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Evolution of dynamical facilitation approaching the granular glass transition
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We investigate the relaxation dynamics of a dense monolayer of bidisperse beads by analyzing the
experimental data previously obtained in a fluidized bed. We show that the dynamics is formed by
elementary relaxation events called cage jumps. These aggregate on a very short time into clusters.
Increasing the packing fraction makes the spatio-temporal organization of the clusters evolve from
a rather scattered and random distribution towards a collection of sparse and large events, called
avalanches. The avalanche process is a manifestation of dynamical facilitation. The study of its
evolution with density reveals that dynamical facilitation becomes less conserved and play a lesser
role for the structural relaxation approaching the granular glass transition.

PACS numbers:

The dynamics of supercooled liquids [1, 2], colloids [3]
and agitated granular media [4] dramatically slows down
as these systems approach the glass transition. Surpris-
ingly, particles configurations close to the transition still
look like the ones of a high temperature liquid. Instead,
dynamical trajectories do show significant modifications.
The motion becomes intermittent at the microscopic
scale: typically a particle rattles for a long time inside
a “cage” formed by its neighbours, before jumping into
another “cage”. Henceforth we shall call this event cage
jump. Consecutive cage jumps lead to structural relax-
ation and long time diffusion. This phenomenon has been
visually observed in colloids [5], granular media [6, 7, 8]
and numerical simulations of supercooled liquids [9, 10].
Another very important feature of glassy dynamics is the
emergence of dynamical heterogeneity: there is by now
experimental [3, 11, 12, 13, 14, 15, 16] and numerical evi-
dence [17, 18] that dynamics becomes spatially correlated
approaching the glass transition; there appear spatially
localized regions relaxing much faster than the average.
Providing a microscopic explanation for these phenomena
has become a central issue in the field. Despite a number
of theoretical proposals [19, 20, 21, 22, 23, 24], there is
still no consensus. One particularly debated question is
the role of dynamical facilitation (DF ) in glassy dynam-
ics. DF means that a local relaxation has a very high
probability of happening nearby another relaxation after
a certain time, which is short compared to the macro-
scopic relaxation time but large compared to the micro-
scopic one. Effective models based on kinetic constrains
[23, 25] posit that DF is the underlying cause of parti-
cle mobility by assuming that a region of jammed atoms
can become unjammed and exhibit mobility only when
it is adjacent to a region already unjammed. Within the
models this is due to the existence of mobility induc-
ing defects, which cannot disappear (or appear) except
if there is another defect nearby. This constraint implies
that local relaxations cannot start or end without corre-
spondingly being preceded or followed in space and time
by other local relaxations. We will refer to this property

as conservation of DF . In other approaches [26], instead,
DF is an important piece of the theoretical description
but not the driving mechanism of glassy dynamics.

Clearly, understanding how consecutive cage jumps
conspire together and lead to macroscopic relaxation
would be very instrumental in clarifying the role of dy-
namical facilitation and in explaining the emergence of
dynamical heterogeneity. A first attempt in this direc-
tion has been made in the study of granular media [8],
where we unveiled that dynamical heterogeneities arise
from the aggregation of quasi-instantaneous clusters of
cage jumps into long lasting avalanches. The dynamical
process leading to avalanches provides a clear evidence of
the important role played by DF : a local relaxation due
to a cluster of cage jumps is typically followed nearby in
space and in time by another cluster relaxation, and so on
and so forth until the entire avalanche process is formed.
In order to understand precisely the role played by DF ,
and to discriminate amongst the various theoretical sce-
narii, it is now crucial to characterize the evolution of the
avalanche process when approaching the glass transition.

To this aim we focus on the 2D fluidized bed of beads
studied in [15], whose experimental data were gener-
ously provided by the authors. The system is made of
a 1:1 bidisperse mixture of N steel beads of diameters
dS = 0.318cm and dL = 0.397cm (dL/dS = 1.25), with
respective masses of 0.130g and 0.266g, confined to a cir-
cular cell of diameter 17.7cm = 55.7dS. Bead motion is
excited by an upward flow of air at a fixed superficial flow
speed of 545 ± 10cm.s−1 (resp. 500 ± 10cm.s−1) for the
3 loosest (resp. densest) packing fractions. The original
acquisition frame rate is 120 Hz; we retain one frame out
of ten and follow the trajectories over 10, 800 frames. To
avoid boundary effects, we consider a circular region of
interest of diameter D = 45dS. All lengths are expressed
in number of small grain diameters, and times in num-
ber of frames ( 1

12 s). We study packing fraction ranging
from φ = 0.758 to φ = 0.802 (N = 1, 790 to 1, 975). The
data for the three most dense packings were not discussed
in [15].
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FIG. 1: (color online) Dynamics and cooperative jumps. Top-
left: Root mean square displacement along the x-direction
σx(τ ) for the 6 packing fractions φ = 0.758 (red) to 0.802
(blue). The horizontal dashes are located at the thresholds of
the cage jump detection algorithm. Top-right: Trajectories
of a few particles at φ = 0.802 for 1, 000 time frames. The
color changes from blue (black) to cyan (light grey) when
a cage jump is detected. All cage jumps in the grey area
appear within 15 time steps, defining a cooperative cluster.
Bottom-left: Comparison between the relative spatially aver-
aged relaxation Qt(τα)/〈Qt〉t (grey) and the relative percent-
age Pt(τα)/〈Pt〉t of particles that haven’t jumped between t
and t + τα (black) at φ = 0.773, τα = 512. Bottom-right:
Clusters of cage jumps appeared between t and t + τα super-
imposed on the map of Qp,t(τα) (grey-scale, left colorbar).
The times τ at which clusters occur are color coded (right
colorbar), φ = 0.802, τα = 4536.

In fig. 1 top-left we plot the root mean square dis-
placement along the x-axis on a lag time τ , σx(τ), which
shows all the well-known characteristics observed when
approaching the glass transition: a sub-diffusive plateau
at intermediate time scales, which enlarges when increas-
ing the packing fraction, and the final recovery of a diffu-
sive regime on long times. For the three loosest packings
the slope is greater than 1/2, indicating the presence of
slow convection rolls. This effect becomes stronger at
even lower densities. Here we retain only the highest
packing fraction, for which this does not interfere with
the timescales of the analysis.

In order to analyze the microscopic relaxation pro-
cesses, we apply the same procedure as developed in [8]
which allows one to obtain a coarse grained description of
the dynamical evolution in terms of cage jumps: within
a trajectory S(t)t∈[0,T ], the time of the largest cage jump
is given by the position tc of the maximum of p(t) =
ξ(t).[〈d1(t)

2〉S2
.〈d2(t)

2〉S1
]1/2, where S1 and S2 are the

FIG. 2: (color online) Times scales as a function of packing
fraction. Left: Distributions of τ , the lag time between ad-
jacent clusters; Main plot P (τ > τ1) – black dotted lines are
exponential fits at large τ1. Inset Pdf(τ ) for the population of
short lag times (see text for more details) – black lines are in-
dicative exponential decays. Right: τ1/2 (•) , τcl(◮), τS (H),
and τf (�).

trajectory subsets S{t ∈ [0, tc]} and S{t ∈]tc, T ]}, dk(t)
is the distance between the position at time t and the cen-
ter of mass of the subset Sk, the average 〈.〉Sk

is computed
over the subset Sk and ξ(t) =

√

tc/T (1 − tc/T ) is a nat-
ural statistical normalization. The procedure is repeated
iteratively for every sub-trajectory until max(p) < σ2

c ,
where the thresholds σc(φ) are defined at the cross-over
between subdiffusive and diffusive regimes in σx(τ) (see
fig.1-top left) and correspond to the sizes of a cage. This
algorithm allows us to locate the cage jumps within a res-
olution of 15 time steps (see fig. 1-top right, which shows
that cage jumps are well defined dynamical events). The
evolution of the temporal correlation function is given by
Qt(τ) = 〈Qp,t(τ)〉p with

Qp,t(τ) = exp

(

−
||∆~rp(t, t + τ)||2

2a2

)

,

where ∆~rp(t, t + τ) is the displacement of particle p be-
tween t and t + τ and the length scale a is set to 0.2.
Fig. 1-bottom left shows that for τ = τα, the relaxation
time defined by 〈Qt(τ)〉t = 1/2, Qt(τ) is very well de-
scribed by Pt(τ), the percentage of particles that have
not jumped between t an t + τ .

Subsequent cage jumps aggregate into clumps that we
call cooperative clusters and whose very short duration is
denoted τcl. This is clear from fig. 1-bottom right, which
shows that the large decorrelation patterns observed on
time-scales τα issue from the aggregation of several clus-
ters of particles hopping at successive times. In order to
substantiate more quantitatively the existence of clusters
we focus on the distribution of the lags τ separating the
clusters that are adjacent in space and time. Figure 2-
top left displays P (τ > τ1), the probability of observing
τ larger than τ1. As in [8], these cumulated distributions
are well described by the addition of two processes :

P (τ > τ1) =
(

pSe
−

τ1

τS + (1 − pS)e
−

τ1

τL

)

;

pS is the fraction of short lag times. The short time scale,
τS , physically corresponds to dynamic facilitation events:
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FIG. 3: (color online) Top: Facilitation patterns in space and time during the typical relaxation time τ1/2(φ) for 3 packing
fractions : from left to right φ = 0.780, 0.791, 0.802 and τ1/2 = 1540, 2250, 3730. The two directions of space are in the
horizontal plane and time is the vertical axis. The ratio τS/τ1/2 is given in the upper-right corners. Jumps are represented
with black dots, and all possible tetrahedrons which edges are the facilitating links between jumps are shown, forming volumes.
Each separate connected structure has a different color. Bottom: Jumps occurring in τ1/2 (in grey), same packing fractions.
The jumps belonging to one arbitrarily chosen connected structure are colored according to the time at which they occur.

cluster relaxations followed closely in time and in space
by other cluster relaxations. The long time scale τL cor-
responds to the average time spent in a cage. Technically,
we extract first τL and pS by fitting the large τ1 regime,
then we subtract the large τ1 contribution and obtain the
exponential distribution for the short lag times displayed
in the inset of fig. 2-top left and from which one easily
estimates τS .

We now come to the central discussion of this work:
the evolution of the above dynamical patterns, identical
to the ones observed in [8], when the packing fraction is
increased towards the glass transition. One observes on
fig. 2-top left that the relaxation time τα or its alterna-
tive estimation τ1/2, the time needed for observing half
of the particles to jump once, increases strongly with the
packing fraction, while the cooperative clusters typically
last a short time τcl varying from 2 to 10, not a significant
variation given our temporal resolution on the detection
of the cage jumps. τS remains bounded between 100 and
250 without clear tendancy, while τL increases from 511
to 3, 041, following the slowing down of the dynamics.
Note that τS is larger than τcl thus confirming that clus-
ters are well defined dynamical events.

Clearly, the picture of clusters dynamically facilitating
each others only makes sense when τL becomes larger
than τS , that is above φ∗ ∼ 0.77, which would be anal-

ogous to the onset temperature in supercooled liquids.
The way in which clusters aggregate and the resulting
facilitation patterns are represented in fig. 3-top for three
packing fractions in 3D space/time, the time axis being
rescaled with respect to the relaxation time τ1/2. We
draw all cage jumps (black dots) and link the ones sepa-
rated by a lag time less than τS . This defines a network
whose vertices are the cage jumps and whose edges are
the orientated links towards facilitated jumps. For the
loosest packing fraction, all jumps are connected by a fa-
cilitation link and form a highly interconnected monolith
where facilitation appears to be conserved. When raising
φ, an increasing number of adjacent clusters become sep-
arated by more than a few τS within a time interval equal
to the relaxation time (the ratios τ1/2/τS and τL/τS in-
crease up to 20 and 30). Eventually, the facilitation net-
work does not percolate in time anymore and separated
avalanches form. The average duration of the avalanches,
that we call facilitation time, τf , decreases and becomes
smaller than τ1/2 for the largest φ. At that point facilita-
tion is clearly not conserved anymore. In agreement with
the above discussion, we find that pS decreases from 90%
to 40%, suggesting that facilitation occurs for a decreas-
ing number of clusters. It would be interesting to check
whether at even higher density τf becomes of the order
of τS : each avalanche would reduce to a single cluster
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FIG. 4: (color online) Length scales as functions of the pack-
ing fraction. Left: Cumulated Pdf of the clusters’ number
of particles nc for the 6 packing fractions φ = 0.758 (red) to
0.802 (blue); Inset Mean value of nc over all clusters, as a
function of φ. Right: ξcl(◮), ξ1/2 (•), and ξava (�). Plain
lines are guides for the eyes, dashed lines are extrapolations.

and facilitation would disappear completely.
Finally, we address the evolution of the dynamical cor-

relation length-scale ξ1/2 estimated as the correlation
length of the facilitation pattern (assuming by ergodicity
that spatial and time averages coincide). ξ1/2 is approxi-
matively equal to the the average width of the backbone
forming the pattern. Figure 3-bottom displays the spatial
projection of cage jump during τ1/2. In grey, one sees the
half of the particles which have jumped and we have col-
ored those belonging to one arbitrarily chosen connected
structure. For the lowest φ (left panel) τf > τ1/2 and al-
most all cage jumps belong to the same large, eventually
infinite connected structure. ξ1/2 is roughly the cluster
size, thus showing that the pattern is formed by dynami-
cally independent clusters. In this regime, the pattern is
so much intertwined that a clusters is facilitated by sev-
eral others. Thus, dynamical correlations do not propa-
gate farther than the size of one single cluster. At higher
φs, the distributions of the cluster sizes nc (see fig. 4-top
left) have larger tails and their experimental average 〈nc〉
grows from 3.4 to 5. For the packing fraction correspond-
ing to the middle panel of Fig. 3-bottom, τf ≃ τ1/2, the
clusters are slightly larger and more concentrated and
ξ1/2 is increased, as shown in fig. 4-top right. Finally, at
the highest density (right panel of Fig. 3-bottom), when
avalanches are well formed and separated, we find that
ξ1/2 is again increased and has become of the order of the
avalanche size ξava. At this packing fraction, τf < τ1/2

and the clusters are even more grouped.
To summarize, analyzing data coming from a fluidized

monolayer experiment, we have confirmed the role of the
spatio-temporal organization of cage jumps in the relax-
ation dynamics previously pointed out in our cyclic shear
experiment. In both cases such cage jumps occur in co-
operative clusters which give rise to facilitation. Above
a characteristic packing fraction, akin to the onset tem-
perature in liquids, facilitation starts to play a role in
the dynamics. Increasing the packing fraction facilita-
tion patterns evolve from a single connected structure

percolating in time to isolated denser avalanches of finite
duration. Dynamical correlations are, at first, of the size
of clusters and then, in the latter regime, are of the size of
the avalanches. Finally, approaching the granular glass
transition, the cluster size increases whereas the num-
ber of facilitated clusters inside an avalanche decreases.
Thus the cooperative relaxation of the first cluster of an
avalanche plays a larger role and facilitation a lesser one.
Investigating whether our findings also hold for super-
cooled liquids would certainly be of great interest.
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