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On the ultraviolet behaviour of N = 8 supergravity amplitudes∗
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We discuss the constraints imposed by the extended supersymmetry on the ultravi-
olet behaviour of N = 8 supergravity.

1. Introduction

There have been recent tremendous progresses in the evaluation of multiloop am-

plitudes in maximally supersymmetric string theory [1–5], in N = 8 supergravity in

various dimensions [6–8], and the analysis of the constraints from the extended su-

persymmetry on possible counter-terms to ultraviolet divergences [9,10]. It has been

shown that up to and including four-loop order that the four-graviton amplitudes in

N = 8 supergravity in four dimensions are free of ultraviolet divergences [7,8]. One

important question is to determine when the first ultraviolet divergence appears in

four dimensions. In this text we indicate the various constraints derived from the

implementation of maximal supersymmetry.

The mass dimension of the L-loop gravity amplitude in D dimensions is given

by

[M
(D)
n,L] = mass(D−2)L+2 (1)

In N = 8 supergravity half of the supersymmetry are explicitly realized at each

loop order and the four-point amplitudes factorize the dimension eight operator

R̂4 = κ4
(D) KA1···A4

K̃B1···B4

4∏

i=1

ζAiBi

i (2)

given by the fourth power of the linearized supercurvature — defined in eq. (7.4.57)

of [11] (see as well [12]) where Ai, Bi are the labels of the N = 8 supergraviton

multiplet. We have used κ(D) for the D-dimensional Newton’s constant. In partic-

ular the amplitudes between any four states φ1,. . . ,φ4 in the massless supergravity

multiplet take the form

M
(D)
4,L (φ1, . . . , φ4) = R̂4 Î

(D)
4,3 (k1, . . . , k4) (3)
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where Î
(D)
4,L (k1, . . . , k4) does not depend on the helicities, and is of superficial mass

dimension (D − 2)L − 6.

⊲ This formula indicates that the R4 operator would appear at L = 6/(D − 2)

loops, which is (L, D) = (1, 8), (2, 5), (3, 4), (6, 3). Non-renormalisation theorems in

string theory[3,4] and explicit field theory computations [13] confirm the logarithmic

divergence of the one-loop amplitude in D = 8, but rule out the other divergences

in D < 8.

⊲ Because on-shell the operator ∂2R4 vanishes the next operator is the dimension

12 coupling ∂4R4 could appear at (L, D) = (2, 7), (5, 4). Explicit computations

confirm the divergence in D = 7 [7]. The evaluation of higher-loop amplitudes in

field theory [8] and non-renormalisation theorems in string theory [2,3,14] rule out

the appearance of this divergences in D < 7.

⊲ The dimension 14 operator ∂6R4 could appear at (L, D) = (2, 8), (3, 6),

(4, 5), (6, 4). Explicit computations confirm the divergences in (L, D) = (2, 8), (3, 6)

and rule out the divergences in (L, D) = (4, 5), (6, 4).

⊲ The dimension 16 operator ∂8R4 could appear at (L, D) = (2, 9), (7, 4). Explicit

computations confirm the divergences in (L, D) = (2, 9). There is currently no ex-

plicit evaluation of the contribution (L, D) = (7, 4). We discuss below the constraints

from supersymmetry.

⊲ The dimension 18 operator ∂10R4 could appear at (L, D) = (2, 10), (4, 6), (8, 4).

Explicit computations confirm the divergence in (L, D) = (2, 10), (4, 6). There is

currently no explicit evaluation of the contribution (L, D) = (8, 4). We discuss

below the constraints from supersymmetry.

⊲ The dimension 20 operator ∂12R4 could appear at (L, D) = (2, 11), (3, 8),

(6, 5), (9, 4). Explicit computations confirm the divergences in (L, D) =

(2, 11), (3, 8). There is currently no direct evaluation of the (L, D) = (6, 5), (9, 4)

contributions. In fact whatever is the form of the five-loop four-graviton amplitude

(i.e. factorizing the operator ∂8R4 or ∂10R4) there will be a logarithmic divergence

at L = 6 associated with ∂12R4 in D = 5. If N = 8 supergravity has an ultraviolet

divergence in D = 4 there will always be a nine-loop divergence. Actually, supersym-

metry cannot rule out this divergence in D = 4 [3,4]. The nine-loop four-graviton

amplitude in four dimensions is ultraviolet finite if and only if N = 8 supergravity

is ultraviolet finite in four dimensions.

If one parametrizes the superficial power counting of the ultraviolet behaviour

of the amplitude as

[M
(D)
4,L ] = Λ(D−2)L−6−2βL ∂2βLR̂4 (4)

the critical dimension for ultraviolet divergences in the four-graviton amplitude is

given by

D ≥ 2 +
6 + 2βL

L
(5)

Up to an including four-loop the supersymmetry constraints [2,8,13] implies that
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βL = L.

When only the simple large-λ regulator of the pure spinor string formalism is

used one can argue [2,4] that βL = L for L ≤ 6 and βL = 6 for L ≥ 6 leading to the

critical dimension for UV divergence

D ≥ 4 +
6

L
; for L ≤ 6

D ≥ 2 +
18

L
; for L ≥ 6

(6)

which implies a nine-loop divergence in four dimensions [4]. From genus five possible

divergences from the tip of the pure spinor cone that would requiere the use of the

small-λ complicated regulator [1,15] can restrict βL = 4 for L ≥ 4

D ≥ 4 +
6

L
; for L ≤ 4

D ≥ 2 +
14

L
; for L ≥ 4

(7)

leading to seven-loop divergence in four dimensions.

2. D-term and F-term in extended supergravity

The issue of correctly identifying the ultraviolet behaviour of a supersymmetric the-

ory is equivalent to the understanding of which operators are true F-terms satisfying

non-renormalisation theorems, and which operators are D-terms receiving quantum

corrections to all orders [16].

By partial integration over the superspace variables it is possible to rewrite D-

term as “fake” F-term, and detecting the true D-term nature of an operator can

be non-obvious. In four-point open string amplitudes the true D-term nature of the

∂2trF 4 interaction became manifest by the appearance of inverse derivatives after

integrating over the string theory moduli [5]. In the four-graviton amplitudes it was

confirmed in [5] that no such inverse derivative factors arise up to and including

genus four implying that the operators R4, ∂4R4, and ∂6R4 are F-terms satisfying

non-renormalisation theorems [2,3] .

In the pure spinor formalism for maximally supersymmetric closed string theory,

D-terms arise explicitly as soon as the small-λ regulator from the tip of the pure

spinor cone enters in the evaluation of the amplitude [1,15]. The folllowing full

superspace integral of the dimension one superfield Wαβ = Fαβ + · · ·+θγθδ Rαβγδ +

· · ·
∫

d32θ W 2 = D12R4 + susy completion (8)

is a D-term that can arise the four graviton amplitude from genus five. As well

from five loops order, after integrating over the string moduli one can get [5] inverse

derivative factors 1/∂2 that could reduce this contribution to ∂10R4 or ∂8R4 making

these operators “fake” F-terms but true D-terms. If this happens then according
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to (7) there would be a seven-loop divergence in the four-graviton amplitude of

N = 8 supergravity in D = 4.

In non-Abelian N = 4 super-Yang-Mills the D-term arising from the four points

amplitude are [5] ∂2t8trF
4 and ∂4t8(trF

2)2. Since on-shell the Abelian ∂2t8F
4 van-

ishes the first D-term in the Abelian case is ∂4t8F
4 which leads after applying the

“squaring” KLT relations to ∂8R4 interaction, supporting the D-term nature of this

contribution.

The fact that the first massive string correction to the massless thresholds to

the genus one amplitudes in ten dimensions evaluated in [12,17] to be given by

ζ(3)α′3 s4 R4 log(s) can be seen as an indication of D-term nature of the ∂8R4

interactions [18].

A candidate counter-term for an seven-loop divergence is the volume of super-

space [10]

δSct ∼ κ12
(4)

∫
d4x

∫
d32θ |E| (9)

where |E| is the determinant of the superfield vielbein. Integrating over the fermionic

variables this would lead to

δSct ∼ κ12
(4)

∫
d4x

√
−g(4) (D8R4 + susy completion) . (10)

An detailed analysis of the divergences in the four-graviton amplitude at seven-

and nine-loop order will be presented elsewhere [19].
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