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Avalanches and Dynamical Correlations in supercooled liquids
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We identify the pattern of microscopic dynamical relaxation for a two dimensional glass forming
liquid. On short timescales, bursts of irreversible particle motion, called cage jumps, aggregate into
clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches.
This propagation of mobility, or dynamic facilitation, takes place along the soft regions of the
systems, which have been identified by computing isoconfigurational Debye-Waller maps. Our results
characterize the way in which dynamical heterogeneity evolves in moderately supercooled liquids
and reveal that it is astonishingly similar to the one found for dense glassy granular media.

PACS numbers:

Identifying the physical mechanisms responsible for the
slowing down of the dynamics of supercooled liquids is
still an open problem despite several decades of intense
research. While traditional descriptions of glassy systems
have mainly focused on energy landscape concepts[1] and
spatially averaged quantities, recent work has centered
on the real space properties reflected in the dramati-
cally heterogeneous dynamics shared by nearly all glass-
forming materials. Concomitantly, investigations of the
behavior of dense driven granular media have uncovered
tantalizing similarities with the dynamics of supercooled
liquids[2, 3, 4, 5] and provided new inspirations for re-
search on the glass transition. Among the most notable
findings related to the real space dynamical properties
in supercooled liquids as well as granular media is the
evidence that dynamic facilitation [6, 7] and sizable dy-
namic correlations [8] play an important role. This is
supported by the detailed analysis of microscopic dy-
namics which has identified correlated particle motion
in clusters, strings and other motifs. [9, 10, 11]. A natu-
ral question [12] related to these findings is what, if any,
structural features are correlated with the heterogeneity
noted in the real space dynamics. Important progress in
this direction has been obtained [13], through the intro-
duction of the quantitative notion of “propensity”, and
then later in [14, 15, 16], where it has been shown that
irreversible motion is correlated with the spatial charac-
teristics of soft modes.

In this paper we address the following three questions:
First, do supercooled liquids exhibit the same hierarchi-
cal organization of dynamics (i.e. cage escapes within
clusters within avalanches) as recently reported in gran-
ular materials [10, 11]? Second, to what degree are these
different scales of collective motion determined by the
underlying structure? And reciprocally, to what extend
is the evolution of the structure related to the relaxation
events within a given realization of the dynamics?

We shall address these questions by performing com-

puter simulations on a new two-dimensional model of
glass-forming liquid and applying the cluster analysis de-
veloped in [10]. This new model is distinguished from
previous 2D mixtures [17] in that supercooled liquid dy-
namics may be simulated without the formation of pal-
pable crystalline micro-domains. Our main results are
that the glassy dynamics of dense driven granular sys-
tems [10] and supercooled liquids turn out to be aston-
ishingly similar even at the microscopic level. This is re-

markable given the fact that granular systems are driven

non-equilibrium systems with dissipative contact interac-

tions while supercooled liquids are equilibrium conserva-

tive systems. Quasi-instantaneous clusters of nearby re-
laxing particles are typically followed by adjacent clusters
showing how long term dynamical correlations emerge.
This dynamic facilitation leads to the formation of fi-
nite size and finite duration avalanches located on the
“soft” regions of the configuration as probed by the iso-
configurational average of the Debye-Waller factor. Fi-
nally the clusters of relaxing particles induce non-local
reorganisation of the structure as probed by the dynam-
ics itself of the Debye-Waller factor.

As a model for a supercooled liquid we focus on a 2D
non-additive binary mixture of N = 5, 760 particles en-
closed in a square box with periodic boundary conditions,
interacting via purely repulsive potentials of the form
uab(r) = ε(σab/r)12. The mole fraction of the smaller
particles is taken to be x1 = 0.3167. All units are re-
duced so that σ11 = ε = m = 1.0, m being the mass of
both types of particle. We use non-additive potentials,
namely σ12 = 1.1 × σ11 and σ22 = 1.4 × σ11 to avoid
the formation of crystalline domains. The temperature
dependence of the structural and dynamical properties
of this model were characterized in [18]. Molecular dy-
namics simulations were carried out at constant NVT
(T=0.4) using the Nose-Poincare Hamiltonian [19] after
equilibration at constant NPT as described in [14]. All
time units are scaled in such a way that the structural re-
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FIG. 1: (color online) Cooperative cage jumps form large
decorrelation patterns. Top left: Comparison between the
relative averaged relaxation Qt(a

∗, τ∗)/〈Qt〉t (cyan) and the
relative percentage Pt(τ∗)/〈Pt〉t of particles that have not
jumped between t0 and t0 + τ∗ (black). Inset Trajectory of
a single particle over 14τα. Color changes when the parti-
cle jumps. Top right: Map of Qt(τ

∗). Bottom left: Spatio-
temporal view of the cage jumps between t and t + τ∗. The
jumps corresponding to two arbitrarily chosen avalanches are
painted in blue and red. Bottom right: Map of the cage
jumps occurring between t and t+τ∗. Note that the blue and
red avalanches lie in distinct regions of space. Inset Cumula-
tive Pdf of the reduced time lag between adjacent clusters τ1

(green), compared to the corresponding curve for a random
distribution of clusters (black).

laxation time τα, defined as the time required for the self
intermediate scattering function to decay of 1/2, equals
103. The typical collision time is 0.12 in these units.

We choose as a measure of the local mobility (or relax-
ation) of a particle p:

Qp,t(a, τ) = exp

(

−
||∆~rp(t, t + τ)||2

2a2

)

, (1)

where ∆~rp(t, t + τ) is the displacement of the parti-
cle p between t and t + τ and a is the length scale
over which the motion is probed. A global measure
of the dynamics is provided by the correlation func-
tion, Qt(a, τ) = 1

N

∑

p Qp,t(a, τ), and its fluctuations
χ4(a, τ) = NVar (Qt(a, τ)). As in [20], we focus on the
values of a and τ corresponding to maximal dynamic het-
erogeneity, i.e. highest value of χ4(a, τ) (see [20] for de-
tails). This leads to a∗ = 0.29 and τ∗ = 1078. Note that
the latter is very close to the relaxation time τα = 1000.

In order to analyze the microscopic dynamics and
study possible connections with the dynamics of dense
driven granular media, we follow the same procedure as
in [10]. This allows one to separate the dynamics along

a given trajectory into periods of inefficient vibrational
motion separated by relaxation events also called cage
jumps. (see inset of the top left panel of fig. 1). One
has to bear in mind that a particle undergoing a cage
jump does not necessarily change neighbors. In the top
left panel of fig. 1 we compare the relative values of
Qt(a

∗, τ∗) to those of Pt(τ
∗), which is the percentage of

particles that have not jumped during the time τ∗. The
two curves track each other, showing that cage jumps
provides a powerful coarse grained description of the dy-
namics. In addition, we also show that the cage jumps
are exactly located in the areas where the decorrelation
is maximal (compare fig. 1 right top and bottom). We re-
peat the same spatio-temporal analysis performed for the
two dimensional granular media studied in [10]. The out-
come is remarkably similar. First, cage jumps aggregate
into clusters, which are formed by cage jumps adjacent
in space (as measured by the neighboring particles) and
time (separated by less than τth = 28, which is twice
the precision of the cage detection algorithm). The size
of these clusters are largely distributed with an average
value of 7.6 cage jumps per cluster. Second, clusters ag-
gregate into avalanches in which the first cluster triggers
the appearance of successive clusters nearby shortly af-
ter, see fig. 1 bottom left. This is clearly demonstrated
as in [10] by focusing on the cumulative Pdf of the lag
times τ1 separating each cluster from the nearest adja-
cent one, normalized by its average value 〈τ1〉. See the
inset of fig. 1,bottom right, where this Pdf is compared
to the equivalent distribution for randomly distributed
clusters in space and time. One can see a clear excess of
both small and large lags: the Pdf can be extremely well
fit by the union of two data sets corresponding to Pois-
sonian processes with two different timescales τS = 240
and, τL = 1746. The short time scale corresponds to the
existence of a correlation among adjacent clusters. The
large one is related to the average time spent in a cage.
This leads to a very peculiar type of dynamical corre-
lation, which in the literature is often called dynamical
facilitation [6, 7]: local relaxations are followed closely in
space and in time by other local relaxations. The con-
catenation of these events leads to the dynamical hetero-
geneity observed on the timescale τα. However, at least
for the degree of supercooling considered here, we find
that facilitation is not conserved in the following sense:
avalanches are well separated, indicating that there are
relaxation events, which cannot be explained by the fa-
cilitation mechanism.

It is interesting to compare the actual values of these

a∗ ξ4 τα τ∗ τS τL

Supercooled Liquid 0.29 2.9 1000 1078 240 1746

Dense Granular Media 0.12 3.1 1000 915 155 1384

TABLE I: Comparison of length and time scales normalized
so that τα = 1000. See definitions in the text.
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FIG. 2: (color online) Top: Cage jumps occuring between
t (blue) and t + τS (red) for two different isoconfigurational
trajectories, on top of a DW factor map computed at time t
(in grey). Bottom left: Cage jumps occurring in 6 isoconfig-
urational trajectories between t and t + τS (in blue) tile the
high DW regions. Colorbar indicates the DW values in lev-
els of grey. Bottom right: Average 〈DW J〉 over the particles
having jumped between t and t + τ , divided by the average
〈DW 〉 over all particles, as a function of the lag time τ . Inset

Pdf of DW J for the particles jumping in [t; t + τ ] for several
values of τ . The black curve is the Pdf for all particles.

parameters to those of the granular system investigated
previously. This comparison is performed in Table I,
where we also report the value of the dynamical corre-
lation length ξ4, obtained from the spatial range of the
dynamical correlator G4(whose integral is equal to χ4),
see e.g. [21]. The dynamics are strikingly similar, a non-
trivial result given the difference between an equilibrated
thermal liquid and a non-equilibrioum steady state of vi-
brated grains. One difference we find is that the average
distance between avalanches is somewhat smaller in the
liquid case than in the granular one: ∼ 10 as compared
to ∼ 27. Recent results [11] obtained by changing the
density of the granular sample show that our model of a
supercooled liquid would compare with a granular system
characterized by a slightly smaller density.

We shall now investigate whether one can find a prop-
erty closely connected to the structure at time t, which
would allow one to predict where clusters will appear
in the future and even some aspects of avalanche evo-
lution. On the basis of previous work [14, 15] a nat-
ural candidate for such a feature are the so-called soft
modes. Here we will use another means of identify-
ing the location of ”soft” regions or modes by using
the isoconfigurational Debye-Waller (DW) factor[14, 22].
Starting from the system configuration at time t, one

computes the local Debye-Waller factor for particle i:
DWi = 〈[~ri(t) − 〈~ri〉δt]

2〉δt,C, where the average is over
the isoconfiguration ensemble as well as over a short time
interval δt which in this work is taken to be 25.

Starting from the same equilibrated configuration, we
have run 6 isotrajectories and have obtained the cage
jumps for all of them. Remarkably, all of the cage jumps
occurring in the interval of time [t, t + τS ] fall on top
of high DW areas, see fig. 2-top. Note that τS ≫ 25,
thus the correlation between the DW map at time t (a
nearly instantaneous structural quantity), and the dy-
namics taking place at longer times, is non-trivial.

Comparing the two top panels of Fig 2, we find that dif-
ferent isoconfigurational trajectories lead to cage jumps
that take place at different times and in different regions
although they are always located on top of high DW ar-
eas. This means that although clusters are very likely to
be in soft regions, when and where they exactly appear is
a stochastic event. The two top panels of Fig 2 strongly
imply that a significant part of the avalanche structure
of facilitated motion, and not just the initial cluster in
an avalanche, occurs on top of the real-space geometric
structure encoded in the soft mode map. Remarkably, we
find that merging all cage jumps that occur in the interval
of time τS in the 6 isoconfigurational trajectories cover
nearly all the high DW areas, as shown in fig. 2 (bottom
left). A similar comparison with localized low frequency
normal modes, along the lines of [14], shows less, but
still significant, correlation. We interpret this as a signa-
ture of anharmonic effects appearing in the vibrational
structure of our model of a supercooled liquid. Indeed,
it is likely that there are several potential energy min-
ima in the basin in which the liquid is confined at short
times. The local DWs allow one to overcome this diffi-
culty and still provide a measure of local softness. The
above results are in agreement with the previous conclu-
sion of Berthier and Jack [23], who found that structural
properties are better predictors of dynamics on large as
opposed to short length scales.

In order to present a more quantitative proof of the
correlation between DWs and cage jumps, we have com-
puted the DW at time t averaged only over particles that
jump between t and t+ τ as a function of the lag time τ .
This quantity, normalized with respect to 〈DW (t)〉t for
all particles, is shown in fig. 2 (bottom right). We find
that at short times the average DW for the jumping par-
ticles is substantially higher than the DW averaged over
all particles. This correlation disappears for larger times
comparable to times over which the DW maps decorre-
late, which we find to be roughly of the order of τα/3.

A final issue worth investigating concerns the relation
between cage jumps and DW map renewal. We find that
decorrelation is a distinctly non-local process. More pre-
cisely, we have discovered that a cage jump at time t
correlates with changes of the DWs that happen shortly
after and extend quite far away. This is demonstrated
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FIG. 3: (color online) Left: Cage jumps occurring in τ = 17
on top of a map of the relative difference (DW (t + τ ) −
DW (t))/〈DW 〉. Right: Normalized ∆J (r) = 〈|δDWi|〉

J
r −

〈|δDWi|〉
J
∞

(blue circles) where 〈|δDWi|〉
J
r is the absolute dif-

ference of DW over τ = 17 averaged over the particles in
the disk of radius r around a given cage jump. The analo-
gous quantity for the density of jumps ρJ(r) = 〈δi〉

J
r − 〈δi〉

J
∞

(red squares) where δi is 1 if particle i jumps between t and
t + τ and 0 otherwise. Error bars are given by the standard
deviation.

visually in fig. 3(left). In order to provide a quantitative
proof we consider |DW (t) − DW (t + τ)| averaged over
all particles, that are at distance r from a cage jump
taking place at time t and subtract from that quantity
its r = ∞ value. In fig. 3(right) we show this quan-
tity, called ∆J (r), for τ = 17. One finds that ∆J(r) is
quite long ranged, in particular much more than the cage
jump correlation function ρJ(r), see fig. 3(right) and its
caption for a precise definition of ρJ (r). What is medi-
ating the non-local interaction between cage jumps and
DWs is an intriguing question. One possibility is that a
slowly varying spatial field, like the thermal strain dis-
cussed in [24], plays an important role by providing long
ranged dynamical interactions.

The picture that emerges from our study is that the
dynamics occurs, as in the dense granular system stud-
ied in [10, 11], via a two time scale process that gives rise
to dynamical heterogeneities and induces macroscopic re-
laxation. At short times, the particles collectively jump
within clusters whose sizes are very widely distributed.
These clustered jumps trigger other ones nearby, leading
to well separated large scale avalanches.

We find that this dynamical facilitation process is cou-
pled to the structure : mobility preferentially follows the
soft regions and has a non-local influence on the evolution
of the topography of hard and soft areas. The resulting
picture of facilitation is quite different from the one based
on the propagation of a conserved mobility field.

Studying the evolution of dynamical properties with
decreasing temperature following the same analysis
would allow for direct tests of prominent theories of the
glass transition. For example, in the picture based on
kinetically constrained models of glasses [7] facilitation
should become more relevant and conserved upon lower-
ing the temperature. In the random first order transition
theory [25], the dynamics should be correlated with soft
regions for moderately supercooled liquids but, closer to

the glass transition, the relaxation should be dominated
by other processes. Three of us [11] have performed such
analysis for granular media and found that facilitation
becomes less conserved as the density is increased. Per-
forming a similar analysis for our model of supercooled
liquids would be extremely important. Work in this di-
rection is in progress.
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