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In this paper, we consider in detail the properties of dynamical heterogeneity in lattice glass models
�LGMs�. LGMs are lattice models whose dynamical rules are based on thermodynamic, as opposed
to purely kinetic, considerations. We devise a LGM that is not prone to crystallization and displays
properties of a fragile glass-forming liquid. Particle motion in this model tends to be locally
anisotropic on intermediate time scales even though the rules governing the model are isotropic. The
model demonstrates violations of the Stokes–Einstein relation and the growth of various length
scales associated with dynamical heterogeneity. We discuss future avenues of research comparing
the predictions of LGMs and kinetically constrained models to atomistic systems. © 2010 American
Institute of Physics. �doi:10.1063/1.3298877�

I. INTRODUCTION

The cause of the dramatic slowing of dynamics close to
the empirically defined glass transition is a subject of great
continued interest and debate.1,2 Different theoretical propos-
als have been put forward aimed at describing some or all of
the phenomena commonly observed in experiments and
computer simulations.3–13 While these proposals are often
based on completely divergent viewpoints, many of them are
able to rationalize the same observed behaviors. This fact
stems from the somewhat limited amount of information
available from experiments and simulations. Since the
growth of relaxation times in glassy systems is precipitous, it
is very difficult, and in some cases impossible, to distinguish
models solely on the basis of different predictions of gross
temperature dependent relaxation behavior. In addition, com-
puter simulations, which are often more detailed than experi-
ments, are limited by the range of times scales and sizes of
systems that can be studied. These difficulties have hindered
the search for a consensus on the microscopic underpinnings
of vitrification.

Despite the continued debate that revolves around the
theoretical description of supercooled liquids and glasses,
little argument exists regarding the importance of dynamical
heterogeneity as a key feature of glassy behavior.14–19 Dy-
namical heterogeneity refers to the fact that as a liquid is
supercooled, dynamics become starkly spatially heteroge-
neous, requiring the cooperative motion of groups of par-
ticles for relaxation to occur. Dynamical heterogeneous mo-
tion manifests in several ways, and leads to violations of the
Stokes–Einstein relation,20–24 cooperative hopping motion
reflected in nearly exponential tails in particle displacement
functions,3,25–28 and growing length scales such as those as-
sociated with the recovery of Fickian diffusion,29–32

growing multipoint correlation functions.7,33–41 Indeed, the
relatively recent explication of the phenomena of dynamical

heterogeneity has dramatically shifted the focus of the field
and has placed new constraints on the necessary ingredients
for a successful theory of glass formation.

Given the similarity of some aspects of dynamical het-
erogeneity to critical fluctuations in standard critical phe-
nomena, it is natural to investigate two and three dimen-
sional simplified coarse-grained models that encode the
crucial features of this heterogeneity. Currently, the most in-
vestigated class of coarse-grained models are the “kinetically
constrained models” �KCMs�.3,4,42–44 KCMs are spin or lat-
tice models that generate slow, glassy relaxation via con-
straints on the dynamical moves that are allowed. The slow-
ing down of the dynamics is caused by rarefactions of
facilitating regions, also called defects. Importantly, although
the dynamics is complex, the thermodynamics is trivial since
the dynamical rules are such that all configurations are
equally likely. The philosophy of this viewpoint is that ther-
modynamic quantities, such as the configurational entropy,
are not the fundamental underlying cause of the growing
time scales in supercooled liquids. It has been argued that the
quantitative disagreement45 between thermodynamic features
of KCMs and real experiments is of little dynamical
consequence.46 In support of this perspective is the fact that
KCMs have been remarkably successful in generating fea-
tures of dynamical heterogeneity such as Stokes–Einstein de-
coupling, growing dynamical length scales, and excess tails
in the real-space particle displacement function.22,31,47,48

On the other hand, one may wonder if a deeper view-
point would allow for an understanding of the kinetic rules
that govern particle motion in the supercooled liquids. It is
natural to speculate that such aspects might have roots in the
thermodynamics of configurations. Indeed, simple local
Monte Carlo “dynamics” can reproduce all features of dy-
namical heterogeneity seen in Newtonian molecular dynam-
ics simulations, and are based simply on making local moves
that are configurationally allowed.49 Lattice models based on
this concept are called “lattice glass models” �LGMs�, and
were first considered by Biroli and Mézard.50 The rules fora�Electronic mail: reichman@chem.columbia.edu.

THE JOURNAL OF CHEMICAL PHYSICS 132, 044510 �2010�

0021-9606/2010/132�4�/044510/9/$30.00 © 2010 American Institute of Physics132, 044510-1

Downloaded 01 Sep 2010 to 132.166.22.44. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3298877
http://dx.doi.org/10.1063/1.3298877


such models seem at first sight like that of KCMs. For ex-
ample, in the simplest versions of such models, a particle
may move if it is surrounded by no more than a fixed number
of nearest neighbors before and after the move.51–54 Locally,
this is identical to the type of dynamical constraint that ap-
pears in the KCMs introduced by Kob and Andersen �KA�.43

However, this constraint must be met globally: all particles
must have no more than a fixed number of nearest neighbors.
As the density of the system increases, fewer and fewer con-
figurations exist for which these constraints may be satisfied.
It is thus the entropy of configurations that governs the slow-
ing of dynamics, intimately connecting the nontrivial ther-
modynamic weight of states accessible to the local dynamics.
Indeed, LGMs can be solved exactly within the Bethe ap-
proximation, or on Bethe lattices,50,53 and have been shown
to have a glass transition due to the vanishing of the configu-
rational entropy. The distinction between the KCM and LGM
viewpoint is illustrated in Fig. 1.

LGMs have been studied by a number of groups, but the
focus has not generally been on real-space aspects of dy-
namical heterogeneity. For example, Coniglio and co-
workers have developed a simple LGM that avoids crystal-
lization and displays many features of typical glass-forming
materials, including a growing multipoint susceptibility
��4�t��.53,54 On the other hand, this system appears to behave
as a strong glass-former, with a stretching parameter close to
one, and exhibits essentially no Stokes–Einstein violation.
Our goal in this work is to survey, in detail, the dynamical
behavior of a new LGM which bears similarity to the origi-
nal Biroli–Mézard model but is not prone to crystallization.
The main conclusion that we draw is that LGMs are at least
as realistic as KCMs in their description of all commonly
studied features of dynamical heterogeneity. In this regard,
simple coarse-grained lattice models based on the thermody-
namic weight of states are no less viable as fundamental
caricatures of glassy liquids than are KCMs based on
weights of trajectories. We conclude our work by highlight-
ing several key ways that LGMs and KCMs may be distin-
guished. We reserve the investigation of these comparisons
for a future study. Our paper is organized as follows. Section
II outlines the model. Section III discusses both simple av-
eraged dynamics as well as aspects of dynamical heteroge-
neity. In Sec. IV, we conclude with a discussion of the mean-
ing of our findings and the future directions to be pursued.

II. MODEL

Here, we define the LGM that forms the basis of our
simulations. The original model of Biroli–Mézard is quite
prone to crystallization.50 This fact makes its use problematic
for the study of glassy behavior since crystallization always
intervenes before supercooling becomes significant. The
crystallization problem persists on a square lattice for all
binary mixtures we have studied. However, we have found
that certain generalizations of the Biroli–Mézard model with
three species of particles are stable against crystallization for
the densities that are sufficiently high that glassy dynamics
may be clearly observed.

Our model follows the original rules of the Biroli–
Mézard model. Particles exist on a cubic periodic lattice of
side L=15 and each lattice site can contain only zero or one
particle. All particles, at all times, must satisfy the condition
a particle of type “m” must have m or fewer neighbors of any
type. A neighbor is considered any particle in one of the 2d
�d=dimensionality� closest lattice sites along the cubic coor-
dinate axes.55

The particular three species model we employ is defined
by 10% type 1 particles, 50% type 2 particles, and 40% type
3 particles. We denote this model the “t154” model to indi-
cate its basis in thermodynamics and to specify the types and
percentages of each particle. The composition of t154 model
was determined via trial and error by picking particle types
with clashing crystallization motifs thereby frustrating crys-
tallization. Crystallization was monitored by inspection of
the angle resolved static structure factor, direct inspection of
configurations, and by monitoring bulk thermodynamic
quantities.

As discussed in the introduction, there appear to be
strong similarities between the rules that govern KCMs such
as the KA model and the t154 model.43 For example, both
models employ constraints with a maximum number of
neighbors, but in the KA model this restriction only applies
to the mobile particles, while in the t154 model applies to all
particles. Our model does not require any special dynamics
methods. We employ local canonical Monte Carlo “dynam-
ics” via primitive translational moves.49 Note that for the
t154 model the energy can only be zero �no packing viola-
tions� or infinite �packing violation or overlap�, thus the ac-
ceptance criteria reduce to rejection if there is a packing
violation and acceptance otherwise. This allows us to imple-
ment an event-driven algorithm which accelerates the simu-
lation of lattice dynamics.56

For thermodynamic studies, we employ grand-canonical
Monte Carlo with both translational moves as well as particle
insertion/deletion. Figure 2 contains a plot of the density of
the system as a function of the chemical potential of type 1
particles. Models which crystallize �such as original binary
model of Biroli–Mézard� have a sharp jump in this curve at
the crystallization point. Clearly, this feature is absent in the
t154 model. For comparison, both curves are displayed.57

KCM LGM

FIG. 1. Comparison and distinction of a caricature of a KCM with a LGM.
In the KCM, any configuration is allowed, but move may only be made if a
particle has at least one missing neighbor before and after the move. In the
LGM, the global configuration is defined such that all particles must have at
least one missing neighbor, and all dynamical moves must respect this rule.
Note that the local environment around the moving particle is identical in
this example, while the global configurations are distinct. Periodic boundary
conditions are assumed for both panels.
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III. DYNAMICAL BEHAVIOR

A. Simple bulk dynamics

In this subsection, we describe the behavior of a simple
2-point observable, namely the self-intermediate scattering
function,58 defined as

Fs�k,t� =� 1

N
�

i

eik·�ri�t�−ri�0��� . �1�

We measure Fs�k , t� only for the type 2 particles which are
present in the greatest fraction for the three distinct species.
Throughout this paper, we report k-vectors using k�, where
k= �2� /L�k�. We have checked that Fs�k , t� is qualitatively
similar for the other species of particles. The relaxation of
Fs�k , t� of the system at the wavevector k�=5 �k=2� /3� for
various densities is shown in Fig. 3. The bulk of the decay
may be fit to a stretched exponential function, Fs�k , t�
=exp�−�t /���k����k�	. As is customary, the alpha-relaxation
time is found by the value Fs����=1 /e and the ��k� exponent
is determined by a direct fit to the terminal decay. We find
that for densities below approximately �=0.48 the value of �
saturates at the expected value �=1 characteristic of simple
nonglassy dynamics, while for the highest density simulated,
�=0.7. This behavior, over a similar range of supercooling,
is reminiscent of the behavior found in atomistic models of
glass-forming liquids.59,60 In order to better reveal the relax-
ation behavior, Fs�t� is also displayed on a log-log versus

log-time scale. In this plot, the slope of the long time growth
is related to the exponent �. We have found that the values of
� extracted from the slopes of the long time portion of the
log-log versus log plot indeed coincide with that found by a
direct fit to a stretched exponential form. At the highest den-
sities, a shoulder appears in the short time relaxation. This
feature is indicative of a secondary relaxation feature perhaps
akin to beta relaxation in realistic glass-forming liquids. It
should be noted, however, that the amplitude of this feature
is very close to unity. This is quantitatively distinct from the
plateau values expected in atomistic off-lattice models59,60

and even LGMs with more complicated lattice degrees of
freedom,53,54 but is similar to that encountered in simple spin
models such as variants of the random orthogonal model.61

As is typical of fragile glass-forming systems, the t154
model exhibits relaxation times that do not follow the �gen-
eralized� Arrhenius form.62 This behavior is illustrated in
Fig. 4. At low densities, plots of log��� versus � indeed fol-
low a straight line, however, in the vicinity of �
0.5, the
plot of � versus � deviates from this straight line and the
functional density dependence of the relaxation time be-
comes much more precipitous. While we have not attempted
to quantitatively characterize this density dependence, it
should be noted that the onset of increased sensitivity to
changes in density occurs is the same narrow window that
marks the noticeable decrease in the values of the stretching
exponent �.
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FIG. 2. Crystallization thermodynamics in LGM. Top: The t154 model. �1

refers to the chemical potential of the type 1 particles. The maximum den-
sity observed for the 153 lattice is 0.5479 �exactly 1849 out of 3375 lattice
sites occupied�. The three plotted quenching rates vary between a 0.01 and
0.05 increase of �1 per 10000 cycles. Bottom: A close up of the equivalent
plot for the BM model. Note the clear discontinuity upon crystallization.
Slower �-increase rates produce a sharper discontinuity.
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FIG. 3. Decay of the self-intermediate scattering function Fs�k , t� for
k�=5 �k= �2� /L�k��. Densities are 0.3, 0.4, 0.45, 0.48, 0.50, 0.51, 0.52,
0.53, 0.535, 0.5375, 0.5400, 0.5425 from fastest relaxation to slowest relax-
ation. These densities are used in all plots in this paper unless otherwise
indicated. Top: Plotted on a linear-log scale. Bottom: Same data as upper
panel plotted on a log�−log10�Fs�k , t��	 vs log�t� scale. Lowest density
curves are at the top left.

044510-3 Dynamical heterogeneity in lattice glass models J. Chem. Phys. 132, 044510 �2010�

Downloaded 01 Sep 2010 to 132.166.22.44. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



B. Motion on the atomic scale

We begin our discussion of the nature of heterogeneous
dynamical behavior in the t154 LGM by observing the quali-
tative details of particle motion under supercooled condi-
tions. This will set the stage for analysis of quantitative mea-
sures of dynamical heterogeneity in the model. For the sake
of comparison, we also investigate the analogous behavior in
the KA model. This comparison is useful because it suggests
how models with similar local rules but different global rules
�rooted in either the purely kinetic or thermodynamic basis
of the particular model� may give rise to distinct dynamics at
the particle scale.

We start by simply observing the patterns of mobility in
real space starting from a set initial condition of the t154
model found at a given density after equilibration. A similar
analysis has been performed recently by Chaudhuri et al. for
the KA model, where no equilibration is required since all

initial configurations with a set density of defects are
allowed.63 For a theoretical description of the dynamics of
the KA model, see Ref. 64. We note that, as expected, the
t154 model exhibits regions of spatially localized particle
activity against a backdrop of transiently immobilized par-
ticles. A rather remarkable feature of the patterns of mobility
in this model is that we find evidence of stringlike motion,
where a group of particles moves over a short distance, each
taking the place of the previous particle in the string.65,66

This motif can be seen mostly on timescales less than the
�-relaxation time, but occasionally stringlike motion may be
seen to persist on longer timescales. This behavior is dem-
onstrated in Fig. 5.

The behavior of particle motion observed in the KA
model is somewhat different than that seen in the t154 model
as described above. As in the t154 model, and as observed by
Chaudhuri et al., motion in the KA model shows similar
activity regions in the vicinity of defect sites giving rise to
heterogeneous motion �Fig. 6�. However, the boundaries be-
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FIG. 4. Top: �� �time at which Fs�k , t�=1 /e� as a function of density, �.
Plotted for k�=1,2 ,3 ,4 ,5 ,6 ,7, with lowest k at the top. Center: Beta
stretching exponent of Fs�k , t� �from terminal fits Fs�k , t�
exp�−�t /������.
Lowest k curve is at the top of the plot. Bottom: Plot of log scale �� against
chemical potential � of type 2 particles. The behavior is consistent with
��=5.7 exp�−21�2 / ��2−24��.

FIG. 5. Examples of stringlike motion apparent in the t154 model. �a� An
example of a string with all neighboring particles removed. �b� A similar
string in the context of other particles. Note that the string here is truly
isolated in space, away from other mobile particles. In these figures, type 1
particles are white, type 2 particles are blue, and type 3 are green. Sites
occupied at the initial time but vacated at the final time are shown in red.
These pictures show only the differences in position of particles between the
origin of time and the final time, not the path the particles took to achieve
that displacement. All figures are at a density of 0.5400, with �t times in �a�
251, �b� 199 526. The �-relaxation time for k�=5 at this density is about
7.8	106.
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tween active and inactive regions at comparable timescales
appear to be more distinct in the KA model. Furthermore, the
particle scale motion in the KA is much more isotropic, ex-
hibiting much fewer cases of directional mobility compared
with the t154 model. It would be interesting to compare the
two models by quantifying this difference via the type of
directional multipoint correlators devised by Doliwa and
Heuer.67 It is not clear if the difference between the models is
related to the fundamental distinction between LGMs and
KCMs or just the specifics of the particular models consid-
ered. In particular, the t154 is a multicomponent model, un-

like the KA model. The stringlike motion on short time
scales seems to occur predominantly on the rather rough
boundaries of slow clusters.68 This behavior, reminiscent of
the picture of dynamic heterogeneity that put forward by
Stillinger,69 might be strongly influenced by compositional
heterogeneity. A useful way to address general issues related
to how the initial configuration constrains subsequent dy-
namics would be a systematic isoconfigurational ensemble
analysis comparing LGMs and KCMs.70 This will be the
topic of a future publication.71

In the next few sections, we discuss how some of the
most important indicators of dynamical heterogeneity in su-
percooled liquids manifest in the t154 model. The quantities
that we discuss are the magnitude of violations of the
Stokes–Einstein relation, exponential tails �indicative of hop-
ping transport� in the van Hove function, the existence of a
Fickian length scale and the development of a dynamical
length scale quantified by the multipoint function S4�q , t�.
Unless otherwise stated, specific correlation functions and
transport coefficients are calculated with respect to type 2
particles.

C. Stokes–Einstein violation

In typical fluids, a mean-field linear-response relation-
ship asserts that the product of the tracer particle diffusion
constant and the fluid viscosity divided by the temperature is
a constant.58 This connection between diffusion and dissipa-
tion is known as the Stokes–Einstein relationship, and em-
pirically is known to hold even at the atomic scale in liquids
over a wide range of densities and temperatures. In super-
cooled liquids, the Stokes–Einstein relation generally does
not hold.20–25,72,73 In fact, the product of the diffusion con-
stant and the viscosity of a liquid may exceed that expected
from the Stokes–Einstein relation by several orders of mag-
nitude close to the glass transition. There are many theoreti-
cal explanations for Stokes–Einstein violations in super-
cooled liquids, which essentially all invoke dynamical
heterogeneity as the fundamental factor leading to the break-
down of the simple relationship between diffusion and vis-
cosity. It should be noted that similar relationships hold be-
tween the diffusion constant and the self and collective time
constants associated with the decay of density fluctuations.
In this work, we focus on the relaxation time of the self-
intermediate scattering function defined above as our proxy
for the fluid viscosity.

It is well known that the product D��, where �� is the
�-relaxation time of the self-intermediate scattering function,
shows a strong temperature/density dependence in both real-
istic atomic simulations as well as in the class of KCMs that
describe fragile glass-forming liquids. No direct studies of
this quantity have been made in LGMs. The LGM of
Coniglio and co-workers would appear to show essentially
no Stokes–Einstein violations because the diffusion constant
and the relaxation time may both be fit to power laws with
exponents that have, within numerical accuracy, the same
magnitude.53,54 This, however, is not surprising since many
of the features of the model resemble those of a strong glass-
forming system, where violations of the Stokes–Einstein re-

FIG. 6. Examples cluster shapes in the �a� the t154, model, density
�=.5400 and �b� the KA model, density �=.8500. Arrows indicate motion
between initial and final times. Time separation is 1/10th of the �-relaxation
time. In the t154 model, we see more fractal and disconnected clusters,
while in the KA model, mobile domains tend to be smoother clusters.
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lation are, at most, weak. The features of the t154 model with
regard to nonexponential relaxation and the density depen-
dence of the relaxation time �� indicate that this model be-
haves more like a fragile glass-former. Thus, we expect clear
violations of the Stokes–Einstein relation. Indeed, as shown
in Fig. 7, D�� increases markedly as density is increased.
Over the range densities that we can access, the magnitude of
the violation is very similar to that seen in the canonical KA
Lennard-Jones �KALJ� mixture over a comparable range of
changes in relaxation time.27 Interestingly, violations begin
to become pronounced at densities similar to where the re-
laxation times and stretching exponents become strongly
sensitive to increased density. Thus, a consistent onset den-
sity is observed as in more realistic atomistic systems.

D. van Hove function

It is now rather well established that an additional “qua-
siuniversal” feature of dynamical heterogeneity near the
glass transition is contained in the shape of the real-space
van Hove function.26–29 In particular, it has been argued that
the tails of the self van Hove function should be approxi-
mately exponential in form. These “fat tails” imply that the
rare particles that do undergo large displacements exist in
populations in excess of what would be expected in a purely
Gaussian displacement distribution. While non-Gaussian
tails should be expected of any distribution for the wings that
fall outside of limits of bounds set by the central limit theo-
rem, the palpable exponential tails in supercooled liquids im-
ply large non-Gaussian effects indicative of transport that is
strongly affected by heterogeneous hopping motion.

Here, we demonstrate that such effects occur in the t154
model in a manner similar to that seen both in experiments in
colloidal and granular systems as well as in computer simu-
lations of atomic systems. Figure 8 shows the self part of the
real-space van Hove function,

Gs�x,t� = �
�x − �x̂ · �ri�t� − ri�0���	 , �2�

for the type two particles in the t154 model. Because we are
on a lattice, we restrict our distances along the three coordi-
nate axes x̂ individually in our calculation. We see that for
times of the order of the �-relaxation time, these tails are
clearly visible. For very long or short time scales, the shape
of the tail deviates somewhat from the more exponential

form exhibited at intermediate times. This behavior is quite
similar to that seen in simulations of atomistic systems,27,28

and is fully consistent with the behavior found in KCMs.25

E. Fickian length

Related to the existence of excess tails in the van Hove
function is the existence of a length scale that characterizes
the anomalous transport. More specifically, the exponential
tails in the van Hove function are distinguished from the
Gaussian form of the displacement distribution obtained at
relatively short distances for fixed times. The crossover from
Fickian to non-Fickian behavior should be characterized by
time scales as well as length scales over which this crossover
occurs. A non-Fickian length scale may be defined by exam-
ining the k-dependent diffusion constant D�k�=1 / ���k2�.30–32

The wavevector that characterizes the crossover from the ex-
pected diffusive behavior to an anomalous regime is in-
versely related to such a length scale. In Fig. 9, we plot
D�k��. Clearly, as the density is increased, the length scale
separating the Fickian and non-Fickian regimes increases.
This behavior is consistent with that found in KCMs and
simulations of atomistic glass-forming liquids. It should be
noted that Stokes–Einstein violations, the development of
exponential tails in the self van Hove function, and a well-
developed Fickian length scale are all manifestations of re-
lated aspects of dynamically heterogeneous motion in super-
cooled liquids.27
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F. �4 and S4 fluctuation measures

The Fickian length scale is merely one length scale that
arises naturally in systems where dynamics become increas-
ingly heterogeneous. Perhaps more fundamental is the
growth of dynamical length scales associated with multipoint
correlations of the dynamics. Supercooled liquids do not
show simple static correlations that would indicate a growing
correlation length. It should be noted that this does not ex-
clude growing static correlations of a more complex kind, for
example point-to-set correlations.7,38,74 Regardless, cooperat-
ivity in dynamics may be measured via first defining a local
overlap function3,17,33,35,36


fk�q,t� =
1

N
�

i

eiq·ri�0��cos�k · ��ri�t��	 − Fs�k,t�� , �3�

where �ri�t�=ri�0�−ri�t�. fk�q , t� is defined for one configu-
ration, and the average is over all k and q with the magni-
tudes k and q. Then, S4�q� is defined as

S4�q� = N��
fk�q,t��2 �4�

where this average is over the most general ensemble of
configurations.36 The �4 value is defined as the limit
S4�q→0�. �4�t� may be calculated strictly at q=0 from

�4�t� = N��
fk�q = 0,t��2 , �5�

where the average is over the entire ensemble and all k con-
sistent with the magnitude of k. Note that, as discussed in
Ref. 36, the value of �4�t� computed in this manner is a
lower bound for the extrapolation of S4�q→0, t�.

The quantity S4�q , t� is a multipoint dynamical analog of
S�q�. Just as the low q behavior of S�q� indicates a growing
�static� length scale in systems approaching a second order
phase transition, scattering from dynamically heterogeneous
regions undergoing cooperative motion will manifest growth
in the amplitude of the low q region of S4

ol�q , t�, indicative of
the size scale of the dynamical correlations for systems ap-
proaching the glass transition.

The behavior of the quantity S4
ol�q , t� is shown in Fig. 10.

Only type 2 particles have been used in the calculation. As
can clearly be seen, for densities above �
0.5 which con-
stitutes the onset density of this system, the low q behavior
shows a marked upturn as q→0. The growth of S4

ol�q , t� as
q→0, as density is increased, suggests a growing length
scale as supercooling progresses. This nontrivial behavior is
what is found in atomistic simulated systems. Future work
will be devoted to a precise characterization of the length
scale that may be extracted from S4

ol�q , t� in the t154 model
so that a comparison may be made with recent work detail-
ing the behavior of this length in realistic off-lattice
systems.41,75

IV. CONCLUSION

In this paper, we have presented a new LGM based on
the original Biroli–Mézard model.50 Via the introduction of
an additional species of particle, we have demonstrated that
our model is stable against crystallization. This fact allows us
to study sufficiently high density configurations that manifest

features of dynamical heterogeneity. Unlike some previous
LGMs, our model exhibits the canonical features of a fragile
glass-former. In terms of the gross features of relaxation be-
havior, our LGM shows behavior similar to the standard
KALJ mixture. In particular, we find that the degree of vio-
lation of the Stokes–Einstein relation and the magnitude of
stretching in the decay of the self-intermediate scattering
function track the relaxation times at densities above the on-
set of supercooling in a manner consistent with that seen in
the KALJ system. Features of dynamical heterogeneity such
as exponential tails in the van Hove function, the growth of a
dynamical length scale as quantified by the function S4�q , t�,
Stokes–Einstein violations, and the emergence of a Fickian
length scale all occur in a manner expected from experiments
and simulations of fragile glass-forming liquids.

The similarity between the description of dynamic het-
erogeneity found in KCMs and LGMs stands in stark con-
trast to the underlying foundations of the models themselves.
As emphasized in the introduction, KCMs are based on a
constrained dynamics for which the number of available dy-
namical paths leading to relaxation becomes increasingly
rare as the density increases and the number of defects de-
crease. In KCMs, all real-space configurations at a fixed
number of defects �excluding rare blocked configurations�
are equally likely. On the other hand, LGMs are based on
transitions between real-space configurations that become in-
creasingly scarce as the density is increased. This is not to
say that there is not a facilitated-like dynamics in LGMs. On
the contrary, as we have demonstrated in Sec. III, local and
sometimes anisotropic dynamics may be generated naturally
in LGMs without the explicit introduction of facilitating de-
fects. An important message that emerges from this study is
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FIG. 10. Top: Plot of S4�q , t� at �� for densities 0.51, 0.52, 0.53, and 0.54.
Bottom: Plot of �4�t� for the same densities. Peak values correspond to
lower bounds for of the value of S4�q , t� in the upper panel at q=0.
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that the phenomenology of dynamic heterogeneity is not suf-
ficient to distinguish pictures or validate models based on
transitions between sets of states in configuration space from
those based on sets of paths in space time.

How then might these pictures be differentiated? While
contrasting competing models that generate seemingly simi-
lar dynamical behavior is a difficult endeavor, several pos-
sible studies might be useful for this task. Here, we outline
four avenues that could provide key information that distin-
guish the purely dynamical picture from one based on tran-
sitions thermodynamic states.

�a� The mosaic length scale: The random first order theory
of Wolynes and co-workers posits the existence of a
static length scale which is defined by the region over
which particles are pinned by the surrounding self-
generated amorphous configuration.6,7,38 This length
scale also exists in KCMs, but it is decoupled from the
relaxation dynamics of the system.76 Recent atomistic
computer simulations have successfully located the
mosaic length scale.38 It would be quite useful to per-
form an analysis similar to that devised by Jack and
Garrahan for LGMs.76 Since LGMs are based on the
entropy of real-space configurations, it is expected that,
here, the mosaic length does couple to the glassy dy-
namics. Since LGMs are much simpler than atomistic
off-lattice models, the direct study of the mosaic length
�and point-to-set correlations in general� in LGMs
might provide key avenues for the testing of the puta-
tive coupling between relaxation and such length scales
in simulated atomistic systems.

�b� Correlations between configurational entropy and dy-
namics: Empirical correlations between the configura-
tional entropy and the �-relaxation time have been
noted for many years, and this correlation lies at the
heart of several prominent theories. Such correlations
are still widely debated, but seem to hold at least
crudely in many glass-forming systems.77,78 LGMs
should be expected to exhibit such correlations, while it
is known that KCMs do not exhibit such correlations.
Recently, Karmakar et al.41 purported to show that
finite-size effects of the � relaxation time follow pre-
cisely the Adam–Gibbs relation between the configura-
tional entropy and the �-relaxation time in the KALJ
system. If true, such correlations would be a challenge
to KCMs, since it is difficult to envision how the con-
figurational entropy would track the �-relaxation time
for different system sizes if it were not a crucial com-
ponent of relaxation phenomena. Such correlations,
however, are subtle to measure since the Adam–Gibbs
relationship is an exponential one and the apparent cor-
relation could depend on the somewhat indirect com-
putational method used in Ref. 41 to define the con-
figurational entropy. It would be most useful to
investigate such effects in the simpler LGMs, which
might provide a cleaner means of isolating the configu-
rational entropy. It should be noted that finite size ef-
fects do appear to follow an approximate Adam–Gibbs
relationship in at least one other lattice model.79 Such

studies might spur more detailed investigations in
simulated atomistic systems thus allowing for a clear
comparison between LGMs, KCMs and more realistic
systems.

�c� Single-particle and collective predictability ratios: In
an important piece of work, Jack and Berthier devised
metrics that access the degree to which single particle
and collective dynamics are deterministically predicted
by a set initial configuration over a given time scale.80

KCMs and LGMs differ in how allowed configurations
are constructed. KCMs have explicit defects, while
configurations in LGMs are determined by global con-
straints, and thus do not contain explicit defects. Since
the very composition of initial conditions differ mark-
edly in these models, one expects that the metrics de-
fined by Jack and Berthier would behave differently in
KCMs and LGMs. Thus, it would be very profitable to
examine the density and temperature dependence of the
single particle and collective predictability ratios in
KCMs and LGMs as a possible means of distinguish-
ing between state-based and dynamical constraint-
based pictures.71

�d� Evolution of the facilitation mechanism approaching
the glass transition: Although in both KCM and LGM
pictures facilitation plays an important role in the re-
laxation of the system, a peculiar and different tem-
perature and density evolution is expected. In particu-
lar, in the KCM picture, facilitation is due to the
motion of mobility regions or defects. Dynamics slows
down, and concomitantly dynamic heterogeneity in-
creases, because these regions become rarer approach-
ing the glass transition. A crucial assumption is that
these defects are conserved or at least that nonconser-
vation is a rare event that becomes rarer at lower
temperature/high density. These assumptions impose
important constraints on the evolution of the facilita-
tion mechanism. Thus, it would be very interesting to
examine this issue for example using the cluster analy-
sis developed in Ref. 81 to study the relaxation dynam-
ics of granular systems.

Investigation of these and other studies aimed at distin-
guishing the underlying pictures that LGMs and KCMs are
based on will be the subject of future work.
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