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Surprising simplicity of N = 8 supergravity
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Abstract: Gravity amplitudes are via the Kawai-Lewellen-Tye relations intimately linked
to products of Yang-Mills amplitudes. Explicitly this show up in computations of N = 8
supergravity where the perturbative expansion and ultraviolet behaviour of this theory
is akin to N = 4 super-Yang-Mills at least through three loops. Full persistency to all
loop orders would be truly remarkable and imply finiteness of N = 8 supergravity in four
dimensions.
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1. Introduction

Since the discovery of quantum mechanics in the previous century, physicists have been pur-
suing a construction of a fundamental theory for quantum gravity. Quantum gravitational
effects appear to be essential in understanding the physics of very dense matter objects
such as the early universe and black holes. However, although the searches for a theory of
quantum gravity have been diverse, extensive and many, the fundamental concepts of such
a theory are still elusive. General relativity provides us with a very successful theory for
gravity which captures the apparent necessary knowledge for a complete treatment of the
gravitational attraction and its intimate connection with matter, space and time. However
general relativity is incompatible with basic quantum mechanical ideas such as operator
space and expectation values. A traditional approach to perturbative gravity through a La-
grangian description is possible although complicated by a divergent ultraviolet behaviour.
Progress has however been achieved this way through treating gravity as an effective field
theory [1].

For many years the combination of supersymmetry with a Lagrangian description of
quantum gravity was considered to be a way out of the troublesome ultraviolet divergent
behaviour of such a theory due to the introduction of extra fundamental symmetries. Such
theories was termed supergravity models. The possibly most famous one is the model of
maximal N = 8 supergravity [2, 3]. However with the advent of superstring theory in the
mid-1980ties such models were abandoned due a common belief of unavoidable divergences
in their perturbative expansion via power-counting arguments [4] relegating these theories
to low-energy effective descriptions of string theory.

In recent years, due to remarkable progress in computational techniques by combining
various input from string theory, extended supersymmetry and unitarity, there has been a
renewed interest in supergravity models for quantum gravity and it has become clear that
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N = 8 supergravity has a much better perturbative expansion than power-counting näıvely
predicts. Surprisingly the ultraviolet behaviour of N = 8 supergravity occurs explicitly to
be identical to the one of N = 4 super-Yang-Mills to at least three loops [5–12] and very
likely six loops [13,14]. If this identical UV-behaviour persists to all orders in perturbation
theory then N = 8 supergravity will be ultraviolet finite in four dimensions [13].

The massless spectrum of N = 8 supergravity can be seen as the tensorial product
of two copies of N = 4 super-Yang-Mills theories, through the Kawai-Lewellen-Tye rela-
tions [15] which are motivated by string theory. In these relations the massless supergravity
(closed string) vertex operators are written as the left/right product of Yang-Mills open
string vertex operators. One can hence organise N = 8 supergravity tree-level amplitudes
according to a relation [5, 16–19] which we will write schematically in the following way

Gravity ∼ (Yang-Mills)× (Yang-Mills’) . (1.1)

This simple relation between a theory of gravity and two gauge theories is observed directly
in on-shell S-matrix elements but appear to be rather odd at the level of the Lagrangian
and its interactions (This is true even if part of the Lagrangian is rearranged as a product of
Yang-Mills types of interactions at the two-derivative level [20,21] or for higher derivative
corrections [22].).

2. Supergravity amplitudes

A superficial power counting argument indicates that an L-loop n-graviton amplitude in
D-dimension behaves as

[M(D)
L ] = mass(D−2)L+2 . (2.1)

This count can be compared to the superficial power counting of the four-gluon amplitude
in N = 4 super-Yang-Mills which is given by

[A(D)
4;L ] = mass(D−4)L . (2.2)

For N = 4 super-Yang-Mills in four dimensions we see that the theory is at most loga-
rithmically diverging (since the coupling constant is dimensionless). The extended N = 4
supersymmetry guaranties perturbative finiteness [23, 24]. Colour ordered amplitudes fac-
torise the dimension four operator F 4 at one-loop and the dimension six operator ∂2F 4 at
higher-loop order and hence satisfy the dimensional analysis

[A(D)
4;L ] = mass(D−4)L−6 [∂2F 4] . (2.3)

This imply that L-loop four-point amplitudes inN = 4 super-Yang-Mills are ultraviolet
divergent in dimensions

D ≥ 4 +
6
L

. (2.4)

Thus implying perturbative ultraviolet finiteness in D = 4 dimensions (the negative mass
dimension reflect the infrared behaviour of the amplitude).
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The difference between the formulæ (2.1) and (2.3) reflects the difference in dimensions
of the coupling constant of the two theories. However this superficial power counting misses
dramatic simplifications taking place in on-shell amplitudes due to the extended N = 8
supersymmetry [14] and the rôle of (diffeomorphism) gauge invariance [9, 25].

String based methods for constructing higher-loop amplitudes indicate [13,14] that the
perturbative behaviour of N = 8 supergravity amplitudes is improved by the factorisation
of the dimension eight R4 operator together with extra powers of derivatives

[M(D)
L ] = mass(D−2)L−6−2βL [∂2βLR4] , (2.5)

with the βL = L rule

β1 = 0; βL = L for 2 ≤ L . (2.6)

This leads to a superficial ultraviolet behaviour for N = 8 supergravity amplitudes of

[M(D)
L ] = mass(D−4)L−6 [D2LR4] , (2.7)

which is similar to the ultraviolet behaviour in (2.3) for N = 4 super-Yang-Mills. When
the βL = L rule (2.6) is satisfied the N = 8 four-graviton supergravity amplitude has the
same critical dimension (2.4) for ultraviolet divergences as N = 4 super-Yang-Mills.

The validity of the βL = L rule to all orders in perturbation theory implies perturbative
finiteness of the four-graviton N = 8 supergravity amplitude in four dimensions.

3. N = 8 supergravity as a product of N = 4 Yang-Mills

On-shell recursion relations provide very simple means of constructing N = 8 supergravity
tree-level amplitudes from three-point vertices [26, 27]. Gravity three-point vertices are
given directly as squares of N = 4 super-Yang-Mills vertices. Thus the resulting massless
n-point tree-level amplitudes can be presented in a form involving terms with sums of
squares of three-point N = 4 super-Yang-Mills vertices [19].

At the field theory level this amounts to replacing the gauge degree of freedom of the
Yang-Mills fields by Lorentz degrees of freedoms as follows

Aa
µ → ζµ

a . (3.1)

Such a correspondence is compatible with extended supersymmetry and can be used
näıvely to promote N = 4 super-Yang-Mills invariants into higher-derivative N = 8 super-
invariants. However it is not possible to capture all of these by such a map [22] since the full
diffeomorphism invariance carries even more symmetry (For example Ricci cycling identi-
ties Rµ[νρσ] = 0). The näıve application of the above substitution rule would for instance
lead to a N = 8 supergravity amplitude with an apparent factorisation of the operator
D2R4. This would consequently make the L = 2 two-loop four-graviton amplitude diverge
D = 6 dimensions. However this is contrary to explicit knowledge since this amplitude has
been shown to be finite up to D ≤ 6 dimensions [5].
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The main reason for this glitch is that diffeomorphism invariance for N = 8 super-
gravity implies that one must sum over all permutations of external legs. Doing this makes
the invariant D2R4 ∼ (s + t + u) R4 = 0 vanish by on-shell momentum conservation.
Consequently the first non-vanishing contribution is of order D4R4. At two loop order
the operator D4R4 satisfies the rule β2 = 2 of eq. (2.6) providing the suitable structure
for the two-loop amplitude kinematic factor. However this does neither give the correct
contribution for the higher-loop amplitudes which have βL ≥ 3 for L ≥ 3 [10,13].

Thus we see that one has to be careful with such arguments since gravity theories have
symmetries which are beyond what is provided via two copies of the gauge transformations
of Yang-Mills theories.

An important consequence of the full crossing symmetry provided via the absence of
the concept of colour in gravity theories is that infrared divergences in quantum gravity
can be treated as in QED and are much milder than in colour ordered theories like QCD.
One benefit of the structure of gravitational interactions is that there are no divergences
for the emission of a soft graviton from a hard line contrary to massless QED [28]. This
indicates that although gravitational interactions looks much more complicated than gauge
theory ones important simplification occurs in on-shell amplitudes at tree-level. The fact
that gravity amplitudes are unordered implies the no triangle property ofN = 8 supergrav-
ity loop amplitudes [8, 9] and puts non-trivial constraints on the structure of higher-loop
amplitudes [29].

4. Vacuum structure and E7 invariance

The βL = L rule can be derived up to six loops from the zero mode sector of the pure
spinor formalism [30] for four-graviton amplitudes. This shows that the rôle of extended
supersymmetry in perturbative N = 8 supergravity are beyond the superspace trans-
formation properties of the product of two N = 4 super-Yang-Mills theories. Further
analysis show that the vacuum structure of N = 4 super-Yang-Mills and N = 8 super-
gravity theories are very different and that theories of supergravity have a moduli space of
vacua. Mathematically in four dimensions the vacuum of N = 8 supergravity can be de-
scribed by the homogeneous space of M = E7(7)/(SU(8)R/Z2). While the local symmetry
group SU(8)R transform as a ’square’ of the group SU(4)R (corresponding to each N = 4
super-Yang-Mills theory) there is no concept of the symmetry of the global group E7(7) in
N = 4 super-Yang-Mills. The global E7(7) symmetry does put severe enough constraints
on counter terms N = 8 in supergravity to possibly protect the theory from diverging
before nine loops and in conjunction with the full crossing symmetry this could be enough
to imply finiteness of the theory in four dimensions. As a global symmetry rotating the
different vacua of N = 8 supergravity the E7(7) symmetry relates the perturbative contri-
butions to the non-perturbative black hole production at high-energy, which are required
for a consistent definition of the theory [31].
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5. Discussion

Although we are still in the search for a fundamental theory of quantum gravity we are in
these years gaining a much better understanding of the necessary concepts for a formulation
of such a theory. The rôle of dualities in supergravity theories is important for their
quantisation and such investigations provide a framework for gathering further knowledge
about quantum gravity, its fundamental degrees of freedom and its relation to gauge theory.
A clear understanding of the question of ultraviolet finiteness and the validity of the βL = L

rule [13] of N = 8 supergravity would indeed be remarkable and provide huge implications
for non-supersymmetric low-energy descriptions of quantum gravity theories.
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