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Gravity amplitudes are, via the Kawai–Lewellen–Tye relations intimately linked to prod-
ucts of Yang–Mills amplitudes. Explicitly, this shows up in computations of N = 8
supergravity where the perturbative expansion and ultraviolet behavior of this theory
is akin to N = 4 super-Yang–Mills at least through three loops. Full persistence to all
loop orders would be truly remarkable and imply finiteness of N = 8 supergravity in
four dimensions.

1. Introduction

Since the discovery of quantum mechanics in the previous century, physicists have
been pursuing the construction of a fundamental theory for quantum gravity.
Quantum-gravitational effects appear to be essential in understanding the physics
of very dense matter objects such as the early universe and black holes. However,
although the searches for a theory of quantum gravity have been diverse, extensive
and many, the fundamental concepts of such a theory are still elusive. General rela-
tivity provides us with a very successful theory for gravity which captures the appar-
ent necessary knowledge for a complete treatment of the gravitational attraction
and its intimate connection with matter, space and time. However, it is incompatible
with basic quantum-mechanical ideas such as operator space and expectation val-
ues. A traditional approach to perturbative gravity through a Lagrangian descrip-
tion is possible although complicated by a divergent ultraviolet behavior. Progress
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has, however, been achieved this way through treating gravity as an effective field
theory.1–5

For many years the combination of supersymmetry with a Lagrangian descrip-
tion of quantum gravity was considered to be a way out of the troublesome
ultraviolet-divergent behavior of such a theory due to the introduction of extra fun-
damental symmetries. Such theories were termed supergravity models. The possibly
most famous one is the model of maximal N = 8 supergravity.6–8 However, with
the advent of superstring theory in the mid-1980s such models were abandoned
due a common belief of unavoidable divergences in their perturbative expansion
via power-counting arguments,9–12 relegating these theories to low energy effective
descriptions of string theory.

In recent years, due to remarkable progress in computational techniques by com-
bining various inputs from string theory, extended supersymmetry and unitarity,
there has been a renewed interest in supergravity models for quantum gravity and
it has become clear that N = 8 supergravity has a much better perturbative expan-
sion than power-counting näıvely predicts. Surprisingly, the ultraviolet behavior of
N = 8 supergravity occurs explicitly to be identical to that of N = 4 super-Yang–
Mills to at least three loops13–20 — very likely six loops.21,22 If this identical UV
behavior persists to all orders in perturbation theory, then N = 8 supergravity will
be ultraviolet-finite in four dimensions.21

The massless spectrum of N = 8 supergravity can be seen as the tensorial prod-
uct of two copies of N = 4 super-Yang–Mills theories, through the Kawai–Lewellen–
Tye relations,23 which are motivated by string theory. In these relations the massless
supergravity (closed string) vertex operators are written as the left/right product
of Yang–Mills open string vertex operators. One can hence organize N = 8 super-
gravity tree-level amplitudes according to a relation13,24–31 which we will write
schematically, in the following way:

Gravity ∼ (Yang–Mills) × (Yang–Mills′). (1.1)

This simple relation between a theory of gravity and two gauge theories is observed
directly in on-shell S matrix elements but appears to be rather odd at the level of
the Lagrangian and its interactions. (This is true even if part of the Lagrangian is
rearranged as a product of Yang–Mills types of interactions at the two-derivative
level32,33 or for higher derivative corrections.34)

2. Supergravity Amplitudes

A superficial power-counting argument indicates that an L-loop n-graviton ampli-
tude in D dimensions behaves as

[M(D)
L ] = mass(D−2)L+2. (2.1)

This count can be compared to the superficial power-counting of the four-gluon
amplitude in N = 4 super-Yang–Mills, which is given by

[A(D)
4;L ] = mass(D−4)L. (2.2)
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For N = 4 super-Yang–Mills in four dimensions, we see that the theory is at
most logarithmically diverging (since the coupling constant is dimensionless). The
extended N = 4 supersymmetry guarantees perturbative finiteness.35,36 Color-
ordered amplitudes factorize the dimension 4 operator F 4 at one-loop order and the
dimension 6 operator ∂2F 4 at higher-loop order and hence satisfy the dimensional
analysis

[A(D)
4;L ] = mass(D−4)L−6[∂2F 4]. (2.3)

This implies that L-loop four-point amplitudes in N = 4 super-Yang–Mills are
ultraviolet-divergent in dimensions

D ≥ 4 +
6
L

, (2.4)

thus implying perturbative ultraviolet finiteness in D = 4 dimensions (the negative
mass dimension reflects the infrared behavior of the amplitude).

The difference between the formulae (2.1) and (2.3) reflects the difference in
dimensions of the coupling constant of the two theories. However, this superficial
power-counting misses dramatic simplifications taking place in on-shell amplitudes
due to the extended N = 8 supersymmetry22 and the role of (diffeomorphism)
gauge invariance.17,37

String-based methods for constructing higher-loop amplitudes indicate21,22 that
the perturbative behavior of N = 8 supergravity amplitudes is improved by the fac-
torization of the dimension 8 R4 operator together with extra powers of derivatives

[M(D)
L ] = mass(D−2)L−6−2βL [∂2βLR4], (2.5)

with the βL = L rule:

β1 = 0; βL = L for 2 ≤ L. (2.6)

This leads to a superficial ultraviolet behavior for N = 8 supergravity amplitudes of

[M(D)
L ] = mass(D−4)L−6[D2LR4], (2.7)

which is similar to the ultraviolet behavior in (2.3) for N = 4 super-Yang–Mills.
When the βL = L rule (2.6) is satisfied, the N = 8 four-graviton supergravity
amplitude has the same critical dimension (2.4) for ultraviolet divergences as N = 4
super-Yang–Mills.

The validity of the βL = L rule to all orders in perturbation theory implies
perturbative finiteness of the four-graviton N = 8 supergravity amplitude in four
dimensions.

3. N = 8 Supergravity as a Product of N = 4 Yang–Mills

On-shell recursion relations provide very simple means of constructing N = 8 super-
gravity tree-level amplitudes from three-point vertices.38,39 Gravity three-point ver-
tices are given directly as squares of N = 4 super-Yang–Mills vertices. Thus, the



January 23, 2010 14:35 WSPC/142-IJMPD 01587

2298 N. E. J. Bjerrum-Bohr and P. Vanhove

resulting massless n-point tree-level amplitudes can be presented in a form involving
terms with sums of squares of three-point N = 4 super-Yang–Mills vertices.31

At the field theory level this amounts to replacing the gauge degree of freedom
of the Yang–Mills fields by Lorentz degrees of freedom as follows:

Aa
µ → ζµ

a. (3.1)

Such a correspondence is compatible with extended supersymmetry and can be
used näıvely to promote N = 4 super-Yang–Mills invariants to higher-derivative
N = 8 superinvariants. However, it is not possible to capture all of these by such a
map,34 since the full diffeomorphism invariance carries even more symmetry (such
as Ricci cycling identities Rµ[νρσ] = 0). The näıve application of the above sub-
stitution rule would, for instance, lead to an N = 8 supergravity amplitude with
an apparent factorization of the operator D2R4. This would consequently make
the L = 2 two-loop four-graviton amplitude diverge to D = 6. However, this is
contrary to explicit knowledge, since this amplitude has been shown to be finite up
to D ≤ 6.13

The main reason for this glitch is that diffeomorphism invariance for N = 8
supergravity implies that one must sum over all permutations of external legs. Doing
this makes the invariant D2R4 ∼ (s + t + u)R4 = 0 vanish by on-shell momentum
conservation. Consequently the first nonvanishing contribution is of order D4R4. At
two-loop order the operator D4R4 satisfies the rule β2 = 2 of Eq. (2.6), providing
the suitable structure for the two-loop amplitude kinematic factor. However, this
does not give the correct contribution for the higher-loop amplitudes which have
βL ≥ 3 for L ≥ 3.18,21

Thus, we see that one has to be careful with such arguments since gravity
theories have symmetries which are beyond what is provided via two copies of the
gauge transformations of Yang–Mills theories.

An important consequence of the full crossing symmetry provided via the
absence of the concept of color in gravity theories is that infrared divergences in
quantum gravity can be treated as in QED and are much milder than in color-
ordered theories like QCD. One benefit of the structure of gravitational interac-
tions is that there are no divergences for the emission of a soft graviton from
a hard line, contrary to massless QED.40 This indicates that although gravita-
tional interactions looks much more complicated than gauge theory ones, impor-
tant simplification occurs in on-shell amplitudes at tree level. The fact that gravity
amplitudes are unordered implies the no-triangle property of N = 8 supergravity
loop amplitudes16,17 and puts nontrivial constraints on the structure of higher-loop
amplitudes.41

4. Vacuum Structure and E7 Invariance

The βL = L rule can be derived up to six loops from the zero mode sector of
the pure spinor formalism42 for four-graviton amplitudes. This shows that the role
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of extended supersymmetry in perturbative N = 8 supergravity is beyond the
superspace transformation properties of the product of two N = 4 super-Yang–
Mills theories. Further analysis shows that the vacuum structure of N = 4 super-
Yang–Mills and of N = 8 supergravity theory is very different. Mathematically,
in four dimensions the vacuum of N = 8 supergravity can be described by the
homogeneous space of M = E7(7)/[SU(8)R/Z2]. While the local symmetry group
SU(8)R transforms as a “square” of the group SU(4)R (corresponding to each N = 4
super-Yang–Mills theory), there is no concept of the symmetry of the global group
E7(7) in N = 4 super-Yang–Mills. The global E7(7) symmetry does put severe
enough constraints on counterterms N = 8 in supergravity to possibly protect the
theory from diverging before nine loops, and in conjunction with the full crossing
symmetry this could be enough to imply finiteness of the theory in four dimensions.
As a global symmetry rotating the different vacua of N = 8 supergravity, the E7(7)

symmetry relates the perturbative contributions to the nonperturbative black hole
production at high energy, which are required for a consistent definition of the
theory.43

5. Discussion

Although we are still searching for a fundamental theory of quantum gravity, we
are in these years gaining a much better understanding of the necessary concepts
for the formulation of such a theory. The role of dualities in supergravity theories
is important for their quantization, and such investigations provide a framework
for gathering further knowledge about quantum gravity, its fundamental degrees of
freedom and its relation to gauge theory. A clear understanding of the question of
ultraviolet finiteness and the validity of the βL = L rule21 of N = 8 supergravity
would indeed be remarkable and have huge implications for non-supersymmetric
low energy descriptions of quantum gravity theories.
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