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Effects of flow fluctuations and partial thermalization on v4
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The second and fourth Fourier harmonic of the azimuthal distribution of particles, v2 and v4,
have been measured in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). The ratio
v4/(v2)

2 is significantly larger than predicted by hydrodynamics. Effects of partial thermalization
are estimated on the basis of a transport calculation, and are shown to increase v4/(v2)

2 by a small
amount. We argue that the large value of v4/(v2)

2 seen experimentally is mostly due to elliptic flow
fluctations. However, the standard model of eccentricity fluctuations is unable to explain the large
magnitude of v4/(v2)

2 in central collisions.

PACS numbers: 25.75.Ld, 24.10.Nz

I. INTRODUCTION

The azimuthal distribution of particles emitted in ul-
trarelativistic nucleus-nucleus collisions at RHIC is a sen-
sitive tool in understanding the bulk properties of the
matter produced in these collisions (see [1] for a recent
review). It is generally written as a Fourier series

dN

dφ
∝ 1 + 2v2 cos 2φ + 2v4 cos 4φ + · · · (1)

where φ is the azimuthal angle with respect to the di-
rection of flow. In this paper, we consider analyses done
near the center-of-mass rapidity, so that odd harmonics
vanish by symmetry. The large magnitude of elliptic flow,
v2, suggests that the lump of matter formed in a Au-Au
collision at RHIC is close to local thermal equilibrium
and expands as a relativistic fluid. Elliptic flow is large
at high pt (up to 0.25 for baryons), which motivated the
idea to study the higher-order harmonic v4 [2]. Several
analyses of v4 have been reported [3, 4, 5, 6]. Experimen-
tal results give v4 ≃ (v2)

2, while the ideal-fluid picture
generally predicts v4 = (v2)

2/2 [7]. This discrepancy has
not yet been explained. In this paper, we investigate the
sensitivity of v4 to two effects: viscous deviations from
the ideal-fluid picture (Sec. III), and elliptic flow fluctu-
ations (Sec. V).

II. IDEAL HYDRODYNAMICS

We first briefly recall the prediction of relativistic hy-
drodynamics. In this theory, the φ dependence of particle
distribution results from a similar φ dependence of the
fluid 4-velocity [8]:

u(φ) = U (1 + 2V2 cos 2φ + 2V4 cos 4φ · · · ) , (2)

where φ is the azimuthal angle of the fluid velocity with
respect to the minor axis of the participant ellipse [10]
(see Fig. 1). This is due to the fact that the overlap area
between the two colliding nuclei is elliptic, which results

x

x’

yy’

FIG. 1: Schematic picture of a nucleus-nucleus collision de-
picted in the transverse plane (from [9]). The principal axes
(x′ and y′) of the area formed by the participants are tilted
with respect to the reaction plane given by the axes (x and
y) of the transverse plane.

in anisotropic pressure gradients. For a semi-central Au-
Au collision at RHIC, V2 ∼ 4%, and one expects V4 to
be of much smaller magnitude, typically V4 ∼ (V2)

2.
The fluid expands, becomes dilute and eventually

transforms into particles. As argued in Ref. [7], fast par-
ticles are produced where the fluid velocity is maximum,
and parallel to the particle momentum. The resulting
momentum distribution is a boosted thermal distribu-
tion. Neglecting quantum statistics (this is justified in
the transverse momentum range where v4 is measured),
the momentum distribution for a given particle of mass
m is

dN

ptdptdφ
∝ e−p·u/T = exp

(

−mtu0(φ) − ptu(φ)

T

)

, (3)

where mt =
√

p2
t + m2, u0(φ) =

√

1 + u(φ)2, and φ is
the azimuthal angle of the particle. Inserting Eq. (2)
into Eq. (3), expanding to leading order in V2, V4 and
identifying with Eq. (1), one obtains [7]

v2(pt) =
V2U

T
(pt − mtv)

v4(pt) =
1

2
v2(pt)

2 +
V4U

T
(pt − mtv) , (4)

where v ≡ U/
√

1 + U2. The higher harmonic v4 is the
sum of two contributions: an “intrinsic” v4 proportional
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FIG. 2: (Color online) v4/(v2)
2 versus pt in Boltzmann trans-

port theory and ideal hydrodynamics for massless particles.
Solid lines are 2-parameter fits using Eq. (5) over the interval
[0.5, 2.5] GeV/c. The curves are labeled by the value of the
Knudsen number K. Error bars are statistical. The square
dots are results for charged pions from PHENIX [6], averaged
over the centrality interval 20-60%.

to the cos 4φ term in the fluid velocity distribution, V4,
and a contribution induced by elliptic flow itself, which
turns out to be exactly 1

2 (v2)
2. The latter contribution

becomes dominant as pt increases. Note that if v2 scales
like the initial eccentricity of the overlap area, ǫ, v4 scales
like ǫ2 rather than with a higher-order eccentricity ǫ4, as
assumed in Ref. [11].

In order to confirm these qualitative results, we solve
numerically the equations of ideal relativistic hydrody-
namics. The fluid is initially at rest. We choose a
gaussian initial entropy density profile, with rms widths
σx = 2 fm and σy = 3 fm. The equation of state is
that of an two-dimensional ideal gas of massless parti-
cles, s ∝ T 2, for reasons to be explained below. The nor-
malization has been fixed in such a way that the average
transverse momentum per particle is 〈pt〉 = 0.42 GeV/c,
which is roughly the value for pions in a central Au-
Au collision at RHIC [12]. Fig. 2 displays the varia-
tion of v4/(v2)

2 with the particle transverse momentum
pt. For massless particles, mt = pt and Eq. (4) gives
v4/(v2)

2 = 0.5 + k/pt, where k is independent of pt. To
check the validity of this formula, our numerical results
are fitted over the interval 0.5 < pt < 2.5 GeV/c by the
simple formula

v4(pt)

v2(pt)2
= A + B

〈pt〉
pt

, (5)

where we have introduced the average transverse momen-
tum 〈pt〉 in such a way that the coefficient B is dimen-
sionless. We refer to A (resp. B) as to the induced
(resp. intrinsic) v4. We find A = 0.557 and B = 0.479.
The value of A is close to the expected value 0.5. The
small discrepancy is due to the fact that Eqs. (4) are
only valid for small values of v2 and v4. This approxima-

tion breaks down at the upper end of our fitting interval,
where v2(2.5 GeV/c) = 0.51. For large pt, however, the
intrinsic V4 term in Eq. (4) can be neglected, because it
is linear in pt while the other term is quadratic in pt. Ne-
glecting this term, the Fourier expansion in Eq. (1) can
be done exactly. This yields

v2n(pt) =
In(x)

I0(x)
, (6)

where x = 2V2U(pt − mtv)/T , and In(x) is the modified
Bessel function. Inverting Eq. (6) with n = 1 and v2 =
0.51, one obtains x = 1.19. Eq. (6) with n = 2 then gives
v4/(v2)

2 = 0.552, in better agreement with our numerical
result.

We have systematically investigated the sensitivity of
our hydrodynamical results to initial conditions. With a
smaller initial excentricity (σx = 2 fm and σy = 2.5 fm),
the value of A is closer to 0.5, as expected from the discus-
sion above. We have also repeated the calculation with
a more realistic density profile corresponding to a Au-
Au collision at RHIC, obtained using an optical Glauber
model calculation. We expected that B, which we un-
derstand as the “intrinsic” v4, would be sensitive to the
change in initial conditions, but the changes in both A
and B were insignificant.

Experimental results are also shown in Fig. 2. A fit
to these results using Eq. (5) gives B = 0.01 ± 0.04,
compatible with 0: the intrinsic v4 is negligible.1 The
other fit parameter is A = 0.89±0.02, significantly larger
than the value 0.5 predicted by hydrodynamics. Some
of the discrepancies between our model calculation and
data can be attributed to the equation of state, which is
much softer in QCD near the transition region than in
our hydrodynamical calculation. More specifically, the
coefficient B representing the intrinsic v4 may depend on
the equation of state. It would be interesting to inves-
tigate this sensitivity in future hydrodynamical calcula-
tions. On the other hand, our argument leading to A = 1

2
is quite general, so that the discrepancy with data cannot
be attributed to the equation of state. In this paper, we
investigate the possible origins of this discrepancy.

III. PARTIAL THERMALIZATION

It has been argued [14] that if interactions among the
produced particles are not strong enough to produce lo-
cal thermal equilibrium, so that the hydrodynamic de-
scription breaks down, the resulting value of v4/(v2)

2

is higher. This is confirmed by transport calculations
within the AMPT model [15]. We investigate systemati-
cally the magnitude of this effect by solving numerically

1 Note, however, that STAR results for charged particles [13]
clearly display an intrinsic v4 component, although smaller than
in our calculation.
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FIG. 3: (Color online) Variation of the dimensionless fit pa-
rameters A and B from Eq. (5) with the Knudsen number K.
Error bars are statistical. Lines are linear fits. The points
at K = 0 are obtained from an independent hydrodynamical
calculation and are excluded from the fit.

a relativistic Boltzmann equation, where the mean free
path λ of the particles can be tuned by varying the elas-
tic scatting cross section σ. The degree of thermalization
is characterized by the Knudsen number

K =
λ

R
, (7)

where R is a measure of the system size. We consider
massless particles moving in the transverse plane (no
longitudinal motion) [16]. In the limit K → 0, this
Boltzmann equation is expected to be equivalent to ideal
hydrodynamics, with the equation of state of a two-
dimensional ideal gas. For sake of consistency with our
hydrodynamical calculation, the initial phase space dis-
tribution of particles is locally thermal: dN/d2xd2pt ∝
exp(−pt/T (x, y)), where the temperature profile T (x, y)
is the same as in the hydrodynamical calculation. The
Knudsen number is normalized as in Ref. [16]:

K =
4π
√

σ2
x + σ2

y

Nσ
, (8)

where N is the total number of particles in the Monte-
Carlo simulation, and σ the scattering cross section,
which has the dimension of a length in two dimensions.
Fig. 2 displays our results for two values of K. The re-
sults for K = 0.05 are almost identical to the results from
ideal hydrodynamics, as expected. For K = 0.5, v4/(v2)

2

is larger, as anticipated in Ref. [14]. Although the fit for-
mula (5) is inspired by hydrodynamics, the quality of the
fit is equally good for the Boltzmann calculation. In par-
ticular, the ratio v4/(v2)

2 quickly saturates with increas-
ing pt, which means that the scaling v4 ∝ (v2)

2 still holds
if the system does not reach local thermal equilibrium, as
already observed in previous transport calculations [19].

The sensitivity of v4 to the Knudsen number K is seen
more clearly in Fig. 3, which displays the variation of the
fit parameters A and B with K. A linear extrapolation
of our Boltzmann results to the limit K = 0 gives A =
0.524 ± 0.008 and B = 0.508 ± 0.012, to be compared
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FIG. 4: (Color online) Results from STAR [20] and
PHENIX [21] for charged hadrons produced in Au-Au col-
lisions at 200 GeV/c per nucleon pair, versus the number of
participant nucleons. We have averaged the ratios v4/(v2)

2

over the intervals 1.0 < pt < 2.7 GeV/c for STAR, 1.0 < pt <
2.4 GeV/c for PHENIX. Dash-dotted line: prediction from
ideal hydrodynamics without flow fluctuations. Stars: with
fluctuations inferred from the difference between v2{2} and
v2{LYZ} (Sec. VA) . Dashed line: with eccentricity fluctu-
ations (Sec. V B). Full line: eccentricity fluctuations+partial
thermalization.

with our results from ideal hydrodynamics A = 0.557
and B = 0.479, in good agreement2.

These transport results may be sensitive to the choice
of initial conditions. We have assumed a locally thermal
momentum distribution. Now, the prediction v4/(v2)

2

from hydrodynamics originates precisely from the as-
sumption that momentum distributions are thermal in
the rest frame of the fluid, see Eq. (3). Replacing the ex-
ponential in this equation with a more general function
f(p·u) leads to v4/(v2)

2 = ff ′′/(2f ′2). With a power law
distribution f(x) = (1+x/x0)

−α, the value of v4/(v2)
2 is

enhanced by a factor (1+α)/α. Values of α inferred from
pt spectra are in the range 7-10 [17], which leads to a very
slight deviation from the prediction of hydrodynamics.

Realistic values of the Knudsen number K, inferred
from the centrality dependence of v2 [18], are in the range
0.3 − 0.5 for semi-central collisions. For these values,
Fig. 3 shows that v4/(v2)

2 is at most 0.6, still signifi-
cantly below the experimental value 0.9. We conclude
that partial thermalization alone cannot explain experi-
mental data.

2 There is a small residual discrepancy of a few percent between
Boltzmann and ideal hydrodynamics, which we do not under-
stand.
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IV. CENTRALITY DEPENDENCE OF v4/(v2)
2

RHIC experiments have analyzed in detail the cen-
trality dependence of v4/(v2)

2. Preliminary results from
STAR [20] and PHENIX [21] are presented in Fig. 4.
The values of v4/(v2)

2 are larger than 0.8 for all cen-
tralities, and increase up to 1.6 for central collisions.
Both experiments observe a similar centrality dependence
of v4/(v2)

2. STAR obtains values slightly higher than
PHENIX. This difference may be due to nonflow effects,
which are smaller for PHENIX than for STAR because
the reaction plane detector is in a different rapidity win-
dow than the central arm detector [6]. Nonflow effects
contribute both to v2 and v4. We now estimate the order
of magnitude of the error on v4. We consider for sim-
plicity the case when v4 is analyzed from three-particle
correlations. The corresponding estimate of v4, denoted
by v4{3} [22], is defined by

v4{3} ≡ 〈cos(4φ1 − 2φ2 − 2φ3)〉
(v2)2

(9)

where φj are azimuthal angles of outgoing particles and
angular brackets denote an average over triplets of par-
ticles belonging to the same event. In Eq. (9), v2 must
be obtained from another analysis. Nonflow effects arise
when particles 1 and 2 come from the same source [3].
Assuming that the source flows with the same v2 as the
daughter particles, we obtain

〈cos(4φ1 − 2φ2 − 2φ3)〉 = v4(v2)
2 + δnf(v2)

2, (10)

where δnf is the nonflow correlation. The latter can be
estimated [23] using the azimuthal correlation δpp mea-
sured in proton-proton collisions [24] and scaling it down
by the number of participants: δnf = 2δpp/Npart. Di-
viding by (v2)

4, we obtain the corresponding error on
v4/(v2)

2:

δ

(

v4

(v2)2

)

nf

=
2δpp

Npart(v2)2
. (11)

In practice, the analysis is done using the event-plane
method rather than three-particle correlations, but this
changes little the magnitude of nonflow effects [23]. The
error (11) varies with centrality like 1/χ2, where χ ∼
v2

√
N is the resolution parameter entering the flow anal-

ysis. The numerical value δpp = 0.0145 has been used in
Ref. [23] to subtract nonflow effects from v2. It was ob-
tained by integrating the azimuthal correlation in proton-
proton collisions over pt. The error bar on STAR results
in Fig. 4 is obtained using Eq. (11) with δpp = 0.0145.
The agreement with PHENIX is much improved. How-
ever, this may be a coincidence: in the case of v4, which is
measured at relatively large pt, nonflow effects are likely
to be larger; on the other hand, nonflow contributions to
v2 tend to increase v2 and decrease the ratio v4/(v2)

2,
which goes in the opposite direction. Finally, we must
keep in mind that even with a rapidity gap as in the
PHENIX analysis, there may be a residual nonflow error
of a similar magnitude.

V. FLOW FLUCTUATIONS

The scaling v4 = 0.5 (v2)
2 predicted by ideal hydro-

dynamics only holds for identified particles at a given
transverse momentum pt and rapidity y, for a given ini-
tial geometry. In order to increase the statistics, how-
ever, experimental results for v2 and v4 are averaged
over some of these quantities before computing the ra-
tio v4/(v2)

2. The averaging process increases the ratio.
For instance, the results shown in Fig. 2 are averaged
over a large centrality interval 20-60%. Even within a
narrow centrality class, the initial geometry varies sig-
nificantly due to fluctuations in the initial state [25, 26]
We now discuss the influence of these fluctuations on v2

and v4. We assume for simplicity that v2 and v4 are an-
alyzed using two-particle correlations and three-particle
correlations, respectively. The case where the analysis is
done using the event-plane method is more complex and
will be discussed in Sec. VI. The estimate of v2 from
two-particle correlations is denoted by v2{2} and defined
by v2{2}2 ≡ 〈cos(2φ1 − 2φ2)〉. If v2 fluctuates within
the sample of events, 〈cos(2φ1 − 2φ2)〉 =

〈

(v2)
2
〉

. Sim-
ilarly, if v4 and v2 fluctuate, 〈cos(4φ1 − 2φ2 − 2φ3)〉 =
〈

v4(v2)
2
〉

. We thus obtain

v4{3}
v2{2}2

=
〈v4(v2)

2〉
〈(v2)2〉2

=
1

2

〈(v2)
4〉

〈(v2)2〉2
, (12)

where, in the last equality, we have assumed that the
prediction of hydrodynamics v4 = (v2)

2/2 holds for a
given value of v2. If v2 fluctuates, 〈(v2)

4〉 > 〈(v2)
2〉2,

which shows that elliptic flow fluctuations increase the
observed v4/(v2)

2. We now estimate quantitatively the
magnitude of these fluctuations.

A. Flow fluctuations from v2 analyses

The magnitude of v2 fluctuations can be inferred from
the difference between estimates of v2, which is domi-
nated by flow fluctuations except for very peripheral col-
lisions [23]. The estimate from 2-particle correlations,
v2{2}, gives directly

〈

(v2)
2
〉

, while the estimate of v2

from 4-particle cumulants, denoted by v2{4}, involves
〈

(v2)
4
〉

[27]:

v2{4}4 ≡ 2
〈

(v2)
2
〉2 −

〈

(v2)
4
〉

. (13)

Inverting this relation, one obtains

〈

(v2)
4
〉

〈(v2)2〉2
= 2 −

(

v2{4}
v2{2}

)4

. (14)

Inserting this equation into Eq. (12), one obtains an es-
timate of the effect of v2 fluctuations on v4. We use v{2}
from [28]; instead of v2{4}, we use the more recent mea-
surement v2{LYZ} using Lee-Yang zeroes [29, 30], which
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is expected to have a similar sensitivity to flow fluctu-
ations. Data on v2{LYZ} are only available for semi-
central collisions. The resulting prediction for v4/(v2)

2

is shown in Fig. 4. The agreement with data is much
improved when fluctuations are taken into account.

B. Flow fluctuations from eccentricity fluctuations

Since there are no data on v2{LYZ} for the most cen-
tral and peripheral bins, we need a model of v2 fluc-
tuations to cover the whole centrality range. We use
the standard model of eccentricity fluctuations [10, 27],
where v2 scales like the initial eccentricity of the overlap
area between the nuclei (see Fig. 1). This eccentricity is
the sum of two terms:

ǫ = |ǫs(b)~ex + ~ǫ∗| , (15)

where ǫs(b) is the “standard” eccentricity at impact pa-
rameter b, computed using an average density profile, and
~ǫ∗ = (ǫ∗x, ǫ∗y) is a random fluctuation in the transverse
plane, which is gaussian to a good approximation [31]:

dN

dǫ∗xdǫ∗y
=

1

πσ2
0

exp

(

−
ǫ∗2x + ǫ∗2y

σ2
0

)

. (16)

We take the simple Ansatz σ0 = 2N
−1/2
part [32], where Npart

is the number of participant nucleons. As for the stan-
dard eccentricity, we assume that the initial density scales
like the density of participants, which is estimated using
an optical Glauber calculation [33]. Using Eqs. (15) and
(16), one obtains

〈

(v2)
4
〉

〈(v2)2〉2
=

〈

ǫ4
〉

〈ǫ2〉2
=

〈

ǫ4s
〉

+ 4
〈

ǫ2s
〉

σ2
0 + 2σ4

0

(〈ǫ2s〉 + σ2
0)

2 (17)

where
〈

ǫ2s
〉

and
〈

ǫ4s
〉

are evaluated using the distribution
of impact parameter within the centrality class. For a
perfectly central collision, ǫs vanishes, and Eqs. (12) and
(17) show that flow fluctuations increase v4/(v2)

2 by a
factor 2.

Experimentally, PHENIX determines the centrality us-
ing a beam-beam counter (BBC). We assume that the
energy in the BBC has a gaussian distribution for a
fixed impact parameter, where the mean of the gaussian
and the square width scale like the number of partici-
pants [33]. Inserting Eq. (17) into Eq. (12), we obtain
an estimate of the effect of eccentricity fluctuations on
v4. Our results are presented in Fig. 4. For semi-central
collisions, the estimate is in good agreement with the esti-
mate from the difference between v2 analyses, which can
be accounted for by eccentricity fluctuations [23]. For the
most central bin, however, eccentricity fluctuations only
increase v4/(v2)

2 by a factor 2, while a factor 3 would
be needed to match STAR and PHENIX data. We have
repeated the calculation by computing ǫs from the color-
glass condensate [34]. We then need to increase the mag-
nitude of σ0 by 25% in order to reproduce the difference
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FIG. 5: (Color online) Results using a toy model of gaussian
v2 fluctuations. STAR and PHENIX data as in Fig. 4. Dashed
line: ideal hydrodynamics+gaussian flow fluctuations. Full
line: gaussian flow fluctuations and partial thermalization.

between v2{2} and v2{4}. Eventually, the changes in
v4/(v2)

2 are insensitive.
We now combine the effects of flow fluctuations and

partial thermalization, discussed in Sec. III. We take
partial thermalization into account using the linear fit to
the coefficient A from Fig. 3:

v4

(v2)2
=

1

2
+ 0.18 K. (18)

This modifies Eq. (12) into the following equation:

v4{3}
v2{2}2

=

(

1

2
+ 0.18 K

) 〈(v2)
4〉

〈(v2)2〉2
. (19)

We borrow the estimate of K from Ref. [18]. Results
are shown in Fig. 4. Partial thermalization is a small
effect. It increases significantly the agreement with data
for semicentral collisions, not for central collisions. For
peripheral collisions, it overshoots PHENIX data.

C. A toy model of Gaussian flow fluctuations

In order to illustrate the sensitivity of v4 to the statis-
tics of v2 fluctuations, we finally consider a toy model
where the distribution of v2 at fixed impact parameter b
is Gaussian:

dN

dv2
=

1

σv

√
2π

exp

(

− (v2 − κǫs(b))
2

2σ2
v

)

. (20)

We assume that σv scales like N
−1/2
part , as generally ex-

pected for initial state fluctuations, and we adjust the
proportionality constant so as to match the difference be-
tween v2{2} and v2{4}. The result is displayed in Fig. 5.
For semicentral and peripheral collisions, this model is
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ted curve is the case where the event-plane consists of only
one subevent [9].

essentially equivalent to the standard model of eccentric-
ity fluctuations, because the width has been adjusted to
match v2 fluctuations. For central collisions, however,
results are very different, because one-dimensional gaus-

sian fluctuations satisfy
〈

(v2)
4
〉

/
〈

(v2)
2
〉2

= 3 for cen-
tral collisions, instead of 2 for eccentricity fluctuations,
which are two-dimensional. The toy model is in very
good agreement with data once partial thermalization is
taken into account using Eq. (19). However, it lacks the-
oretical foundations: we do not know any microscopic
picture that would produce such gaussian fluctuations.

VI. FLUCTUATIONS AND FLOW METHODS

In practice, v2 and v4 are analyzed using the event-
plane method [35, 36]. The corresponding estimates are
denoted by v2{EP} and v4{EP}. In this Section, we ar-
gue that flow fluctuations have almost the same effect on
v4{EP} as on v4{3}. We limit our study to small fluctua-
tions for simplicity, in the same spirit as in Ref. [23]. We
write v2 = 〈v2〉+δv, with 〈δv〉 = 0 and 〈δv2〉 = σ2

v, where
σv characterizes the magnitude of flow fluctuations. Ex-
panding Eq. (12) to leading order in σv, we obtain

v4{3}
v2{2}2

=
1

2

(

1 + 4
σ2

v

〈v2〉2
)

. (21)

Similarly, one can write

v4{EP}
v2{EP}2

=
1

2

(

1 + α
σ2

v

〈v2〉2
)

, (22)

where α depends on the reaction plane resolution. A
similar parametrization has been introduced for the fluc-
tuations of v2{EP} [9]. The expression of α is derived
in Appendix A using the same methods as in Ref. [23].
Fig. 6 displays the variation of α with the event-plane

resolution for elliptic flow. One sees that α < 4, which
means that the effect of fluctuations is always smaller for
v4{EP} than for v4{3}; this is confirmed by the experi-
mental observation v4{3} > v4{EP} [3]. The resolution
is 1 when the reaction plane is reconstructed exactly. In
this limit, v2{EP} = 〈v2〉, v4{EP} = 1

2 〈(v2)
2〉, which

implies α = 1. In practice, however, the maximum reso-
lution for mid-central collisions is 0.84 for STAR [28] and
0.74 for PHENIX [6]. In the case of PHENIX, α is larger
than 3.2 for all centralities, which means that the effect
of fluctuations is decreased at most by 20% compared to
our estimates in the previous section.

VII. DISCUSSION

We have shown that experimental data on v4 are rather
well explained by combining the prediction v4 = (v2)

2/2
from hydrodynamics with elliptic flow fluctuations. If
this scenario is correct, then v4/(v2)

2 should be inde-
pendent of particle species and rapidity for fixed pt and
centrality. This is confirmed by preliminary results from
PHENIX, which give the same value for pions, kaons and
protons [6]. Note that our scenario does not support
the picture of hadron formation through quark coales-
cence at large pt [37]. Indeed, quark coalescence requires
that v4/(v2)

2 for the underlying quark distribution is
around 2, significantly larger than the observed v4/(v2)

2

for hadrons [38]. Now, the model calculation presented
in this paper is below the data for hadrons; the discrep-
ancy would be much worse with the underlying quark
distribution.

The centrality dependence of v4 offers a sensitive probe
of the mechanism underlying flow fluctuations. Eccen-
tricity fluctuations have been shown to explain quantita-
tively v2 data in Au-Au and Cu-Cu collisions. We find
that they also explain most of the results on v4 for pe-
ripheral and semi-central collisions. However, they are
unable to explain the steep rise of v4/(v2)

2 for the most
central bins, which is clearly seen both by STAR and

PHENIX. Data suggest that
〈

(v2)
4
〉

/
〈

(v2)
2
〉2 ≃ 3 for

the most central bin, while eccentricity fluctuations give
2. We cannot exclude a priori that this is due to large
errors in the extraction of v4: if we multiply the non-
flow error estimated in Sec. IV by a factor 4, data agree
with our calculation for central collisions; however, the
agreement is spoilt for peripheral collisions. It there-
fore seems unlikely that the discrepancy is solely due to
nonflow effects. These results suggest that initial state
fluctuations do not reduce to eccentricity fluctuations, as
recently shown by a study of transverse momentum fluc-
tuations [39]. Interestingly, the direct measurement of v2

fluctuations attempted by PHOBOS [40], which agrees
with the prediction from eccentricity fluctuations, does
not extend to the most central bin.

An independent confirmation that
〈

(v2)
4
〉

/
〈

(v2)
2
〉2 ≃

3 for central collisions could be obtained from the 4-
particle cumulant analysis. Interestingly, there is no
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published value of v2{4} for the most central bin: the
reason is probably that v2{4} cannot be defined using
Eq. (13), because the right-hand side is negative. This in-

dicates that
〈

(v2)
4
〉

/
〈

(v2)
2
〉2

> 2. It would be interest-
ing to repeat the cumulant analysis for central collisions,
and to scale the right-hand side of Eq. (13) by v2{2}4.

The ratio should be around −1 if
〈

(v2)
4
〉

/
〈

(v2)
2
〉2 ≃ 3.

This would give invaluable information on the mechanism
driving elliptic flow fluctuations.

APPENDIX A: EFFECT OF FLUCTUATIONS ON

THE EVENT-PLANE v4

In this Appendix, we derive the expression of α in
Eq. (22). This parameter measures the effect of fluctua-
tions on v4/(v2)

2 when flow is analyzed using the event-
plane method. The event plane v4 is defined by

v4{EP} ≡ 〈cos 4(φ − ΨR)〉
R4

, (A1)

where φ is the azimuthal angle of the particle, ΨR is the
angle of the event plane, and R4 is the event-plane resolu-
tion in the fourth harmonic. Using Eq. (A1), the relative
variation of v4/(v2)

2 due to eccentricity fluctuations can
be decomposed as the sum of three contributions

δ(v4/(v2)
2)

(v4/(v2)2)
=

δ〈cos 4(φ − ΨR)〉
〈cos 4(φ − ΨR)〉 − δR4

R4
− 2

δv2

v2
. (A2)

The first term on the right-hand side is the contribution
of fluctuations to the correlation with the event plane,
the second term is the contribution of fluctuations to the
resolution, the last term is the contribution of fluctua-
tions to v2{EP}. The definition of α, Eq. (22), can be
rewritten as

δ(v4/(v2)
2)

(v4/(v2)2)
=

σ2
v

〈v2〉2
α. (A3)

The three terms in Eq. (A2) give additive contributions
to α, which we evaluate in turn.

We start with the correlation with the event-plane.
The event plane ΨR is determined from elliptic flow [35].
Even flow harmonics v2n are analyzed by correlating
particles with this event plane: 〈cos 2n(φ − ΨR)〉 =
v2nR2n(χ), where the resolution R2n is given by [36]

R2n(χ) =

√
π

2
e−χ2/2χ

(

In−1

2

(

χ2

2

)

+ In+1

2

(

χ2

2

))

,

(A4)
where χ is the resolution parameter, which is estimated
using the correlation between two subevents. For n = 2,
this equation reduces to

R4(χ) =
e−χ2 − 1 + χ2

χ2
. (A5)

These relations are derived neglecting flow fluctuations.
If v2 fluctuates, the resolution parameter χ scales like v2,
χ = rv2. Assuming in addition that v4 scales like (v2)

2,
the relative change due to fluctuations is, to leading order
in σv,

δ〈cos 4(φ − ΨR)〉
〈cos 4(φ − ΨR)〉 =

σ2
v

2

d2

(dv2)2

(

(v2)
2R4(rv2

)

)

〈v2〉2 R4(r 〈v2〉)

=
σ2

v

2 〈v2〉2
d2

dχ2

(

χ2R4(χ
)

)

R4(χ)
, (A6)

where the right-hand side is evaluated for χ ≡ r 〈v2〉,
the average resolution parameter. Using Eq. (A5), one
obtains

1

R4(χ)

d2

dχ2

(

χ2R4(χ)
)

=
2χ2(eχ2

+ 2χ2 − 1)

1 + eχ2(χ2 − 1)
. (A7)

Inserting into Eqs. (A6) and (A2), and identifying with
Eq. (A3), we obtain the contribution to α from the cor-
relation with the event plane:

αep =
χ2(eχ2

+ 2χ2 − 1)

1 + eχ2(χ2 − 1)
. (A8)

We now evaluate the second term in Eq. (A2), namely,
the shift in the resolution from fluctuations. The reso-
lution is defined as R4 ≡ R4(χ

exp), where χexp is deter-
mined from the correlation between subevents. Flow fluc-
tuations shift the estimated resolution. Writing χexp =
χ + δχ, one obtains, to leading order in δχ,

δR4

R4
=

χR′

4(χ)

R4(χ)

δχ

χ
. (A9)

Eq. (A5) gives

χR′

4(χ)

R4(χ)
=

2(eχ2 − χ2 − 1)

1 + eχ2(χ2 − 1)
. (A10)

The shift in the resolution to fluctuations is given by
Eq. (A7) of Ref. [23]

δχ

χ
=

σ2
v

2 〈v〉2
(

1 − 2χ2
s +

4i21
i20 − i21

)

. (A11)

where i0,1 is a shorthand notation for I0,1(χ
2
s/2), and χs

denotes the resolution parameter of a subevent. Inserting
Eqs. (A10) and (A11) into (A9) and (A2), and identifying
with Eq. (A3), we obtain the contribution to α from the
resolution:

αres =
eχ2 − χ2 − 1

1 + eχ2(χ2 − 1)

(

1 − 2χ2
s +

4i21
i20 − i21

)

(A12)

Finally, the third term in Eq. (A2) is

2
δv2

v2
=

σ2
v

〈v2〉2
(αv2

− 1) (A13)
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where αv2
is given by Eq. (23) of Ref. [23]:

αv2
= 2 − I0 − I1

I0 + I1

(

2χ2 − 2χ2
s +

4i21
i20 − i21

)

, (A14)

where I0,1 is a shorthand notation for I0,1(χ
2/2).

The final result is obtained by summing the three con-
tributions from Eqs. (A8), (A12) and (A14):

α = αep − αres − (αv2
− 1). (A15)

The limit of low resolution χ → 0 (resp. high resolution
χ → ∞) is αep = 6 (resp. 1), αres = 1 (resp. 0), αv2

= 2
(resp. 1), α = 4 (resp. 1).
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