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Abstract. The aim of this paper is to test numerically the predictions from
the mode-coupling theory (MCT) of the glass transition and study its finite size
scaling properties in a model with an exact MCT transition, which we choose to
be the fully connected random orthogonal model. Surprisingly, some predictions
are verified while others seem clearly violated, with inconsistent values of some
MCT exponents. We show that this is due to strong pre-asymptotic effects that
disappear only in a surprisingly narrow region around the critical point. Our
study of finite size scaling (FSS) shows that standard theory valid for pure systems
fails because of strong sample to sample fluctuations. We propose a modified form
of FSS that accounts well for our results. En passant, we also give new theoretical
insights into FSS in disordered systems above their upper critical dimension. Our
conclusion is that the quantitative predictions of MCT are exceedingly difficult
to test even for models for which MCT is exact. Our results highlight that some
predictions are more robust than others. This could provide useful guidance when
dealing with experimental data.
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1. Introduction

In spite of all its shortcomings, the mode-coupling theory (MCT) [1, 2] of the glass
transition has most valuably contributed to our understanding of the slowing down
of supercooled liquids. It was the first ab initio theory to make precise, quantitative
predictions about the appearance of a two-step relaxation process in supercooled liquids
and hard sphere colloids as these systems become cooler or denser. MCT predicts in
particular a nontrivial ‘β relaxation’ regime where dynamical correlation functions pause
around a plateau value before finally relaxing to zero. Around this plateau value, power
law regimes in time are anticipated, together with the divergence of two distinct relaxation
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times, τα and τβ , as the MCT critical temperature Td is approached. Although this
divergence is smeared out by activated events in real liquids, the two-step relaxation
picture suggested by MCT seems to account quite well for the first few decades of the
increase of τα [1, 2].

Quite remarkably, it was observed soon after, by Kirkpatrick, Thirumalai and
Wolynes [3, 4], that the MCT equations in fact describe the exact evolution of the
correlation function of mean field p-spin and Potts glasses [5, 6]. Furthermore, some
physical properties of these p-spin glasses (such as the existence of an entropy crisis at a
well defined temperature Ts < Td) are tantalizingly similar to those of supercooled liquids,
even beyond the MCT regime. This has led to:

• A better understanding of the physical nature of the MCT transition, in terms of a
‘demixing’ of the unstable saddle points of the energy landscape and the (meta)stable
minima: above a certain energy threshold Eth only the former type is found, while
minima all sit below this threshold (for a recent review, see [7]).

• The elaboration of a consistent phenomenological description of the glass transition,
called the ‘random first-order transition’ (or RFOT) theory by Wolynes and
collaborators [3, 4, 8], within which the activated processes allowing the system to
hop between metastable minima are given a precise interpretation in terms of spatial
rearrangements.

More recently, it has been argued that MCT can be thought of as a Landau theory of
the glass transition [9], where the order parameter is the (small) time dependent difference
between the correlation function and its plateau value. It was furthermore shown that the
MCT transition is accompanied by the divergence of a dynamical correlation length [10, 11]
(see also [12, 13]), which gives a quantitative meaning (within MCT) to the concept of
heterogeneous dynamics. Correspondingly, critical fluctuations are expected close to the
MCT transition Td, and become dominant in spatial dimensions d < du, where the value
of the upper critical dimension is du = 6 or 8 depending on the existence of conserved
variables (see [14, 15]). For the model considered below, du = 6.

In view of the central role of the mode-coupling theory in our current understanding
of the glass transition, it is somewhat surprising that so little numerical work has been
devoted to models for which the MCT equations are believed to be exact. To our
knowledge there is in fact no exhaustive treatment of a spin model displaying an exact
MCT transition. Such a study is valuable for several reasons. First, it is important to know
how precisely the MCT predictions can be tested on a model where the theory is supposed
to be exact, and for which all the excuses for MCT’s failures in real systems (uncontrolled
approximations, activated events, low dimensions, etc) are absent. Second, the detailed
study of finite size effects is important, since one expects in that case to observe in a
controlled way the famous crossover between the MCT regime and the activated regime.
Furthermore, since the short-range nature of the interactions in liquids should somehow
lead to finite size corrections to the MCT equations, the results of this analysis should
provide important insights, and perhaps help us to understand the somewhat unexpected
results of Karmakar et al [16].

One reason explaining why these numerical studies are scarce is the slow dynamics of
these models. Even more so than for other spin glass models, a good sampling requires a
number of Monte Carlo iterations that grows rapidly with the system size even with an
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extremely efficient sampling algorithm, like the parallel tempering algorithm [17]. Another
reason is that the paradigmatic p-spin model is a p-body interaction model, which only
leads to MCT-like dynamics for p ≥ 3. Altogether this leads to quite heavy simulations
(see [18]). Other mean field models in the MCT class exist, like the fully connected q-state
Potts model (for q ≥ 4) [3] or the random orthogonal model (ROM) [19, 20], which are
two-body spin models. But a recent detailed study of the ten-state Potts model [21]–[24]
has led to rather strange results: absence of the ‘cage effect’, unusual finite size scaling
exponent. Nevertheless some behavior reminiscent of the MCT transition seems to emerge.
The ROM case is even worse; there is no precise study in the temperature range close to
the dynamic temperature, where all previous simulations have fallen out of equilibrium
even for a rather small system (N = 50 [19], [25]–[27]).

Our project aims to provide an exhaustive numerical analysis of the statics and the
dynamics of a model for which the mode-coupling theory is supposed to be exact. We
want in particular to: (i) test numerically the MCT predictions concerning the two-
point relaxation function (qd(t)) and the four-point correlation functions (χ4(t)) that
describe dynamical heterogeneities, (ii) study the pre-asymptotic corrections to the critical
behavior and (iii) analyze the finite size scaling of the MCT transition.

To achieve such a program, one needs a two-body model with well-separated static
(Ts) and dynamic (Td) transition temperatures. We have found that a certain variant
of the ROM satisfies these constraints. We also need an efficient algorithm, since the
ROM turns out to be an extremely difficult model to simulate. If one uses a simple
algorithm like the thermal annealing one, the convergence is so poor that the average
energy never goes below Eth below Td, even for small system sizes. In this work we will
use the best algorithm obtained to date for spin glass numerical simulations, namely the
parallel tempering algorithm [17]. In spite of tremendous numerical efforts, we are still
limited to rather small systems (up to 256 spins). However, our simulations allow us
to reach an interesting but somewhat unexpected conclusion: pre-asymptotic corrections
and finite size effects are so strong that a direct observation of the MCT predictions is
extremely difficult. Great care must be exercised to extract meaningful values of critical
exponents, even for a model for which MCT is in principle exact, at least in a Landau
sense [9]. Such problems are expected to arise in the analysis of experimental data as
well, and we believe that our work highlights some caveats concerning the validity and
relevance of MCT in practice.

Our first main result consists in establishing that pre-asymptotic effects are extremely
important until one approaches the MCT transition temperature up to fractions of one per
cent! We show this effect in two ways: (a) our numerical simulations of the ROM unveil
that several of the MCT predictions are still not verified quantitatively for temperatures
a few per cent higher than the critical one; (b) we solve numerically the schematic mode-
coupling theory equations and show that very similar conclusions are also reached in this
framework. Similar findings were obtained in [28] by comparing MCT predictions to
experimental data.

Our second main result is a detailed study of finite size scaling of the MCT transition.
This is of both practical and theoretical interest when one attempts to determine some
MCT exponents. We find that sample to sample fluctuations play a crucial role. As we
shall explain, thermal fluctuations would lead naturally to finite size effects that becomes
relevant for distance from the critical temperature of order N−2/3 where N denotes the
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system size. However, disorder fluctuations, that is sample to sample fluctuations of the
dynamic temperature, are of order N−1/2. The latter fluctuations therefore dominate and
lead to a very subtle finite size scaling behavior. Our study lead us to a generalization of
the Harris criterion suitable for disordered systems above their upper critical dimension.

The paper is organized as follows. After recalling the main predictions of the replica
method (for the statics) and of the MCT (for the dynamics) in section 2, we discuss
our numerical results for the statics of the ROM in section 3. In 4, we investigate the
equilibrium dynamics of the model and compare the results with the predictions from
MCT. We show that the glaring discrepancies come from the unexpectedly narrow critical
window around the MCT transition point, which we cannot access numerically without
large finite size effects. We then turn in section 5 to a detailed study of these finite size
effects, and to the possibility of using dynamical finite size scaling for this model. We find
that naive finite size scaling theory fails to account for our results, because of the strong
sample to sample dependence of the critical temperature. We show how to understand our
results phenomenologically in the rest of section 5, relegating to appendices more precise
statements on the apparent breakdown of the Harris criterion in high dimensions, and the
exact solution of the fully connected disordered Blume–Capel model, which provides an
explicit illustration of our arguments. Section 6 is dedicated to the conclusion and open
questions.

2. 1-RSB models: a short summary of known results

As mentioned in section 1, the starting point of the random first-order theory of the glass
transition is the analysis of the so-called discontinuous spin glasses, namely mean field
disordered models with an order parameter that has a jump at the transition. In terms of
the replica method, these are the ones solved by the so-called one-step replica symmetry
breaking ansatz (1-RSB; see [29, 30] and references therein). Examples are the p-spin
(spherical) model and the random orthogonal model that we are going to study in detail
in the following.

The physical behavior of these models is particularly transparent in terms of the
Thouless–Anderson–Palmer (TAP) [31] approach that allows one to analyze the free
energy landscape of the model. Technically, this is a Legendre transform of the free
energy as a function of all the local magnetizations. The minima of the TAP free energy
correspond to the thermodynamic states of the system, like how the two minima of the
Curie–Weiss free energy represent the two low temperature ferromagnetic states in the
(completely connected) Ising model.

For a 1-RSB system, the analysis of the number N of solutions of the TAP
equations that contribute to the free energy density shows that there exist two transition
temperatures: one static (Ts) and the second dynamic (Td), with Td > Ts. When
T > Td or T < Ts, the complexity, defined as N−1 lnN , vanishes in the large N limit
(N is the total number of spins). Above Td, this is because the energy is higher than
the threshold value Eth mentioned in section 1, so typical states are unstable saddles;
hence the system is in a paramagnetic state. Below Ts, this is because the low lying
amorphous minima are not numerous enough. Actually, the thermodynamic transition
arises precisely because of the vanishing of the complexity at Ts. Below Ts the system is in
the so-called 1-RSB phase (correspondingly the high temperature phase is called replica
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symmetric (RS)). For Ts < T < Td, on the other hand, the complexity takes a finite
nonzero value. In other words, between Ts and Td, an exponential number of metastable
states contribute to the free energy. In this temperature range, the system is already
not ergodic since a configuration starting in one of these multiple states and evolving
with, say, Langevin dynamics remains trapped inside the initial state forever (i.e. on all
timescales not diverging with the system size).

When approaching Td from above, the majority of the stationary points of the TAP
free energy, which are unstable above Td, become marginally stable at Td and stable
below. One therefore expects a slowing down of the dynamics due to the rarefaction of
descending directions in the free energy landscape [32]. In fact, the dynamics of some of
these models, e.g. the p-spin spherical model, can be analyzed exactly. One can show,
from the dynamical equation for the spin–spin time dependent equilibrium correlation
functions, that at Td an infinite plateau appears in the dynamical overlap qd(t) defined as

qd(t) =
1

N

∑

i

〈σi(0)σi(t)〉, (1)

where σi is the spin at site i. Remarkably, the integro-differential equations derived with
the mode-coupling theory of glasses for the density–density correlation functions reduce
identically within the so-called schematic approximation [33] to the equation obeyed
by qd(t). The solution of the equation for qd(t) (or the more complicated full MCT
equations) [34] leads to a two-step relaxation for the correlation function: there is a first
rapid decay from 1 towards a plateau value qEA, then a slow evolution around it (the β
regime) and, eventually, a very slow decay from it (the α relaxation). The plateau value
is called the Edwards–Anderson parameter, by analogy with spin glasses. For our present
purpose, we will be interested in these last two regimes.

At a given temperature T > Td, the dynamics in the β regime is described by power
laws. The approach to the plateau can be written as qd(t) ∼ qEA + ct−a, and the later
departure from the plateau as qd(t) ∼ qEA − c′tb. The exponents a and b are model
dependent, but satisfy the universal relation [35, 9]

Γ2(1 + b)

Γ(1 + 2b)
=

Γ2(1 − a)

Γ(1 − 2a)
, (2)

where Γ(x) =
∫ ∞
0

tx−1e−t dt is the Gamma function. In the α regime, close to Td, qd(t)
obeys a scaling law, called the time–temperature superposition in the structural glass
literature:

qd(t) � f(t/τα). (3)

This scaling form allows one to superpose on a single curve the data for different values
of time and temperature. A good fit of the function f(x) is obtained with a stretched
exponential f(x) ∝ exp(−xβ). The α relaxation time τα diverges at the transition T = Td,
as

τα ∝ (T − Td)
−γ, γ =

1

2a
+

1

2b
. (4)

The dynamical correlation qd(t) is the order parameter of the dynamical MCT
transition. Recently, especially in connection with the phenomenon of dynamical
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heterogeneity in glass-formers [36], there has been a lot of interest in the critical
fluctuations and dynamical correlations associated with this transition. A central
observable introduced in [37, 38] is the four-point susceptibility χ4(t), which measures
the thermal fluctuations of the order parameter qd(t):

χ4(t) = N(〈qd(t)2〉 − 〈qd(t)〉2), (5)

where, as usual, the brackets denote a thermal average and the overline denotes an average
over the quenched random couplings. For mean field glass models, or more generally for
MCT (without conservation laws), one can show that the four-point correlation function
becomes critical near the MCT transition temperature Td [39, 11]. In the β regime, and
with ε = (T − Td)/Td,

χ4(t) �
1√
ε
f1(tε

1/2a), t ∼ τβ = ε−1/2a, (6)

and in the α regime,

χ4(t) �
1

ε
f2(tε

γ), t ∼ τα, (7)

where f1(x) and f2(x) are two scaling functions, with the following properties: f1(x) ∝ xa

when x 	 1 and scales like xb when x 
 1; f2(x) scales like xb for x 	 1 and vanishes
for large x (note that the large time limit of χ4(t) is equal to the spin glass susceptibility
which is not critical at Td). Using the definition of γ, and equation (2), the numerical
analysis of χ4(t) very close to Td allows one, at least in principle, to extract all the MCT
exponents without having to know the value of qEA [39].

Finally, in [10, 11] it has been shown that MCT can be interpreted as a mean field
approximation of a critical model. Following this point of view, one can compute, within
this mean field theory, the spatial dynamical correlations and the associated diverging
correlation length at the transition ξ(T ). It can be established that ξ(T ) ∝ 1/(T − Td)

ν

with ν = 1/4 (see also [40]). Furthermore, the upper critical dimension of the theory
turns out to be du = 6 for dynamics without exactly conserved variables [14, 15].

3. Numerical simulations of the random orthogonal model: equilibration and static
properties

3.1. Definition of the model

The ROM [19] is a fully connected spin model with quenched disorder, defined by the
Hamiltonian

H = −1
2

∑

ij

σiJijσj , J =t OΛO,

where Λ is a diagonal matrix whose elements are equal to ±1 and are drawn according to

ρ(λ) = pδ(λ − 1) + (1 − p)δ(λ + 1), (8)

and O is an orthogonal matrix distributed with respect to the Haar measure (that
we generated numerically by using the NAG routine G05QAF); p is a real number
p ∈ [0, 1]. We will use later the notation ω ≡ {Ji,j} to denote a given instance of the
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disorder. The original model corresponds to p = 1/2. The normalization is such that

J2
ij = Tr J2/N2 = 1/N , ∀p. A detailed analysis for arbitrary p can be found in [27]. Both

the static and the dynamic temperatures depend on p (see [27] for more details). In the
following, p is set as 13/32 � 0.4. This gives us higher transition temperatures than for
p = 1/2 with a good separation of Ts and Td: Ts � 0.102 and Td � 0.177 respectively4.
With this value of p, the annealed entropy vanishes at a temperature close to Ts (for
p > 1/2 the annealed entropy vanishes exactly at Ts).

The static order parameter of the 1-RSB transition is the usual static overlap q
between two replicas, i.e. two equilibrium configurations {σ} and {τ} characterized by
the same quenched disorder. Its probability distribution function can be written as

P (q) ≡
〈

δ

(
q − 1

N

∑

i

σiτi

)〉
. (9)

In the thermodynamic limit, P (q) = δ(q) for T > Ts, two different replicas have zero
overlap with probability 1. In the low temperature (1-RSB) phase T < Ts, a second
delta function peak centered at a value q1 > 0 appears with a weight 1 − m. That is,
two different replicas may have mutual overlaps q0 = 0 with probability m, and q1 with
probability 1 − m. The Edwards–Anderson order parameter qEA(T ) is equal to q1. Note
that the shape of P (q) is only sensitive to the thermodynamics, and for Ts < T < Td,
P (q) = δ(q) like in the RS phase.

The ROM is strongly discontinuous: the value of q1 jumps sharply from 0 to a value
close to 1 at the static transition (see figure 6) below. This, together with the wide
separation of Ts and Td, makes a strong case for using the ROM, as compared to the
p-spin model [18] or the Potts glass [21]–[23]. Both of these models have unfortunately
very close static and dynamic transition temperatures.

3.2. The numerical method

Let us start by giving some details about our simulations. We study systems with
N = 32, 64, 128 and 256 spins. We thermalize the system using the parallel tempering
optimized Monte Carlo procedure [17], [41]–[43], with a set of 100 temperatures in the
range [0.078, 0.352] (ΔT = 0.002 for T < 0.2 and ΔT = 0.004 for T > 0.2), except
for the largest system where a smaller set of 20 temperatures is used, in order to save
computer time (with 0.13 ≤ T ≤ 0.282 and ΔT = 0.008). These parameters have been
chosen empirically and no claim is made that they are optimal. As usual, the program
simulates the independent evolution of two clones/replicas, in order to compute the static
overlap q. We perform 15 × 106 parallel tempering iterations (one iteration consists of
one Metropolis sweep of all spins, followed by one tempering update cycle of all pairs
of successive temperatures). The second half of the equilibration procedure is used to
measure the static quantities. The results of this analysis are presented in the following
subsections (see sections 3.3 and 3.4).

Due to the difficulty of equilibrating large systems at low temperature, we restrict
ourselves to T > Td for studying the finite size dependence of the dynamics. We also

4 There might be another transition to a full RSB state at lower temperatures, but we will not be concerned by
this possibility.
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restrict the number of temperatures to 15, equally distributed between 0.178 and 0.29
(ΔT = 0.008), for all system sizes. We first generate well thermalized configurations
using 15 × 106 parallel tempering iterations with T ∈ [0.178, 0.29] and ΔT = 0.008,
namely we are not using the final configurations of the previous paragraph. We then
perform 5 × 105 pure Metropolis sweeps and measure qd(t), the overlap between the well
equilibrated initial configuration, and the configuration at time t. We then perform 5×105

parallel tempering iterations in order to have a new, well decorrelated, starting point, and
repeat the procedure 100 times. This gives us for each disorder sample Nther = 200
thermally independent estimates of the dynamical overlap qd(t); this is large enough for
obtaining a reliable estimate of the nonlinear susceptibility χ4. The number of disorder
samples ω is Ndis = 500 for all sizes.

Let us mention that we have also studied the model obtained by projecting the
elements of the matrix J to ±1. The motivation was that in this case one could use
an efficient multi-spin coding technique [44]. Unfortunately, the resulting model displays
a very different physics, with ∞-RSB, and is accordingly not suitable for our purpose.
This is an illustration of the fragility of the ROM model with respect to perturbations.

3.3. Relaxation and equilibration tests

Disordered systems are notoriously difficult to simulate, and it is crucial to ensure good
quality sampling, and in particular good thermalization. There is unfortunately no
foolproof heuristics for this purpose.

The heuristics that we use for this simulation is checking that the fluctuation-
dissipation relation, relating the specific heat to the variance of the internal energy, is
satisfied. This is a very stringent test (see e.g. [45]) and we have checked in the case of
the SK model that it is consistent with other methods used in the literature. We define
the ratio R(T ) as

R(T ) =

(
d〈e〉
dT

− N
〈e2〉 − 〈e〉2

T 2

)(
d〈e〉
dT

)−1

, (10)

where e is the energy density. R(T ) vanishes when the configurations are well sampled.
Our data for R(T ) (with e as measured in the second half of our thermalization runs) as a
function of T can be found in figure 1 for system sizes N = 32–256. The results are very
satisfactory for all temperatures up to N = 128. For the largest system size, however, the
sampling is clearly not good enough below Td, in spite of intensive numerical efforts. This
is to be contrasted to the cases of the SK and Potts glass models where values of N up
to a few thousands can be handled with the parallel tempering algorithm [46, 21].

The modest efficiency of the parallel tempering algorithm when applied to the ROM
can be directly observed by studying how the main thermodynamic observables reach their
equilibrium values. Starting from a random initial configuration for the two clones (we take
σi = 1, ∀i), we plot the instantaneous value of the considered observable, averaged over

the disorder, in order to tame the fluctuations. The results for the internal energy (e(t))

and for the overlap between the two clones (q(t)) are given in figure 2, for T = 0.178 � Td.
This figure suggest a power law behavior e(t) − e∞ ∝ t−0.3 in the large N limit, with a
nonuniform convergence. The smaller the value of N , the earlier in time the data deviate
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Figure 1. Fluctuation-dissipation ratio R(T ) (see equation (10) for the precise
definition) as a function of the temperature, for N = 32–256. We note that
for all values of N , R(T ) fluctuates around zero, namely the systems are well
equilibrated, except for the largest size (N = 256) where the system falls out of
equilibrium below Td � 0.177.

Figure 2. Left: relaxation of the disorder averaged internal energy from a random
initial configuration, using the parallel tempering algorithm, for N = 64, 128 and
256. The simulation uses 15 temperatures equally distributed between 0.178 and
0.29. The energy at T = 0.178, just above Td, is plotted as a function of the
Monte Carlo time. The apparent power law behavior e(t) − e∞ ∝ t−0.3 is only
valid in the early time region. One notes that even (slightly) above Td, the
relaxation is extremely slow and equilibration is quite difficult to achieve (one
needs a couple of 105 Monte Carlo sweeps in order to equilibrate the internal
energy for N = 256). Right: relaxation of the disorder averaged overlap between
two clones evolving from two disordered initial configurations for N = 128 and
256 at T = 0.178. The relaxation is much faster (a few hundred Monte Carlo
sweeps are enough to equilibrate the overlap). We use the same color code as in
figure 1.
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Figure 3. Spin glass susceptibility as a function of the temperature, for N = 32
to 256. One observes (a) a strong size dependence effect below Td � 0.177 and
(b) an extremely slow convergence towards the asymptotic T → ∞ value. In
the inset χ

(N=32)
SG is plotted for high temperatures up to 35Ts together with the

asymptote χ
(∀N)
SG = 1. This illustrates how ‘cold’ the ROM glassy phase is. We

use the same color code as in figure 1.

from the power law behavior. For large t, the relaxation becomes strongly N dependent;
smaller systems relax much faster.

A power law relaxation of the energy at Td is in fact expected on theoretical grounds.
The value of the exponent was recently conjectured by Lefèvre [72] to be equal to a, the
MCT exponent defined above. This is compatible with our finding since, as we shall find
later, a ≈ 0.35 for the ROM.

The slow relaxation of the internal energy, even for T > Td, illustrates why it is a
hopeless task to simulate the ROM below (and near) Td for reasonable system sizes. The
much faster relaxation of the overlap can be understood with the following argument.
The two clones start at the top of a very rugged energy landscape. After a few sweeps,
they have started falling down in directions of, or towards, traps whose probable overlap
is zero. This leads to a fast decorrelation of q(t). Instead, in order to equilibrate the
internal energy, one has to visit many different traps in order to have a good statistical
sampling of all energy states, which is a much slower process.

Many reasons can be invoked to explain the poor performances of the parallel
tempering algorithm applied to the ROM. The first one is that the temperature in
the interesting region is in fact extremely low, leading to extremely small Metropolis
and exchange acceptance rates. A way to gauge the smallness of the ROM transition
temperature is to study the spin glass susceptibility χSG = N〈q2〉 as a function of the
temperature (see figure 3). When T → ∞, χSG must tend to unity, but strong corrections
are still present up to T ≈ 10Td. This is expected, since the leading nontrivial 1/T
correction to χSG is the same in the ROM and SK models, because the variance of the
Jij is normalized to the same value in the two cases. However, the critical temperature of
the SK model is T SK

c = 1, ten times larger than the critical temperature of the ROM.
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Figure 4. Internal energy density u(T ) as a function of T for N = 32–128 (top to
bottom) and 256 (points that do not extend below T = 0.12), together with the
analytical prediction in the infinite volume limit. We use the same color code as
in figure 1. The N = 256 data below Td � 0.177 are not at equilibrium.

A deeper explanation relies on the physics of 1-RSB models, recalled in the above
section. The existence of numerous metastable states in the range (Ts, Td) slows the
dynamics down dramatically. Indeed, in order to have a decent sampling, one should
explore a representative subset of all the metastable states. The complexity of the ROM
has been computed in the thermodynamic limit in [47]. It shows a sharp jump from 0 to
a finite value below Td, and thus the log of the number of states that must be explored
jumps from 0 to a number of order N at Td. It does not come as a surprise that the
algorithm fails below Td even for moderate values of N . A precise understanding of why
the ROM case is so much more difficult than the Potts and p-spin cases is still lacking. A
reasonable conjecture is that this is due to fact that the overlap value is so close to unity.
Another system where this happens, and where the dynamics is indeed painfully slow, is
the Bernasconi model (see [48, 49]).

We note, en passant, that applied to the model with binarized exchange couplings
briefly mentioned above, the parallel tempering works brilliantly.

3.4. Thermodynamics

We show in figure 4 our data for the internal energy per spin, defined as u(T ) = 〈H〉/N
as a function of the temperature, together with the theoretical result obtained in [27]. For
our special choice of p, one finds

u(T ) = 1
4

(
T −

√
T 2 − 3

4
T + 4

)
, T ≥ Ts, (11)

u(T ) = −0.47, T < Ts. (12)

The numerical data for u(T ) are qualitatively consistent with the infinite volume analytical
results, up to the finite size corrections, with the marked exception of the N = 256 data
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Figure 5. The parameter A (left) and the Binder parameter B(T ) (right) as a
function of T , for N = 32–256. We use the same color code as in the previous
figures.

Figure 6. Left: P (q) for Ts < T = 0.154 < Td. Right: P (q) for T = 0.078 < Ts.
Both cases are for N = 32–128. We use the same color code as in the previous
figures.

below Td, which are at odds with the rest of the picture. This is in agreement with our
previous observation that the N = 256 systems are not at equilibrium at low temperature
and should be discarded there. The temperature below which the fluctuation-dissipation
relation is violated indeed roughly coincides with the one below which the numerical values
of u(T ) become manifestly wrong.

After discarding the bad data, u(T ) converges towards the predicted infinite volume
value, although with marked size effects below the dynamical temperature. The finite size
effects at T = 0.08 are roughly compatible with a 1/N behavior. A similar observation
was made for the p-spin model in [46].

Following [50], we plot in figure 5 the coefficient A(T ) defined as

A(T ) =
〈q2〉2 − 〈q2〉2

〈q2〉2
, (13)
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that signals [51] the onset of the non-self-averaging behavior of q2. In figure 5, we plot
the usual Binder parameter,

B(T ) =
1

2

(
3 − 〈q4〉

〈q2〉2

)
. (14)

For generic 1-RSB transitions, Picco et al [50] have argued that these two coefficients
are zero for T > Ts (in the thermodynamic limit), nonzero for T < Ts and in fact diverge
at the static transition T → T−

s . The fact that the Binder coefficient is negative when
T → T−

s is simply related to the appearance of a peak in P (q) for q �= 0. In the infinite
volume limit, one has

P (q) = (1 − m)δ(q) + mδ(q − q1), (15)

with m < 1, and m → 0 when T → T−
s . Accordingly one has B(T ) = (1− 1/m)/2 < 0 in

the 1-RSB region.
Our data are in qualitative agreement with the above limiting behavior (see [50, 18]

for a similar numerical analysis in the case of the p-spin model). Note that for a 1-RSB
transition, the curves of B(T ) as a function of T for various values of N do not cross at a
universal point, at variance with usual phase transitions (including ∞-RSB transitions).

The overlap probability distribution P (q) is found to have the shape corresponding
to a 1-RSB phase transition, with one peak around q = 0 and, below Ts, another peak
around q = q1 (q1 is close to 1 in our specific case). With N finite, both peaks have a
nonzero width, as always. It turns out that the q = 0 peak is much broader than the
peak at q = q1. Above Ts, our data show a spurious peak centered at q � 1. This peak
however corresponds to an unstable thermodynamic phase and decays sharply with the
size of the system (see figure 6) as it should. As shown in figure 6, the peak centered at
q � 1 becomes extremely sharp for T < Ts.

3.5. Thermodynamics: conclusion

We have thus been able to confirm numerically the main replica predictions for the ROM:
the energy as a function of the temperature freezes at the static transition, and the order
parameter is strongly discontinuous there. This could be related to the fact that the
static transition temperature is very small, compared, for example, to the SK model.
Correspondingly, it is very hard to equilibrate the system despite intensive numerical
efforts. Systems with N = 256 did not reach equilibrium below the dynamical transition.

4. Numerical simulations: dynamical behavior

We now present our numerical study of the equilibrium dynamics of the ROM. Contrary
to the case for the spherical p-spin glass model, the exact dynamical equations for the
ROM are not known. But in view of the above results on the statics of the model, the
dynamics of the ROM should be described by the mode-coupling theory, even at finite
N , at least in a Landau sense5. More precisely, the MCT power laws are expected to be

5 We expect the MCT to apply for the ROM like mean field theory for a standard phase transition: for all systems
above the upper critical dimension the universal properties (and so also the FSS behavior) are the same as in
solvable mean field models although an exact full solution is not beyond reach. The universal character of MCT
has been discussed and obtained in [9].
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Figure 7. Left: dynamical overlap qd(t) for the largest system (N = 256),
and for various temperatures from T � Td (upper curve) to T = 1.65Td

(the temperature step is such that ΔT/Td ≈ 5%.) Right: test of the time–
temperature superposition for qd(t) for all sizes (N = 256, gray circles; 128, blue
upwards triangles; 64, red squares; 32, black downwards triangles) and various
temperatures from T = 1.25Td to 1.65Td. One remarks clearly the decay of finite
size corrections and the convergence to a limiting curve.

valid within some N dependent region, and the actual values of the exponent, although
not universal, are constrained to verify equations (2) and (4); see [9].

In this section, we compare our data with the predictions of MCT for both the two-
point and the four-point correlation functions. The results are very puzzling at first sight.
We will show in the following sections that a detailed understanding of pre-asymptotic
corrections and finite size effects is required in order to rationalize our numerical results.

4.1. Dynamic scaling and comparison with MCT

We first focus on the dynamical overlap qd(t) (defined in equation (1)). Our data show a
plateau in qd(t), whose extent increases on lowering the temperature; see figure 7.

The value of the dynamical overlap on the plateau is close to the infinite volume limit
of the Edwards–Anderson parameter (qEA(Td) ≈ 0.955), as it should be. After a single
Monte Carlo sweep, qd(t) has already decayed to the plateau value. Therefore we cannot
observe the early β regime. This is an unfortunate drawback of our choice of the ROM
with parameter p = 13/32. We however do see the α regime in full glory. Our results are
quite different from those obtained for the Potts model [21]–[23], where no plateau was
observed in qd(t) for systems with N up to 2560.

In order to be quantitative, we define the timescale τα(T ) (see equation (3)) as the
time needed to reach the value qd(τα) = 1/2. If time–temperature superposition (TTS)
holds, the precise definition used is irrelevant. We have checked that the qd(t)’s plotted as
a function of t/τα(T ) approximately collapse onto a unique scaling curve for the largest
system sizes, but for temperatures not too close to Td; see figure 7.
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Figure 8. Left: relaxation times τα versus ε = (T − Td)/Td, for different
system sizes (with the same color code as in the previous figures). For ε > 0.2,
i.e. T > 1.2Td, an N independent regime is observed, with τα ∝ ε−γ and γ ≈ 2.1,
over two time decades. Right: determination of the b exponent of the von
Schweidler law through the derivative of the overlap, −dqd/d ln t ∝ tb. (Here
N = 256, T = 0.226.) The two straight lines correspond to b = 0.62 and
bMCT = 0.75 respectively.

However, as T gets closer to Td, TTS appears to break down: instead of approaching
a universal scaling curve, the qd(t)’s are more and more stretched as the system size
increases. This is a priori surprising since TTS should work better close to the MCT
transition. But we find that close to Td, finite size effects become important. This is
also revealed by the behavior of τα(T ) as a function of ε = (T − Td)/Td; see figure 8.
A MCT power law fit, τα ∝ ε−γ, accounts reasonably well for the regime ε > 0.2 where
finite size effects are small, and yields γ ≈ 2.1. MCT also makes detailed predictions
about the form of the scaled relaxation function, as we discussed in the introductory
sections. Unfortunately the power law predicted in the early β regime is inaccessible
because the plateau is too close to unity. However, we can check the (von Schweidler)
power law associated with the late β regime. In order to do so in a way that does not
require a precise determination of the plateau value qEA, we plot in figure 8 −dqd/d ln t
for our largest system size N = 256 at the lowest temperature at which we do not have
substantial finite size effects. According to MCT, this quantity should increase as tb when
τβ 	 t 	 τα. From the power law fit shown in figure 8 we determine b ≈ 0.62. But within
MCT the values of b and γ are not independent (see equations (2) and (4) above). The
value of b corresponding to γ ≈ 2.1 is found to be bMCT ≈ 0.75 which is distinctly too
large compared to our data (see figure 8). This is a second puzzling result since MCT
predictions are expected to apply to the ROM dynamics close to Td.

Other puzzling features emerge from the analysis of the dynamic susceptibility χ4(t),
as defined by equation (5). A plot of the peak value χ∗

4 as a function of ε for our
largest system size shows (in the regime without finite size effects) a power law behavior
compatible with the MCT prediction χ∗

4 ∝ 1/ε (see figure 9). However, figure 9 shows
that there is no collapse of χ4(t)/χ

∗
4 plotted as a function of t/τ4, where τ4 is such that
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Figure 9. Left: maximum of χ4 versus ε. The MCT prediction would be χ∗
4 ∝ 1/ε.

Right: scaling plot for χ4 (here N = 256). The straight line corresponds to a
power law with an exponent 0.9.

Figure 10. Comparison of three susceptibilities: χ4 (circles), −dqd/d ln t
(squares) and −dqd/dT (triangles). Here, N = 256 and T = 0.226. Each
susceptibility has been rescaled with its own χ∗ and τ∗. All three quantities
should grow with the same initial power law behavior within MCT. This is clearly
not the case for χ4(t).

χ∗
4 ≡ χ4(t = τ4)

Note 6, at variance with the MCT prediction for t < τ4.
7 Before the peak,

χ4(t) appears to grow as tb4 with b4 ≈ 0.85. Such a power law increase is again predicted
by MCT, but one should find χ4(t) ∝ −dqd/d ln t [10, 11], i.e. b4 = b ≈ 0.62. In fact,
MCT also predicts that χ4(t) ∝ −dqd/dT [15]. We show in figure 10 these three different
quantities on a log–log plot. Although −dqd(t)/dT and −dqd/d ln t are indeed similar,
χ4(t) does not conform to expectations.

6 We checked that τ4 and τα are approximatively proportional.
7 For large times scaling is not expected, since in this limit χ4(t) → χSG and this has a finite nonzero limit as
N → ∞ and T → Td, unlike χ∗

4, which is expected to diverge.
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In conclusion: although some of the MCT predictions are quantitatively obeyed, other
important ones are clearly violated. The solution of this conundrum is that the values of
ε used above are actually not small enough to be in the asymptotic regime where MCT
predictions hold. As we shall show in section 4.2, these predictions are only valid in a
surprisingly small region close to the transition. So why not work closer to Td? The next
problem that we will have to deal with (section 5) is finite size effects, that become large
close to Td. Therefore, only after a very careful finite size analysis can one conclude on
the compatibility between the MCT predictions and the numerical behavior of a model
that is in principle exactly described by MCT! We will show how difficult this program
turns out to be for the ROM. This sheds considerable doubt on the precise, quantitative
comparison between experimental data and MCT, since these problems should show up
in these cases as well.

4.2. MCT critical properties and pre-asymptotic corrections

At this stage, it is important to have a reliable reference point to which we can compare
our numerical results. For this we choose to study in detail the Leutheusser integro-
differential equation for the correlation function [52], which comes out of the schematic
version of MCT with a so-called quadratic kernel:

Φ̈(t) + ΩΦ̇(t) + Φ(t) + 4λ

∫ t

0

dτ Φ2(τ)Φ̇(t − τ) = 0, Φ(0) = 1. (16)

In the above equation, Φ(t) is the correlation function and plays the role of qd(t) above,
and λ is the coupling constant that measures the strength of the feedback effects at the
heart of the MCT transition. Remarkably, the equation above is also the one governing the
evolution of the correlation function for the p = 3 mean field disordered p-spin model [29].
It can be analyzed mathematically, and all the results quoted in section 2 can be shown
to hold exactly in the limit λ → λd = 1. In particular, the model is ergodic for λ < 1,
where limt→∞ Φ(t) = 0, and develops power law regimes with exponents a and b given by
(equation (2)):

Γ2(1 + b)

Γ(1 + 2b)
=

Γ2(1 − a)

Γ(1 − 2a)
=

1

2
, (17)

leading to a ≈ 0.315, b = 1, γ ≈ 1.765.
The Leutheusser equation can be solved numerically for arbitrary large values of t,

using for example the algorithm of [53]. In what follows we fix Ω = 1, and neglect the
Φ̈(t) term, as is usually done. In order to compare directly with the ROM data above,
we have computed Φ(t) for values of λ that are at the same relative distances from the
critical point as our ROM data, for temperatures T = 0.178, 0.186, . . ., and 0.250. (We
recall that Td = 0.177 for the ROM.)

Figure 11 shows a TTS plot of Φ(t) using the exact value of γ, i.e. using τα = ε−1.765,
where ε = (1 − λ) = (T − Td)/Td. This figure shows apparent scaling in the late β
(von Schweidler) regime, with only small scaling violation. However, only the relaxation
corresponding to the value of λ closest to unity (ε ≈ 0.05) reveals the expected two-step
relaxation with a nontrivial plateau region!

More revealing is a log–log plot of −dΦ(t)/d ln t, shown in figure 11 together with the
expected theoretical behavior −dΦ(t)/d ln t ∝ tb with b = 1 (the derivative is computed
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Figure 11. Leutheusser model. Left: scaling plot of Φ(t) as a function of t/τα, at
the same relative distances from the MCT transition as for our ROM data above
Td, namely λ = Td/T , for (from top to bottom) T = 0.178, 0.186, . . . , 0.250. The
α timescale is given by τα = (1 − λ)−1.765. Right: scaling plot of −dΦ(t)/d ln t,
with the same color code. The expected late β behavior −dΦ(t)/d ln t ∝ tb with
b = 1 is shown for comparison.

by plain finite difference). We now see very strong scaling violations before the peak,
and an apparent value of b that is significantly below 1, even for the curve closest to the
critical point. The conclusion is that while the value of γ extracted from a TTS plot of
Φ(t) is reasonable, the value of b that one can extract from Φ(t) 5% away from the critical
point is grossly underestimated. This is similar to our observations above for the ROM.

Let us now turn to the nonlinear susceptibilities χ4(t) and χT (t) = dΦ(t)/dλ. Within
MCT, the two quantities have the same scaling behavior. In particular one expects that
χ4(t) = ε−1F (t/τα), with F (x) ∝ xb, in the late β regime. Numerically, χT (t) is easy
to obtain from the value of Φ(t) for different values of λ. The case of χ4(t) is less
straightforward. It turns out [13] that a dynamical susceptibility, a proxy for χ4(t),
can be computed for the spherical p-spin model, which as recalled before is characterized
by a dynamical equation for the correlation function identical to that of the Leutheusser
model. A perturbed time dependent Hamiltonian Hη is introduced:

Hη = H − ηqd(t), (18)

where H is the usual p-spin Hamiltonian, and qd(t) is the overlap between the spin
configurations at times t and t = 0. Then χ4(t) ≡ d〈qd(t)〉/dη|η=0. For a given value of η,
one is led to a set of two integro-differential equations that can be solved numerically [54].
The estimate of χ4(t) follows from a careful extrapolation to η = 0. Figure 12 shows
scaling plots for χT (t) and χ4(t). Although an approximate scaling is observed close to
the peak, only the χT (t) curve closest to the transition gives a hint of the correct value of
the exponent b. The scaling violations are non-monotonic and could fool the reader into
seeing scaling with some b less than the correct value. The estimate for b from χ4(t) is
systematically larger, and closer to the true value. This again is similar to our numerical
observations for the ROM.

In order to observe the asymptotic MCT scaling predictions, one must work much
closer to the transition. For example, the expected linear regime of −dΦ(t)/d ln t ∝ (t/τα)
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Figure 12. Left: scaling plot of χT (t) = dΦ(t)/dλ. The values of λ are the
same as in figures 11, with the same color code. The expected scaling behavior
dΦ(t)/d ln ε ∝ (t/8τα)b with b = 1 is shown for comparison. Right: scaling plot
of χ4(t) for the spherical three-spin model, with again the same values of ε and
the same color code. The straight line corresponds to the theoretical prediction
χ4 ∝ ε−1(tεγ)b, with b = 1.

Figure 13. Same as figure 12, but going deeply inside the scaling region, namely
for ε = 10−1, 10−2, . . . , 10−8 for the left wing figure, ε = 10−1, 10−2, . . . , 10−6 for
the right wing figure. In both cases a limit linear behavior with the correct slope
becomes more and more apparent as ε approaches zero. Both straight lines are
the same as in the figure 12.

only appears very slowly as λ → 1, and is well developed only for ε ≤ 10−4. Figure 13
shows a similar behavior for dΦ(t)/dλ. The linear region appears only when ε ≤ 10−3.
Finally figure 13 shows the even slower approach to scaling of χ4(t) (beware, however: ε
is here limited to 10−6).
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4.3. Dynamics: conclusion

The above results show that the true asymptotic regime of MCT is unusually narrow.
This should be remembered when comparing numerical (or experimental) data with MCT
predictions. These data are usually plagued with noise and possible finite size effects, on
top of the strong scaling violations that appear even in the best case situation studied in
this section. On the other hand, some useful conclusions emerge, which allows us to make
sense of our data on the ROM dynamics in the pre-asymptotic regime: (i) an approximate
TTS holds for the late β regime, with the correct value of exponent γ; (ii) the exponent
b extracted from the time dependence of the correlation function underestimates the true
value; (iii) for the dynamical susceptibility χ4, the scaling is acceptable around the peak
with the predicted divergence ε−1, with a value of b in the correct range. From these
considerations, we conclude that the correct values of b for the ROM should be around
b ≈ 0.8, and the corresponding value of γ close to 2, and a ≈ 0.35. A confirmation of
these values should come from studying the dynamics closer to Td. However, finite size
corrections become important there and we now turn to the study of these effects.

5. Finite size scaling: more surprises

In section 4.1, we have shown that the critical behavior of the ROM dynamics in the
regime where finite size corrections are small is polluted by strong pre-asymptotic effects.
In order to get rid of those one should simulate very large systems very close to Td, which
is alas not possible since the equilibration time also becomes very large. The hope would
be to use finite size scaling (FSS) to extract the interesting asymptotic behavior.

5.1. Naive theory and comparison with numerical data

The MCT predictions are modified for finite but large system sizes. One expects in
particular activated effects, absent for infinitely large systems, to start playing a role for
finite systems close to Td.

As we have recalled above, it was recently recognized that MCT is a mean field
(Landau) theory characterized by a diverging length scale ξ ∝ ε−1/4 [10, 11] and the
corresponding upper critical dimension is du = 6. Assuming that the field theoretical
analysis of [55, 56] applies also to this dynamical transition,8 we expect finite size scaling
to hold for MCT above the upper critical dimension du where the proper scaling variable
is not L/ξ = N1/dεν but rather N1/duεν [57]. The fully connected ROM is obviously above
the upper critical dimension and the relaxation time τα for a finite system should therefore
take the following scaling form:

τα(T, N) = Nγ/νduF(N1/νduε), νdu = 3/2. (19)

When N → ∞, all N dependence should disappear and the MCT divergence of
equation (4) must be recovered. This means that the scaling function F must behave
as F(x) ∝ x−γ when x 
 1.

8 Note that although a direct field theoretical analysis of FSS for the MCT dynamical transition seems very
difficult, the scaling MCT exponents are related to the ones obtained from the replica theory. Naively, the
analysis of [55, 56] is expected to hold for the replica field theory.
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Figure 14. Left: scaling plot of τ4(T,N) using equation (19) with γ = 2.1 and
duν = 2. Right: scaling plot of the maximum of χ4, using equation (20) with
duν = 2 and s = 1. In both panes, the color code is the same as in figures 16
and 17.

We analyze our numerical results on τα(T, N) using the above FSS form; see figure 14.
A good collapse of the different curves can indeed be obtained using equation (19) with
γ = 2.1, but we need to use the value duν = 2 instead of the expected value 3/2.

If we now turn to the four-point susceptibility χ4, another confusing result is obtained.
While the peak location τ ∗

4 has the same finite size scaling as τα, as expected, the FSS of
the peak height should read

χ∗
4(T, N) = N sG(N1/νduε). (20)

Using the above effective value νdu = 2, the exponent s should be such that for large N ,
χ∗

4 diverges as ε−1 independently of N . This fixes s = 1/2, at variance with our numerical
data that suggest χ∗

4 ∝ N s with s � 1; see figure 14. Note that despite the uncertainties
in the exact value of s, we clearly find that s > 1/2 (note also the decay of the scaling
function G(x) at large arguments).

We therefore find that finite size scaling appears to work for the ROM transition
but not in the way expected, at least naively. In particular, the scaling variable

√
Nε is

at odds with the value of the upper critical dimension for the ROM dynamics (without
explicitly conserved variables) and the value of the exponent ν.

The following subsections are dedicated to a detailed discussion and explanation of
these puzzling results. As we shall show, there is no contradiction whatsoever and the
origin of this strange FSS is the sample to sample fluctuations of the critical temperature
Td.

5.2. The Harris criterion and random critical points

It is well known that the stability of pure critical points with respect to weak disorder [58]
is governed by the Harris criterion: near a second-order phase transition in dimension d,
the bond disorder is irrelevant if the specific heat exponent αpure = 2− dνpure is negative,
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where νpure is the correlation length exponent of the pure system. Then the critical
exponents of the disordered system are the same as those of the pure system.

If αpure > 0, disorder becomes relevant and the system is driven towards a so-called
random fixed point characterized by a new correlation length exponent νR satisfying the
general bound νR ≥ 2/d. In the last twenty years, important progress [59]–[61] has
been made in the understanding of finite size properties of random critical points. For
our purpose we only recall that with each realization of disorder (ω), one can associate
a pseudo-critical temperature Td(ω, N), defined for instance as the temperature where
the relevant susceptibility is maximum. The disorder averaged pseudo-critical critical
temperature T N

d ≡ Td(ω, N) converges towards its infinite size limit as T∞
d − T N

d ∝
N−1/dνR . The width ΔTd(N) of the distribution of the pseudo-critical temperatures
Td(ω, N) then depends on the nature of the critical point. If the disorder is irrelevant,
ΔTd(N) scales trivially like N−1/2, but like N−1/dνR if the disorder is relevant.

All previous studies of FSS for disordered systems mentioned above have focused on
models below their upper critical dimension (see for example [62]). Instead the ROM is
clearly above its upper critical dimension. As a consequence, it is not obvious how to
deduce its FSS behavior from previous works. In appendix A we discuss in detail the
subtleties of the Harris criterion above the upper critical dimension.

From a phenomenological point of view, one expects general features of random fixed
points to still occur: in particular one can define a sample dependent pseudo-critical
dynamical temperature Td(ω, N) ≡ Td+δT (ω, N). A hand-waving argument providing an
understanding of the origin of these fluctuations suggests considering the TAP equations
for the ROM. The high temperature expansion leading to the TAP equations for the ROM
has disorder dependent corrections of order N−1/2. These have a dramatic effect on FSS
since these corrections are much larger than the expected FSS thermal window N−2/3

of the MCT transition. We will therefore assume, justifying this later on, that for each
sample the FSS window is indeed of the order N−2/3 around a random critical temperature
that has disorder fluctuations of the order of N−1/2. As a consequence, FSS for disordered
averaged observables is dominated by the fluctuations of the critical temperature that
wash out the much sharper N−2/3 FSS thermal window9 (see figure 15 for a cartoon
representation). Note that a similar situation for FSS of a random first-order transition
has been discussed by Fisher in [63].

5.3. Random critical temperatures and modified FSS

To make the above statements more precise, let us consider the generic example of some
thermodynamic observable O. One would like to compute O. We assume that averaging
over the disorder is equivalent to averaging over the distribution of critical temperatures,
p(Td(ω, N)). For the sake of simplicity, p(Td(ω, N)) is taken to be a well behaved
distribution with width of order N−1/2 centered on Td, the true asymptotic dynamical
temperature10. Moreover, we posit that for each sample, some kind of FSS holds, in the
sense that

O(T, N) = N2ζ/3F(N2/3[T − Td(ω, N)]), (21)

9 This cannot happen below the upper critical dimension due to the Harris criterion.
10 There will also be finite size corrections to the center of the distribution, but these are expected to be subleading
to N−1/2.
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Figure 15. Sketch of the sample to sample fluctuations of a susceptibility in
situations where the critical temperature fluctuates on scales of N−1/2, much
larger than the FSS thermal window N−2/3. Here ω and ξ are two disorder
configurations.

where ζ is a certain exponent that depends on the particular observable, and the
scaling function F is, at least to leading order, sample independent. We assume that
F(x) is regular for small arguments, and F(|x|) ∝ A±|x|−ζ for x → ±∞, such that
O(T, N → ∞) ∝ |ε|−ζ independently of N . It is possible to justify all these assumptions
within a simple toy model, the weakly disordered version of the Blume–Capel model, that
displays exactly the unusual FSS discussed in this section. We warmly invite the reader
to examine appendix B for more details.

Now, writing Td(ω, N) = Td − yN−1/2, disorder averaging is obtained by computing

O(T ) = N2ζ/3

∫
dy p(y)F(N2/3ε + N1/6y), (22)

where ε = T − Td. The analysis of the above integral in the large N limit requires us to
distinguish two cases: ζ < 1 and ζ > 1 (with further logarithmic terms when ζ = 1).

• When ζ < 1, one can set ε = u/
√

N and take N 
 1 in the above integral, to get to
leading order

O(T ) = N ζ/2F̂(
√

N [T − Td]), (23)

F̂(u) =

∫ ∞

−u

dy
A+p(y)

(u + y)ζ
+

∫ −u

−∞
dy

A−p(y)

|u + y|ζ . (24)

Since ζ < 1, the integral defining F̂ is always convergent when u → 0, leading to
a well behaved scaling function. Therefore, in this case the usual FSS strategy is
valid, with a scaling variable dominated by the fluctuations of critical temperature:
N2/3 → N1/2.

• When ζ > 1, on the other hand, the relevant change of variable is y = z/N1/6 − u.
Again to leading order, this gives

O(T ) ≈ AN (4ζ−1)/6p
(
−
√

N [T − Td]
)

, (25)
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where A =
∫

dzF(z) is a convergent integral thanks to the rapid decay of F(z)
for large z, leading to a finite multiplicative constant. In this case, FSS is drastically
altered by the sample to sample fluctuations of the dynamical temperature; the decay
of the scaling function is related to that of the distribution of critical temperatures,
and the exponent (4ζ − 1)/6 is unusual.

The above analysis can be extended to the case of ‘asymmetric observables’, where the
power law decay of F(x) is different when x → +∞ and x → −∞. Most of the interesting
ROM observables turn out to be of that type around Td; see sections 5.5 and 5.6.

5.4. FSS for single samples

Checking these assumptions numerically is tricky for the ROM. If there was a
(susceptibility-like) quantity with a sharp peak around Td then it would be simple: one
would just rescale, for each sample, this quantity around its peak and verify whether the
usual finite size scaling holds, as suggested by figure 15. Unfortunately, no such quantity
exists for the ROM. As we have seen, χ∗

4(T ) is a monotonically decreasing function of
temperature. In order to check the usual FSS, one should shift χ∗

4(T ) horizontally for
each sample around its own effective dynamical transition temperature Td(ω, N). In
order to determine this effective critical temperature we focus on the sample to sample
fluctuations of the relaxation time (see the left panel of figure 16). We assume that
the relaxation time is uniquely determined—at fixed N—by the distance T − Td(ω, N),
i.e. τ(ω, T ) = C(T − Td(ω, N)), where C is a certain function. Thus, choosing a certain
reference relaxation time τ ∗ for a given sample, one fixes the difference T ∗(ω, N)−Td(ω, N)
at a sample independent value δ∗ (with τ(ω, T ∗(ω, N)) = τ ∗). Therefore, by averaging,

δ∗ = T ∗(ω, N) − Td(ω, N) = T ∗(ω, N) − Td(ω, N) = T ∗(ω, N) − Td + O(N−2/3),

where we have assumed that the N dependent correction to the average critical
temperature is O(N−2/3), which only introduces a shift in the final scaling variable. The
above equation allows one to determine the sample dependent shift of critical temperature,
Td(ω, N)−Td, as T ∗(ω, N)−T ∗(ω, N). This procedure does not require the knowledge of
the functional form of the relaxation time. Once this shift is known, one can rescale the
temperature axis in a sample dependent way, and test FSS sample by sample.

The results are given in figures 16 and 17. Our statistics is quite limited because
of the consumption of CPU time of such simulations. The modest number of thermal
configuration does not allow us to extract the whole probability distribution for Td(ω, N).
Despite these limitations, the results are in perfect agreement with our expectations.
After the above temperature rescaling, the best collapse of the relaxation time data is
obtained with the naive finite size scaling (N2/3(T−Td(ω, N))) and not

√
N(T−Td(ω, N)).

A similar behavior is obtained for χ∗
4. The dynamical susceptibility divergence is now

compatible with an ε−1 behavior derived analytically for MCT transition.

5.5. Anomalous FSS for the dynamical susceptibility

Now we have confidence in the validity of our analysis in terms of sample dependent
transition temperatures, we come back to the anomalous FSS properties of the dynamical
susceptibility that we observed numerically in section 5.1 above. We must first guess the
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Figure 16. Left: τα is plotted as a function of the temperature for five different
disorder samples (N = 32 with Nther = 120 only for technical reasons). There are
clear strong sample to sample fluctuations of the relaxation time. Close to Td, the
five curves can be superposed by a suitable horizontal shift, namely one has the
relation τ(ω,N) = C(T − Td(ω,N)). Right: scaling plot of the relaxation time
τα using a rescaled sample dependent dynamic temperature. Here are plotted
the fastest, the slowest and a typical sample for all sizes (N = 256 corresponds
to gray circles, N = 128 to blue upwards triangles, N = 64 to red squares and
N = 32 to black downwards triangles). The straight line has a slope −γ = −2.1.
This curves show that we recover the standard FSS exponents by using Td(ω,N)
instead of the thermodynamic Td.

shape of the sample dependent FSS for the peak susceptibility. When T > Td(ω, N), we
expect a divergence of χ∗

4(T ) as ε−1, as discussed in the section above. So the exponent
ζ+ corresponding to this region is ζ+ = 1. On the other hand, below the transition one
expects the variance of the dynamical overlap to be of order N , due to activated dynamics
that makes the system hop between states with zero mutual overlap (see the above remark
on the fast relaxation of qd(t) in the ROM). Matching the requirement χ∗

4(T ) ∝ N with
the finite size scaling form valid near Td(ω, N), χ∗

4(T ) ≈ N2/3F(N2/3(T−Td(ω, N))), leads
to F(x) ∼

√
−x for x → −∞, or ζ− = −1/2. Extending the analysis of section 5.3 to this

strongly asymmetric case where ζ+ �= ζ−, we find that the average behavior is dominated
by the left tail of F(x), finally leading to

χ∗
4(T ) ∼ N sG(

√
N(T − Td)), (26)

where the anomalous exponent s is equal to 3/4 and G is a certain scaling function. We
therefore qualitatively understand the anomalous FSS result obtained in section 5.1, in
particular the fact that s is larger than the naive value s = 1/2.

5.6. The relaxation time: some conjectures

We finally turn to the relaxation time τα, which, as we already know, is very strongly
sample dependent. The guess for the sample dependent FSS of the relaxation time must
now account for the ε−γ divergence for T > Td(ω, N), and the activated dynamics for
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Figure 17. Scaling plot of the maximum of χ4 with sample dependent transition
temperatures Td (for the same convention as in figure 16). The straight line has
a slope −γ = −2.1. The behavior of χ∗

4(T ) is now compatible with the MCT
predictions, χ∗

4(T ) ∝ ε−1, and with the standard finite size scaling exponents.

T < Td(ω, N). If we assume that the relevant energy barrier scales with the system size
as Nψ, one is led to the following ansatz:

τ(ω, N) = N2γ/3F((T − Td(ω, N))N2/3), (27)

with

F(x) ∝ exp(−C(ω)|x|3ψ/2) x → −∞, (28)

F(x) ∝ x−γ x → ∞, (29)

where C(ω) is a sample dependent constant that accounts for a possible sample dependence
of the scaled barrier height. In the case of the ROM, it is reasonable to expect that
ψ = 1 [64]–[66], [18]. The above equation suggests that any observable governed by low
enough moments of τ(ω, N) will correspond to negative values of the exponent ζ in the
analysis of section 5.3 above. Since our definition of the average relaxation time τα is such
that qd(t = τα, T ) = 1/2, this quantity is dominated by typical samples and we expect

standard FSS with scaling variable
√

Nε, as was indeed found in section 5.1.
We however expect very different results for quantities sensitive to large relaxation

times, dominated by rare samples. For example, the long time asymptotics of qd(t, T )
is dominated by particularly ‘cold’ samples. Neglecting the fluctuations of C(ω), and
assuming a Gaussian distribution of critical temperatures, we find

qd(t, T ) ∼t→∞

∫ ∞

u

dy√
2πσ2

exp
[
−tN−2γ/3e−CNψ−1/2(y−u)3ψ/2

]
e−y2/2σ2

, (30)

with u =
√

Nε. Evaluating this integral by means of the steepest descent method, one
finds that the asymptotic relaxation regime is, to leading logarithmic order,

ln qd(t, T ) ∝t→∞

[
ln t

Nψ−(1/2)

]4/3ψ (
ψ >

1

2

)
. (31)
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This decay is far slower than a stretched exponential, and gives a rationale for explaining
the observed slowing down of the late relaxation of qd, and is consistent with the behavior
seen in the figures 7. In particular, we expect this slowing down due to cold samples to
become dominant close to Td.

6. Conclusions

The aim of this study was to test numerically the predictions of MCT in a best case
situation, namely for a model with an exact MCT transition, and analyze its finite size
scaling behavior.

We chose the fully connected random orthogonal model, with a choice of parameter
such that the dynamic (MCT) transition temperature Td is well separated from the static
(Kauzmann) transition. We first compared the theoretical predictions for the static
(thermodynamic) properties of the model with our numerical results. Although we are
not able to equilibrate large systems below Td, we find a good overall agreement. The
transition temperature for the ROM is very low compared to the scale of the interactions;
this implies that the transition is very strongly discontinuous, with an Edwards–Anderson
order parameter very close to unity as soon as T < Td.

We then studied the equilibrium dynamics of the model, focusing on the time
correlation function and the four-point dynamical susceptibility, which measures the
strength of dynamical heterogeneities. When comparing our numerical results to the
predictions of MCT, we find that while some of these predictions are quantitatively
obeyed (like approximate time–temperature superposition in the late β regime), other
important ones are clearly violated, with inconsistent values of the MCT exponents. This
is due to strong pre-asymptotic effects. Indeed, we have shown that the asymptotic MCT
predictions are only valid inside an unusually narrow sliver around Td, thereby explaining
these quantitative discrepancies and allowing one to get rough estimates of the MCT
exponents for the ROM: b ≈ 0.8 and γ ≈ 2. Working closer to Td to get rid of these
strong pre-asymptotic corrections is hampered by equally strong finite size corrections.
On that front, more surprises emerge: we find that the usual finite size scaling (FSS)
fails to account for our data, a result that we rationalize in terms of strong sample to
sample fluctuations of the critical temperature. We have developed a phenomenological
theory for FSS in the presence of these strong fluctuations. This modified form of FSS
accounts well for our results; we also show that naive FSS works for individual samples.
En passant, we have also developed new arguments providing an understanding of FSS in
disordered systems above their upper critical dimension (see the appendices).

The compatibility between the MCT predictions and the numerical behavior of a
model that is in principle exactly described by MCT turned out to be extremely difficult to
establish quantitatively, partly because of the impossibility of equilibrating large systems.
The situation is expected to be worse when dealing with experimental data for which
the critical temperature is blurred by non-mean field effects. In this case, quantitative
comparison with MCT requires extreme care, to say the least. Our results show that some
predictions appear to be more robust than others and this provides some guidance when
dealing with application of MCT to experimental or numerical data. Indeed, we notice
that the kinds of violations of MCT predictions found in our study resemble very much
what is found for real liquids; see e.g. the difference between the time evolutions of χ4

and χT in [67].
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On a different front, our results may be relevant for FSS studies of supercooled
liquids [68, 16]. In this case it has been shown that the usual theory valid for pure systems
fails to account for the finite size scaling behavior [16]. Although several justifications
can be put forward, in particular that the correlation length is not much larger than the
microscopic length, our results suggest that new phenomena might be at play. In fact, if
the dynamically self-induced disorder present in supercooled liquids somehow plays the
role of the quenched disorder present for the ROM, as often proposed, then strong disorder
fluctuations could lead to violation of the usual FSS. Results qualitatively similar to that
reported in [16] (see e.g. figure 10) are indeed expected for the ROM. It would certainly
be worth pursuing further the comparative study of FSS in the ROM and real liquids.

Finally, the study of a finite range ROM that replicates the phenomenology of finite
dimensional supercooled liquids is an interesting project that we are currently pursuing, in
particular to test the predictions of the random first-order theory for a physical model that
is as close as possible to its theoretical idealization. Other directions worth investigating
numerically include a better understanding of the low temperature activated dynamics,
which is probably only accessible in the ageing regime.
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Appendix A. FSS and the Harris criterion for disordered systems above their upper
critical dimension

In the following we shall consider the role of disorder in finite size scaling above the upper
critical dimension. This will lead us to formulate two different Harris criteria: one valid
for the FSS and the other for the critical exponents, obtained from susceptibilities in the
thermodynamic limit.

Let us consider a pure system that is perturbed by the addition of a small quenched
disorder. As usual, we will focus on a disorder that couples to the energy, e.g. random
couplings. As a consequence, samples of size N will be characterized by fluctuations of
the critical temperature δTc(N).

In order to understand whether disorder affects the FSS behavior one has to compare
the above fluctuations with the FSS window. Above the upper critical dimension, FSS
is subtle [69]: the scaling variable is εN1/(duνu) where νu is the mean field exponent,
ε = (T − Tc)/Tc and du is the upper critical dimension; see [70] for a numerical check in
five dimensions for the Ising model. This means that properties of pure finite systems
depart from the ones expected in the thermodynamic limit when the distance from the
critical temperature becomes smaller than N−1/(duνu). Assuming that on scales such that
εN−1/duνu ∝ O(1) the fluctuations of the critical temperature are of the order of 1/

√
N ,
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one finds that for duνu < 2 and close enough to the critical point, the addition of a small
quenched disorder will therefore make Tc fluctuate on a scale much larger than the FSS
window of the pure system, implying that the FSS behavior will be drastically affected
by adding an infinitesimal disorder.

This provides a generalization of the Harris criterion for FSS properties of systems
above their upper critical dimension. As we shall show, contrary to what happens below
du, a different Harris criterion establishes when the disorder changes the critical properties
of an infinite system.

In order to investigate whether an infinitesimal disorder affects the critical properties,
let us focus on the critical behavior of a generic local observable Ox, e.g. the average local
energy in x. A simple way to establish the Harris criterion consists in studying the
perturbation induced by the disorder to the critical behavior. If the correction, no matter
how small it is, ends up being the dominant contribution close to TC, this means that
the disorder is relevant. Calling Jy the random coupling at site y, one obtains that the
corrections due to the disorder are

δOx =
∑

y

∂Ox

∂Jy
Jy.

This is a random variable whose typical value is given by

√
δO2

x =

√√√√
∑

y

(
∂Ox

∂Jy

)2

η, (A.1)

where η is the very small variance of the random couplings, JxJy = η2δx,y.
Below the upper critical dimension, just by scaling or using more refined

techniques [69], one knows that for the pure critical systems ∂Ox/∂Jy ∝ 1/|x − y|d−α/ν

where α− 1 is the exponent characterizing the singular part of Ox, which is |T − Tc|−α+1.
As a consequence one finds that the disorder fluctuations scale as ηξ−d/2+α/ν = ηεdν/2−α.
These will become dominant with respect to the pure critical behavior |T −Tc|−α+1 when
dν/2 < 1, no matter how small η is, if one is close enough to the critical point.

This is the standard Harris criterion. What does it change above the upper critical
dimension? Actually, the previous derivation can be repeated identically. The only
step where we used that d < du is in the assumption of the power law behavior of the
response function ∂Ox/∂Jy. Above du, one could just use the mean field critical power law
behavior. This would already suggest that the Harris criterion for the critical properties
is different from that for FSS. However, the analysis is tricky because above du one finds
that subleading corrections to the critical behavior dominate the sum in (A.1). Let us
consider for instance the φ4 field theory describing the Ising ferromagnetic transition and
let us take Ox = 〈φ2

x〉. We consider the random couplings to lead to a fluctuating mass
in the field theory, i.e. the disorder to couple directly to Ox. In this case the response
function ∂Ox/∂Jx+r reads below Tc and for 1 	 r 	 ξ

c

r2d−4
+ (T − Tc)

c′

rd−2
,

where c and c′ are two constants. Although approaching Tc keeping r finite the first term
is the leading one in the above expression, one finds that the sum in (A.1) is dominated by
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the second term. Within mean field theory 〈φ2
x〉 vanishes linearly with the temperature at

the transition; hence we find that the disorder affects the critical properties for dνu < 2.
We verified that this result holds in more general cases like φn field theories and with
more general bare propagators. It is natural to conjecture that it holds in general above
the upper critical dimension.

In summary, we have found two different Harris criteria. The most important physical
consequence is that for large enough dimension (d > 2/νu) critical properties of an infinite
system will not be affected by an infinitesimal disorder whereas the FSS may be affected
even in the infinite dimensional limit, depending on the value of the ratio duνu/2.

In the following appendix we will give a solvable example of the above scenario,
namely the disordered Blume–Capel model.

Appendix B. A simple solvable model: the weakly disordered Blume–Capel model.

The relevance of sample to sample fluctuations is quite natural. However, one could be
surprised that they affect the dynamical finite size scaling and not the thermodynamics.
In order to understand in detail, in a concrete example, the general arguments formulated
above, we will consider the model defined by the Hamiltonian

HBCM = −
∑

i,j

ξiξjSiSj + Δ
∑

i

S2
i − h

∑

i

ξiSi, Si ∈ {−1, 0, 1}; (B.1)

the ξi = 1 − δ +
√

δli are independent, identically distributed random variables. li are
i.i.d. random variables normalized in such a way that the second moment and the fourth
moment of ξi equals 1 (this is just a convenient but not at all essential choice; see below).
When the parameter δ = 0 this is the pure completely connected (or infinite dimensional)
Blume–Capel model. By increasing δ one can investigate the role of disorder. It is well
known that the pure model, δ = 0, has a tri-critical point characterized by a correlation
length exponent ν = 1/2 and an upper dimension du = 3, that is νdu = 3/2 [71]. So this
is indeed a case where the arguments of appendix A predict that in high dimensions the
critical properties will not be affected by disorder, unlike FSS. Our exact solution will
confirm this result explicitly.

The partition function, for a given disorder realization, is given by

Z =

√
Nβ

2π

∫
dm e−Nβf(β),

f(β) = −1

2
m2 +

1

βN

∑

i

ln(1 + 2e−βΔ cosh β(m + h)ξi).

In order to study the phase transition properties we perform a Landau-like expansion
of the free energy. One finds at the sixth order

f(β) = − 1

β
ln(1 + 2e−βΔ) +

1

2

(
1 − a(β)

N

∑

i

ξ2
i

)
m2

+
b(β)

4!N

∑

i

ξ4
i m

4 +
c(β)

6!N

∑

i

ξ6
i m

6 + O(m7), (B.2)
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Figure B.1. Phase diagram of the pure fully connected Blume–Capel model.

where 1 − a(β), b(β) and c(β) are the coefficients of the Landau expansion of the pure
model. They are given by

a(β) = 2β
e−βΔ

1 + 2e−βΔ
, (B.3)

b(β) = −2β3 e−βΔ − 4e−2βΔ

(1 + 2e−βΔ)2
, (B.4)

c(β) = −2β5 e−βΔ − 26e−2βΔ + 64e−3βΔ

(1 + 2e−βΔ)3
. (B.5)

In the pure model, both 1 − a(β) and b(β) may vanish and change sign. The cancelation
of 1−a(β) gives the critical temperature, the sign of b(β) the order of the transition. The
results for the pure model are summarized in figure B.1. The tri-critical point is defined
by the simultaneous cancelation of 1− a(β) and b(β), that is (Δc, Tc) = (2 ln 2/3, 1/3). A
quick inspection of equation (B.2) shows that the pure tri-critical point is not suppressed
by disorder. Giving a disorder realization, b(β) vanishes on the line βΔ = ln 4: the
tri-critical point necessarily sits on this line. More precisely, its locus is given by

(Δc(N), Tc(N)) =

(
2 ln 2

3N

∑

i

ξ2
i ,

1

3N

∑

i

ξ2
i

)
. (B.6)

In the thermodynamic limit this gives back the tri-critical point of the pure model:
Tc(N) = Tc(∞) ≡ Tc. Other choices of normalization of the li would have altered the
location of the tri-critical point but not changed the following results on critical properties
and FSS. In the thermodynamic limit (large N), (1/N)

∑
ξ2
i is distributed with a Gaussian

law of width σN−1/2, where σ depends on δ. This leads to fluctuations of Tc of order N−1/2

and, as a consequence, similar fluctuations of Δc because of the relation βΔ = ln 4. This
model mimics the ROM case: the thermal fluctuations, given by νdu, are of order N−2/3

(this can be checked for both the pure and the disorder model), the disorder fluctuations,
given by the fluctuations of the tri-critical point, of order N−1/2.
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To study the tri-critical properties of this model, we focus on the line βΔ = ln 4.
Writing β = βc(N) + λ/N2/3, that is λ ∝ N2/3(Tc(N) − T ), one obtains at leading order
in N

Z(β) =

√
Nβ

2π

∫
dm e−Nβf(β)

=
απ2

βc(N)

√
β

2

(
3

2

)N

N1/3F
(
− λα

βc(N)2

)
,

F(x) = Ai2(x) + Bi2(x), α = 270
8

,

(B.7)

where Ai(x) and Bi(x) are the well-known Airy functions. They are two linearly
independent solutions of the equation y′′ − xy = 0. Their asymptotics, which would
be useful for obtaining the tails of the scaling functions of the different thermodynamic
observables, is quite simple:

Ai2(x) + Bi2(x) ∼ 1

π
√
−x

x ≤ −1,

Ai2(x) + Bi2(x) ∼ e(4/3)x3/2

4πx1/2
x ≥ 1.

(B.8)

As a consequence for a given disorder realization, the partition function has a standard
finite size scaling form like for equation (21), and that F is independent of the realization
of the disorder.

As sketched in subsection 5.2, averaging on the disorder is here strictly equivalent to
averaging on the distribution of tri-critical temperatures:

p(Tc(N)) =

√
N

2πσ2
e−N((Tc(N)−Tc)2)/2σ2

. (B.9)

For instance, let us detail the computation of the fluctuations of the order parameter
m defined as

m =
1

N

∑
ξiSi. (B.10)

Using the definition of 〈m〉, one gets for a given disorder realization

〈m〉 = N−1/6 1

βc(N)
f

(
− λ

βc(N)2

)
+ O(N−5/6),

with

f(x) =
51 8401/3πBi(αx) + (45x2/2)2F1(1; 4/3, 5/3; 15x3)

απ3/2
(
Ai2(xα) + Bi2(xα)

) ,

or, in a more transparent form,

(T > Tc(N))f(x > 1) ∝ e−const×x3/2

x1/4,

(T < Tc(N))f(x < −1) ∝ (−x)1/4.

As expected, the tail exponents of the scaling function are those that one would have
found if one had computed the magnetization by the steepest descent method. One see
clearly that the magnetization plays in this model the same role as the dynamical overlap.
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Figure B.2. Scaling function of N〈δm2〉; on this plot x > 0 corresponds to
T > Tc.

Similarly, one can compute the non-connected fluctuations of the order parameter,

N〈m2〉 = N2/3 1

βc(N)2
g

(
− λ

βc(N)2

)
+ O(1),

where

g(x) =

(
(2160)1/3Ai′(xα)Ai(xα) + Bi′(xα)Bi(xα)

Ai2(xα) + Bi2(xα)

)
.

Again the asymptotics of g gives back the thermodynamic exponents:

(T > Tc(N))g(x > 1) ∝ 1

x
, (T < Tc(N))g(x < −1) ∝

√
x.

The non-connected fluctuations have the same behavior as χ4 for the ROM.
To finish this exercise, the connected susceptibility is given by (see figure B.2)

N〈δm2〉 = N2/3h

(
− λ

βc(N)2

)
, h(|x| > 1) ∝ 1

x
.

Now, we have to perform the averaging over the disorder. For this purpose, let us
introduce x =

√
N(Tc(N) − Tc)/σ. One has

O(T ) =
N2a/3

√
2π

∫
dx e−(x2/2)F(N2/3(ε) + N1/6x). (B.11)

As shown in section 5.3, this integral has two parts: a regular part, corresponding to the
small value of x, and a singular part given by the tails of F(x) ∼ x−a for x 
 1.

To compute this part, one has to consider all the contributions coming from the
temperature range: |T − Tc(N)| > cN−2/3, i.e. such that σx > −N1/2(T − Tc) + cN−1/6.
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By defining σx0 ≡ N1/2(T − Tc), one gets

O(T ) � Na/2

√
2π

∫

σ(x+x0)>cN−1/6

e−(x2/2)

(x0 + x)a
. (B.12)

We are now exactly in the same framework as was discussed in section 5.2. These
simple examples show how the analysis of this toy model is instructive. It is a fully
solvable example of a weakly disordered model, for δ �= 0, with an exponent ν = 1/2 and
an upper dimension du = 3, that is νdu = 3/2 [71] where the FSS is not the standard one.
It gives also a clear insight into the competition of the thermal and disorder fluctuations.
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