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Identities based on monodromy for integrations in string theory are used to derive relations between

different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These

relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a

minimal basis of ðn� 3Þ! amplitudes. This result holds for any choice of polarizations of the external

states and in any number of dimensions.
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Introduction.—The search for a consistent theoretical
framework of particle physics has led to remarkable
progress in the understanding of fundamental interactions
in nature. String theory provides a very general unified
language that naturally incorporates field theories of phe-
nomenological interest and gravity in the low-energy limit.
Much can be learned from studying the organizational and
computational inspiration it poses [1]. One striking aspect
is the link string theory can provide between gravity and
gauge theories. Concrete examples of such relationships
include the Kawai-Lewellen-Tye [2] relations which con-
nect amplitudes in closed and open string theories. In the
low-energy limit this gives a very puzzling and nontrivial
map between perturbative amplitudes in gravity and Yang-
Mills theory that is far from obvious when viewed at the
field theory perspective [3].

In this Letter, we will consider a set of relations among
tree-level string theory amplitudes that are implied by their
defining integrals. Different color orderings of external
legs are connected to specific integration regimes on the
string world sheet, but they can be related to each other
through monodromy relations. In the field theory limit the
phase relations between different integrals induced by
these monodromy considerations reduce to a set of equa-
tions linking gauge theory amplitudes with different color
traces. We first remark that by cyclicity of the trace the
number of color-ordered amplitudes is reduced from n! to
ðn� 1Þ! The full set of monodromy relations for the color-
ordered amplitudes imply a drastic reduction of the number
of independent amplitudes in the n-point case. The number
of basis amplitudes is in this way reduced from ðn� 1Þ! to
ðn� 3Þ! Analogously to the Kawai-Lewellen-Tye rela-
tions, the detailed understanding of the underlying identi-
ties at the gauge theory level poses an interesting
challenge. The existence of a minimal number of ðn�
3Þ! basis amplitudes in gauge theory, and an associated
set of identities, has been conjectured by Bern et al. [4] (see
also Ref. [5] for the extension to gauge theory with matter)

and already checked explicitly to a high number of external
legs with different combinations of external states and
helicities. The origin of this reduction in basis amplitudes
appears in a particularly transparent manner from string
theory.
We will here briefly recall how to derive these

monodromy-induced relations for string theory ampli-
tudes. The n-point amplitude in open string theory with
UðNÞ gauge group reads

An ¼ ign�2
YM ð2�ÞD�Dðk1 þ � � � þ knÞ

� X
ða1;...;anÞ2Sn=Zn

trðTa1 � � �TanÞAða1; . . . ; anÞ; (1)

where D is any number of dimensions obtained by dimen-
sional reduction from 26 dimensions if we consider the
bosonic string, or 10 dimensions in the supersymmetric
case. In fact our considerations are completely general and
without reference to any specific string theory. The color-
ordered amplitudes on the disc are given by [1]

Aða1; . . . ; anÞ ¼
Z Yn

i¼1

dzi
jzabzaczbcj
dzadzbdzc

Yn�1

i¼1

Hðxaiþ1
� xaiÞ

� Y
1�i<j�n

jxi � xjj2�0ki�kjFn; (2)

with dzi ¼ dxi and zij ¼ xi � xj for the bosonic case and

dzi ¼ dxid�i and zij ¼ xi � xj þ �i�j for the supersym-

metric case. The ordering of the external legs is enforced
by the product of Heaviside functions such that HðxÞ ¼ 0
for x < 0 and HðxÞ ¼ 1 for x � 0. The Möbius SLð2;RÞ
invariance requires one to fix the position of three points
denoted za, zb, and zc. A traditional choice is x1 ¼ 0,
xn�1 ¼ 1, and xn ¼ þ1, supplemented by the condition
�n�1 ¼ �n ¼ 0 in the superstring case.
All helicity dependence of the external states is con-

tained in the Fn factor [1]. For tachyons, one has Fn ¼ 1.
The four-point amplitude.—We can expand the ampli-

tude A4 � g2YMtrðT1T2T3T4ÞAð1; 2; 3; 4Þ plus permuta-
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tions. For simplicity, we phrase the discussion in terms of
tachyon amplitudes.

With the choice x1 ¼ 0, x3 ¼ 1, and x4 ¼ þ1, all three
different color-ordered amplitudes Aði; j; k; lÞ are given

by the same integrand jx2j2�0k1�k2 j1� x2j2�0k2�k3 but with x2
integrated over different domains:

A ð1; 2; 3; 4Þ ¼
Z 1

0
dx x2�

0k1�k2ð1� xÞ2�0k2�k3 ; (3)

A ð1; 3; 2; 4Þ ¼
Z 1

1
dx x2�

0k1�k2ðx� 1Þ2�0k2�k3 ; (4)

A ð2; 1; 3; 4Þ ¼
Z 0

�1
dx ð�xÞ2�0k1�k2ð1� xÞ2�0k2�k3 : (5)

We can derive all the four-point relations shown below
from just the first of these integrals, but here we exploit
monodromy relations [6,7].

We first consider Að1; 3; 2; 4Þ, where we can indicate
the contour integration from 1 to þ1 (see Fig. 1). Assum-
ing that the �0ki � kj are complex with negative real parts,

we can deform the integration region so that instead of
integrating between from 1 to þ1 on the real line we in-
tegrate either on a contour slightly above or below the real
axis. By deforming each of the contours, one can convert
the expression into an integration from �1 to 1. When
rotating the contours one needs to include the appropriate
phases each time x passes through y ¼ 0 or y ¼ 1,

ðx� yÞ� ¼ ðy� xÞ�

�
�
eþi�� for clockwise rotation;
e�i�� for counterclockwise rotation:

The deformation of the integration region can thus be done
by rotating in the upper half plane (Fig. 2). Because the
original amplitude is real, the real part of this contour
integral expresses the original amplitude

A ð1; 3; 2; 4Þ ¼ �Reðe�2i�0�k2�k3Að1; 2; 3; 4Þ
þ e�2i�0�k2�ðk1þk3ÞAð2; 1; 3; 4ÞÞ; (6)

where the minus sign arises from the reversed orientation
of the contour. The imaginary part vanishes:

0 ¼ Imðe�2i�0�k2�k3Að1; 2; 3; 4Þ
þ e�2i�0�k2�ðk1þk3ÞAð2; 1; 3; 4ÞÞ: (7)

This system of equations implies that all amplitudes can be
related to Að1; 2; 3; 4Þ:

Að1; 3; 2; 4Þ ¼ sinð2�0�k1 � k2Þ
sinð2�0�k2 � k4ÞAð1; 2; 3; 4Þ;

Að2; 1; 3; 4Þ ¼ sinð2�0�k2 � k3Þ
sinð2�0�k2 � k4ÞAð1; 2; 3; 4Þ;

(8)

where we have used momentum conservation and the on-
shell condition, �0k2 ¼ þ1. For other external states of
higher spin with the inclusion of the appropriate Fn factor,
the integrals change in order to restore the identities (in-
cluding sign factors for the fermionic statistics of half-
integer spins). These relations are valid for all four-point
amplitudes in bosonic and supersymmetric string theory, as
can immediately be checked using the explicit expressions
for such string amplitudes.
Taking the limit �0 ! 0, we get the following relations

between field theory amplitudes:

Að1; 3; 2; 4Þ ¼ k1 � k2
k2 � k4 Að1; 2; 3; 4Þ;

Að2; 1; 3; 4Þ ¼ k2 � k3
k2 � k4 Að1; 2; 3; 4Þ:

(9)

These identities agree with those of Ref. [4].
The n-point amplitude.—We will prove that any color-

ordered n-point amplitude can be expressed in terms of a
minimal basis of ðn� 3Þ! amplitudesB. In the field theory
limit these relations reduce to the new amplitude relations
conjectured in Ref. [4].
First, we show how to reduce the number of independent

amplitudes from ðn� 1Þ! to ðn� 2Þ! In this way we derive
a string theory generalization of the so-called Kleiss-Kuijf
relations in field theory [8,9]. Indeed, in the limit �0 ! 0,
our relations reduce to those, providing an immediate and
alternative proof of them.
Our starting point will be the most general amplitude,

given in terms of an integral with three fixed points, one at
0: x1 ¼ 0, one at 1: x�k

¼ 1, and one at þ1: xn ¼ þ1.

There can then be r points f�1; . . . ; �rg in the interval � �
1; 0½, k� 1 points f�1; . . . ; �k�1g in the interval �0; 1½, and
s� k points f�kþ1; . . . ; �sg in the interval �1;þ1½. Both r
and k are arbitrary, and of course s ¼ n� r� 2. (We use
the notation �a; b� ¼ fxja < x � bg.) We first focus on the

FIG. 1. Contour of integration for the amplitude Að1; 3; 2; 4Þ. FIG. 2. Flipped contour for the amplitude Að1; 3; 2; 4Þ.

FIG. 3. Contour for the amplitude Að�1; . . . ; �r; 1; �1; . . . ;
�s; nÞ.
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integrations of the f�1; . . . ; �rg variables in the amplitude
Að�1; . . . ; �r; 1; �1; . . . ; �s; nÞ, illustrated in Fig. 3.

By analytic continuation of the integration region
� � 1; 0½ we now flip the �i integrations into the region
�0;þ1½ in one go (Fig. 4).

We thus have an identity that relates the original integral
with integrations in the domain � � 1; 0½ with a sum of
integrations in the complementary region �0;þ1½ (Fig. 5).
Taking the real parts of this n-point equation we arrive at

the following amplitude relation:

A nð�1; . . . ; �r; 1; �1; . . . ; �s; nÞ ¼ ð�1ÞrRe
� Y
1�i<j�r

e
2i��0ðk�i �k�j Þ

X
��OPf�g[f�T g

Ys
i¼0

Yr
j¼1

eð�i;�jÞAnð1; �; nÞ
�
; (10)

with eð�;�Þ 	 e2i��
0ðk��k�Þ if x� > x� and 1 otherwise, �0 denotes the leg 1 at point 0. The ð�1Þr arises because the flip is

reversing the r integrations over the �i variables. In (10) the sum runs over the ordered set of permutations that preserves
the order within each set. These new relations between string theory amplitudes are generalizations of the field theory
Kleiss-Kuijf relations,

Anð�1; . . . ; �r; 1; �1; . . . ; �s; nÞ ¼ ð�1Þr X
��OPf�g[f�T g

Anð1; �; nÞ; (11)

to which they reduce when �0 ! 0 since all phases become unity in that limit. The string theory relations (10) reduce the
set of independent amplitudes from ðn� 1Þ! to ðn� 2Þ! in detail by eliminating all amplitudes with legs in the integration
interval � � 1; 0½ in favor of those with legs in the interval �0;þ1½, with the two extreme ends fixed. However, we have not
yet used all the information contained in these n-point monodromy relations.

Because the amplitudes Anð�1; . . . ; �r; 1; �1; . . . ; �s; nÞ are real, the imaginary parts of the n-point relations give

0 ¼ Im

� Y
1�i<j�r

e
2i��0ðk�i �k�j Þ

X
��OPf�g[f�T g

Ys
i¼0

Yr
j¼1

eð�i;�jÞAnð1; �; nÞ
�
: (12)

By systematically using these relations, we can connect all
amplitudes which have points in the region �1;þ1½ with
amplitudes which have points only in the region ½0; 1� (and
one leg fixed at infinity).

Our proof is as follows. First we directly eliminate all
amplitudes with points between � � 1; 0½ in favor of am-
plitudes with legs in the interval �0;þ1½, using (10). Next
using (12) we can rewrite amplitudes of the kind
Anð1; �1; . . . ; �k; �1; . . . ; �n�2�k; nÞ in terms of ampli-

tudes with at least one �i among the set f�1; . . . ; �kg and
now with at most n� 3� k elements between �1;þ1½.
For each set f�g we can find an identity in (12) so that
proceeding iteratively downward on the number of ele-
ments in f�g starting with n� 2� k elements, we can
thus express all amplitudes having points in the interval
�1;þ1½ in terms of ðn� 3Þ! amplitudes restricted to the
interval ½0; 1� (and one leg at infinity).
Explicitly, the five-point case gives

Sk2;k5Að2;1;3;4;5Þ¼Sk2;k3þk4Að1;2;3;4;5ÞþSk2;k4Að1;3;2;4;5Þ;
Sk3;k5Að1;2;4;3;5Þ¼Sk3;k1þk2Að1;2;3;4;5ÞþSk1;k3Að1;3;2;4;5Þ;

Sk2;k5Sk1;k4Að2;3;1;4;5Þ¼�Sk1;k2Sk3;k4Að1;2;3;4;5Þ�Sk2;k4Sk1;k3þk4Að1;3;2;4;5Þ;
Sk3;k5Sk1;k4Að1;4;2;3;5Þ¼�Sk1;k2Sk3;k4Að1;2;3;4;5Þ�Sk1;k3Sk4;k1þk2Að1;3;2;4;5Þ;

Sk1;k4Sk2;k5Sk3;k5Að2;1;4;3;5Þ¼ ðSk2;k3þk4Sk3;k1þk2Sk1;k4 �Sk2;k3Sk1;k2Sk3;k4ÞAð1;2;3;4;5Þ
þSk1;k3Sk2;k4Sk5;k2þk3Að1;3;2;4;5Þ; (13)

where we have introduced the notation Sp;q 	 sinð2�0�p �
qÞ. Analogous equations are obtained by the exchange of

labels 2 $ 3. It is immediate to verify these relations from
the explicit form of tree amplitudes in string theory ampli-

FIG. 4. Flipped contour of Fig. 3. FIG. 5. Integrals associated with the contours of Fig. 4.
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tudes in string theory given in [10–12]. In the field theory
limit they reduce to the relations discussed in Ref. [4].

Gravity amplitudes.—The n-point closed string ampli-
tudes can be represented as a left times right product of
color-ordered open string amplitudes through the Kawai-
Lewellen-Tye relations [2]. Using the result of the previous
section, we can expand each open string amplitude of this

sum in the basis of open string amplitudes (BI, ~BJ):

M n ¼ �0
�
�

�0

�
n�2 X

1�I;J�ðn�3Þ!
GIJðfkigÞBI ~BJ: (14)

The holomorphic factorization of the amplitude into left
and right open string amplitudes introduces n� 3 extra
phase factors [2] of the type discussed above and the
entries of the matrixG are rational functions of degree n�
3 in the quantities sinð2��0p � qÞ. Since the matrix is
symmetric this provides a left to right symmetric expres-
sion for the gravity amplitudes in terms of the color-
ordered gauge theory amplitudes.

As a direct application of our procedure, we can rewrite
the Kawai-Lewellen-Tye relations at four-point level as

M 4 ¼ �2

�0
Sk1;k2Sk1;k4

Sk1;k3

jA4ð1; 2; 3; 4Þj2: (15)

Similarly, the five-point closed string amplitude takes the
symmetric form

M5¼ �3

�02 ½G11jA5ð1;2;3;4;5Þj2þG22jA5ð1;3;2;4;5Þj2

þG12ðA5ð1;2;3;4;5Þ ~A5ð1;3;2;4;5Þ
þA5ð1;3;2;4;5Þ ~A5ð1;2;3;4;5ÞÞ�; (16)

where

Sk2;k5Sk3;k5Sk1;k4G11 ¼ Sk1;k2Sk3;k4ðSk2;k3þk4Sk3;k1þk2Sk1;k4

� Sk2;k3Sk1;k2Sk3;k4Þ; (17)

Sk3;k5Sk2;k5Sk1;k4G22 ¼ Sk1;k3Sk2;k4ðSk3;k2þk4Sk2;k1þk3Sk1;k4

� Sk2;k3Sk1;k3Sk2;k4Þ; (18)

S k2;k5Sk3;k5Sk1;k4G12 ¼ Sk1;k2Sk1;k3Sk2;k4Sk3;k4Sk5;k2þk3 :

(19)

In the limit �0 ! 0 the Sp;q are replaced by the scalar

products 2��0ðp � qÞ. They lead to an expression for the
field theory gravity amplitude that reproduces the results of
[4]. It is now clear how this symmetric form can be proven
for any number of external states.

Conclusion.—We have derived a new series of ampli-
tude identities based on monodromy for integrations in
string theory, providing relations between different color-
ordered amplitudes in either bosonic or supersymmetric
string theory. As a first step, we have derived the string

theory generalization of Kleiss-Kuijf relations, thus pro-
viding a new and very simple proof of these relations also
in the field theory limit. Our main result is the proof that
there is a minimal basis of only ðn� 3Þ! amplitudes in
which all other amplitudes can be expanded. This follows
from fixing three of the n external legs at 0, 1 and þ1
using the SLð2;RÞ invariance of the amplitudes, and forc-
ing the remaining n� 3 coordinates to lie in the interval
½0; 1�. Because the monodromy relations hold for all po-
larization configurations and any smaller number of di-
mensions by a trivial dimensional reduction, it follows
immediately that they hold for any choice of external
legs corresponding to the full N ¼ 1, D ¼ 10 supermul-
tiplet and dimensional reductions thereof. The field theory
limit of these relations generalize and prove for any num-
ber of external legs the new amplitude relations recently
conjectured by Bern et al. [4] in gauge theory. The string
theory monodromy identities for the Kawai-Lewellen-Tye
relationship between closed and open string amplitudes
give highly symmetric forms for tree-level amplitudes
between any external states in the N ¼ 8, D ¼ 4 super-
multiplet. This and other related issues will be discussed in
detail elsewhere.
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