finite size revivals). We expect that for the larger sizes
the eigenstate with considerable weight will be spread over
tens of energy bands and not only over the lowest few ones as
it is the case for L = 8, 10, 11.
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As a conclusion, we find that the absence of thermalization
for finite size systems can be attributed to two sources: First,
the distribution of the weights |cα|2 versus energy Eα and the
distribution of Oα in a restricted energy interval may be very
broad. Second, ’rare’ states characterized by a value of Oα
different from the micro-canonical value may have a consid-
erable weight |cα|2 and play an important role. All these phe-
nomena clearly are at play for the (finite size) Bose Hubbard
model investigated above. The thermodynamic limit will cure
the first origin of non-thermalization— the distributions will
eventually become infinitely peaked—but not necessarily the
second one, which in fact can be seen as the reason of non-
thermalization for at least some integrable models (it would
be interesting to investigate whether this conclusion holds for
more complicated ones). What happens for non-integrable
systems and what is the correct requirement on the |cα|2s in
order to have thermalization in the thermodynamic limit is an
open question. Rare states leading to Oαs different from the
micro-canonical value are expected to persist even for infinite
system sizes. Perturbation theory around integrable models
[25] and mathematical physics results obtained in the semi-
classical limit [5, 6] support this conclusion (how rare are
these rare states and whether a large deviation function exist
also in this case are interesting questions worth further inves-
tigation). As a consequence, in order to justify thermalization
after a quantum quench, one has to explain why in physically
relevant situations the |cα|2s do not bias too much the micro-
canonical distribution toward these rare states. Since the only
apriori distinction between rare and typical states is that the
latter are overwhelming more numerous, a plausible (but not
necessary) assumption, leading to thermalization on a general
basis, is that the |cα|2s sample rather uniformly states. In or-
der to quantify and check this assumption, one can use the
(von Neumann) Kullback-Leibler (KL) entropy SKL [23] of
the Gibbs distribution with respect to the diagonal ensemble
[32]. A ’rather uniform sampling’ would correspond to a zero
intensive SKL in the thermodynamic limit. Whether and un-
der which conditions this happens is an open question.

We conclude stressing that thermalization after a quantum
quench appears to be a property that emerge for large enough
system sizes. Understanding the physics behind this ”finite
size thermalization length” and estimating its value in con-
crete cases is a very interesting problem worth investigating
in the future, specially because some cold atomic systems
formed by hundred of sites may well be below this thermal-
ization threshold.
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[12] C. Kollath, A. Läuchli, and E. Altman, Phys. Rev. Lett. 98,

180601 (2007).
[13] S. R. Manmana et al., Phys. Rev. Lett. 98, 210405 (2007).
[14] M. Cramer et al., Phys. Rev. Lett. 101, 063001 (2008).
[15] M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702

(2008).
[16] G. Roux, Phys. Rev. A 79, 021608 (2009).
[17] P. M. Eckstein, M. Kollar, and P. Werner, arXiv:0904.0976

(2009).
[18] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[19] M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
[20] M. Rigol, arXiv:0904.3746 (2009).
[21] M. Rigol and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007).
[22] A. R. Kolovsky and A. Buchleitner, Europhys. Lett. 68, 632

(2004).
[23] T. Cover and J. Thomas, Elements of Information Theory (Wi-

ley, Second edition, 2006).
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