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Does interferometry probe thermalization?
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We carry out a systematic study of interferometry radii in ultrarelativistic heavy-ion collisions
within a two-dimensional transport model. We compute the transverse radii Ro and Rs as a function
of pt for various values of the Knudsen number, which measures the degree of thermalization in the
system. They converge to the hydrodynamical limit much more slowly (by a factor ≃ 3) than elliptic
flow. This solves most of the HBT puzzle for central collisions: Ro/Rs is in the range 1.1 − 1.2 for
realistic values of the Knudsen number, much closer to experimental data (≃ 1) than the value 1.5
from hydrodynamical calculations. The pt dependence of Ro and Rs, which is usually said to reflect
collective flow, also has a very limited sensitivity to the degree of thermalization. We then study the
azimuthal oscillations of Ro, Rs, and Ros for non central collisions. Their amplitudes depend little
on the Knudsen number, and reflect the eccentricity of the overlap area between the two nuclei.

PACS numbers: 25.75.Gz

I. INTRODUCTION

Correlations of identical particles produced in ultrarel-
ativistic heavy-ion collisions have the unique capability
to access directly the size of the fireball [1]. More pre-
cisely, they measure the separation distribution of par-
ticles with a given momentum ~p (regions of homogene-
ity [2]) after the last interaction. These data, referred
to as HBT [3], thus impose severe constraints on model
calculations. In particular, blast-wave [4] and hydrody-
namical models [5, 6, 7, 8, 9], which have been rather suc-
cessful in reproducing transverse momentum spectra and
elliptic flows of identified particles up to pt ≃ 2 GeV/c,
fail in reproducing HBT radii. More specifically, they
generally overpredict the longitudinal size RL, as well as
the ratio Ro/Rs, where Ro and Rs are the transverse radii
parallel and orthogonal to the transverse momentum, re-
spectively. On the other hand, they correctly predict the
decrease of radii with pt, which is often claimed to be
a signature of collective flow. Viscous hydrodynamics
gives smaller values of Ro/Rs than ideal hydrodynam-
ics [10, 11]. Transport models also yield a smaller value,
much closer to data, typically around 1.2 [12, 13, 14].

In this paper, we investigate systematically the sensi-
tivity of HBT radii to the degree of thermalization in the
system. We explain the difference between predictions
from hydrodynamics (where local thermalization is as-
sumed) and transport models (where the system is gen-
erally not locally equilibrated). We consider a simple
model, where the system consists of massless particles
undergoing 2 → 2 elastic collisions [15]. The mean free
path of a particle between two collisions can be chosen
arbitrarily by varying the cross section. The limit of zero
mean free path is the “hydrodynamic limit”: the sys-
tem is locally thermalized and its expansion follows the
laws of ideal hydrodynamics. The limit of infinite mean
free path corresponds to free-streaming particles: in this
case, HBT radii reflect the initial distribution of parti-

cles. For finite values of the mean free path, the system
is partially thermalized. In this paper, we study quanti-
tatively how HBT observables vary between these two ex-
tremes. A further simplification is that we consider only
a two-dimensional system living in the transverse plane:
the present study is therefore limited to the transverse
radii Ro and Rs (and the cross term Ros for non-central
collisions), and longitudinal expansion is not taken into
account.

We do not mean to provide a realistic model of heavy-
ion collisions. The fact that we consider only 2 → 2
collisions implies, for sake of consistency, that the sys-
tem is dilute (higher-order processes such as 3 → 3, are
negligible), hence the equation of state is that of a per-
fect gas. This is the price to pay for a control handle on
thermalization. In the real world, the equation of state
of QCD is not that of a perfect gas: it has a very sharp
structure around T ∼ 170 MeV [16], which is expected to
influence observables, including HBT radii. By compar-
ing with experimental data from RHIC, we expect to fail
whenever the equation of state is important. This will
allow us to disentangle effects which can be attributed
to the equation of state, from those which are due to
thermalization and flow.

This article is organized as follows. In Sec. II, we
present our model and explain how HBT radii are ob-
tained. Sec. III discusses the pt dependence of Ro and
Rs and the value of Ro/Rs for central collisions. Results
from transport theory and ideal hydrodynamics are com-
pared. Sec. IV discusses the azimuthal oscillations of Ro,
Rs and Ros for noncentral collisions. Our conclusions are
summarized in Sec. V.

II. MODEL

Nuclei colliding at RHIC are thin pancakes due to the
strong Lorentz contraction along the collision axis. This
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large separation between the longitudinal and transverse
scales implies that longitudinal and transverse dynamics
are to a large extent decoupled. In this paper, we concen-
trate on the transverse expansion, which we model using
a 2-dimensional relativistic Boltzmann equation [15]. We
first describe the initial conditions of the evolution. We
briefly recall how the Boltzmann equation is solved. We
then define the Knudsen number, which measures how
close the system is to local thermal equilibrium. We fi-
nally define HBT radii.

A. Initial conditions

The nucleus-nucleus collision creates particles. We as-
sume for simplicity that the spatial distribution of these
particles is initially a gaussian in the transverse plane:

n(x, y) =
N

2πσxσy
e
−

x2

2σ2
x
−

y2

2σ2
y , (1)

where N is the total number of particles, and σx and σy

are the rms widths of the distributions in the x and y
directions. The x axis denotes the direction of impact
parameter, or reaction plane.

As for the initial momentum distribution, two differ-
ent scenarios have been implemented and compared. The
first scenario is the same as in [15]. In order to compare
transport theory and hydrodynamics, we take the same
initial conditions: The momentum distribution is locally
thermal, and the temperature is related to the density
according to the equation of state of a 2-dimensional
massless, ideal gas: T ∝ n1/2. Since our calculation is
purely classical, we assume Maxwell-Boltzmann statistics
for sake of consistency:

dN

d2pd2x
∝ exp

(

− p

T (x, y)

)

(2)

where T (x, y) is the local temperature, given by:

T (x, y) = T0 exp

(

− x2

4σ2
x

− y2

4σ2
y

)

. (3)

The second set of initial conditions are taken from
the Color glass condensate (CGC) calculations [17, 18],
where the initial gluon spectrum is calculated by solving
the classical Yang-Mills (CYM) equations with the initial
conditions given by the MV model [19]. The result of the
numerical computation can be parameterized [20] as

dN

d2ptd2x
=

{

a1[e
pt

bΛs − 1]−1 (pt/Λs) < 1.5
a2 log(4πpt/Λs)(pt/Λs)

−4 (pt/Λs) > 1.5
(4)

with a1 = 0.137, a2 = 0.0087 and b = 0.465. The color
charge density parameter Λs (proportional to the satu-
ration scale Qs [21]) plays the role of the temperature
as the only transverse momentum scale in the system.
The parameterization (4) was fit to a calculation for a

nucleus of an infinite size on the transverse plane, but we
generalize it by letting Λs(x, y) have the same Gaussian
dependence on the transverse coordinate as the temper-
ature in Eq. (3), with an absolute value adjusted to give
the same value for 〈pt〉.

Our 2-dimensional kinetic theory approach does not
contain longitudinal expansion, and therefore cannot ad-
dress questions related to isotropization of the particle
distribution. The CGC initial conditions naturally lead
to a very anisotropic initial condition where, after τ ∼
1/Qs, 〈pz〉 ≪ 〈pt〉, whereas conventional 3 dimensional
hydrodynamics assumes isotropy in the local rest frame.
In the 2-dimensional approach, pz = 0 for all particles,
and the energy per particle 〈pt〉 is constant throughout
the evolution; we adjust it to 〈pt〉 = 420 MeV, corre-
sponding roughly to the value for pions at the top RHIC
energy [22]. This fixes the value of T0 for the thermal
initial conditions (3) (〈pt〉 = 4

3
T0) and the value of Λs

in Eq. (4) for the CGC initial conditions. In practice,
this implies an unrealistically small value of the satura-
tion scale Qs. Conventional estimates of Qs are larger,
but significant longitudinal cooling is required in order
to match observed pt spectra. In our calculation, the
conservation of 〈pt〉 makes our initial 〈pt〉 smaller than
most estimates. However, our emphasis in this paper is
on the influence of thermalization on the transverse HBT
radii and the transverse momentum dependence. For this
purpose the two initial conditions that we use represent
the opposite ends of the range of physically reasonable pt

spectra: from fully thermalized to one with a perturba-
tive power law behavior at large pt that one would expect
to observe in the absence of any final state interactions.

B. Expansion: Knudsen number

The results presented in this paper use the algorithm
described in [15] to solve the two-dimensional relativistic
Boltzmann equation. The Monte-Carlo algorithm follows
the trajectory of every particle throughout the expansion
of the system, until they cease to interact. Particles in-
teract through 2 → 2 elastic collisions. The cross section
is assumed isotropic in the center-of-mass frame for sim-
plicity.

The only remaining parameters in the simulation are
the total number of particles, N , and the elastic cross
section, σ. (Since we are working in two dimensions,
σ has the dimension of a length.) The initial average
particle density per unit surface is:

n̄ =
N

4πσxσy
. (5)

It is worth emphasizing that N is usually much larger
in the Monte-Carlo simulation than in an actual heavy-
ion collision (“parton subdivision” technique). This can
be understood in the following way. The physical length
scale that should be independent of N is the mean free
path λ. Its precise value depends on the initial velocity
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and position of the particle, but the order of magnitude
is generally λ = 1/σn̄. λ must be compared to another
length scale, the average interparticle distance d = n̄−1/2.
Let us define the dilution parameter D as

D =
d

λ
= σn̄1/2 =

1

λn̄1/2
. (6)

Our description of the system in terms of elastic 2 → 2
collisions is consistent only in the limit when D is small
and the contribution of many-body collisions is sup-
pressed. This is a requirement of the Boltzmann equa-
tion [15]. To achieve this one must take the limit of large
N and small σ keeping σN fixed. This ensures that our
results are extrapolations to the limit N → ∞ at fixed λ.
Because in this limit σ approaches zero the interactions
between the particles become truly pointlike, and prob-
lems with causality and Lorentz-invariance are avoided.
For this reason, all the results presented in this paper are
obtained by doing two simulations with the same value
of λ and different values of D; the results are then ex-
trapolated linearly to D = 0.

The standard dimensionless parameter to characterize
the degree of thermalization is the Knudsen number K,
defined as the ratio of the mean free path to the charac-
teristic size of the system R. We define R as in [23]:

R =

(

1

σ2
x

+
1

σ2
y

)

−1/2

. (7)

The Knudsen number K is then defined as

K ≡ λ

R
=

1

σnR
. (8)

The inverse of the Knudsen number is proportional to
the average number of collisions per particle, ncoll. The
product ncollK remains very close to 1.6, for all values
of K [15]. Hydrodynamics is the limit K → 0, while
K → +∞ correspond to free streaming particles. A fit
to the centrality dependence of elliptic flow [24] suggests
that K ≃ 0.3 for central Au-Au collisions at RHIC.

We choose to keep the scattering cross section σ con-
stant as a function of time for sake of simplicity, as for
instance in the AMPT transport model [25]. Other trans-
port calculations have been carried out [26] where the
viscosity to entropy ratio η/s is kept constant, so that σ
depends on temperature or time, typically like t2/3. As
we recall below, HBT radii give a measure of the sys-
tem when the last scattering occurs, that is, much later
than other observables such as elliptic flow. Therefore,
results might differ significantly with a time-dependent
cross section.

C. HBT radii

For a particle with momentum pt, we denote by
(t, x, y) the space-time point where the last collision oc-
curs. The “out” and “side” coordinates are then defined

as the projections parallel and orthogonal to the particle
momentum:

xo = x · v − vt = x cosφ + y sin φ − vt
xs = x × v = x sin φ − y cosφ, (9)

where v ≡ pt/pt is the particle velocity (v = 1), and φ
its azimuthal angle: pt = (pt cosφ, pt sin φ). Both xo and
xs are invariant under a translation along the trajectory
after the last scattering: (t, ~x) → (t + τ, ~x + ~vτ). In
particular, they are invariant through a scattering at zero
angle. HBT radii are obtained by averaging over many
particles with the same momentum:

R2
o = 〈x2

o〉 − 〈xo〉2
R2

s = 〈x2
s〉 − 〈xs〉2

Ros = 〈xoxs〉 − 〈xo〉〈xs〉. (10)

Radii defined in this way coincide with those obtained
from the curvature of the correlation function at zero
relative momentum, in the absence of final-state inter-
actions [12]. Experimentally, radii are usually obtained
from gaussian fits to the correlation function. This proce-
dure gives different radii if the source is not gaussian [1].
In our case, we have checked explicitly that sources are
close to gaussian, but we have not investigated system-
atically effects of non gaussianities. Strictly speaking,
averages in Eq. (10) are for a given momentum. In prac-
tice, our results are obtained by taking bins of width
10 MeV/c in pt, and averaging over the particles in the
bin. We have checked that results do not vary signifi-
cantly with a smaller bin size.

The radii defined by Eq. (10) are generally functions
of pt and φ. In Sec. III, we study central collisions, with
σx = σy. Symmetry of the system with respect to the di-
rection of pt then implies Ros = 0. Rotational symmetry
implies that Ro and Rs are independent of φ. The more
general case when σx and σy differ is studied in Sec. IV.

III. CENTRAL COLLISIONS

In this section, we discuss how the pt dependence of Ro

evolves with the Knudsen number for a central collision.
We then discuss the ratio Ro/Rs. Finally, we compare
with experimental data. In order to mimic a central Au-
Au collision at RHIC, we use the initial density profile
Eq. (1) with σx = σy = 3 fm. This value corresponds to
the rms width of the initial density profile in an optical
Glauber calculation [27].

The decrease of HBT radii with the transverse momen-
tum pt, typically like p

−1/2
t , is often [1, 28, 29] presented

as a signature of collective flow. Collective flow is as-
sociated with the hydrodynamic limit, i.e., the limit of
small K. Fig. 1 displays Ro versus pt for thermal ini-
tial conditions, Eq. (2), and several values of the Knud-
sen number K. Generally, Ro increases as K decreases.
However, this is a small effect. The decrease of Ro with
pt is more pronounced in the hydrodynamic limit (small
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FIG. 1: HBT radius Ro versus transverse momentum pt of
particles in the transport calculation. The curves are labeled
by the value of the Knudsen number K.
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FIG. 2: HBT radius Ro versus transverse momentum pt of
particles in ideal hydrodynamics, at a given time t. The curves
are labeled by the value of t.

K) but is also seen for free streaming particles (large
K). For large K, HBT radii reflect the initial momen-
tum distribution: both with thermal initial conditions
conditions, Eq. (2), and with CGC initial conditions,
Eq. (4), particles with higher pt are more likely to be
produced in dense regions, i.e., near the center of the
fireball x = y = 0. For pt ≫ 〈pt〉, Eqs. (2) and (3)

yield Ro(pt) ≃ σx

√

1.5〈pt〉/pt for the initial distribution,

while Eq. (4) gives Ro(pt) ≃ σx/
√

2. In practice, after
collisions have occurred, both sets of initial conditions
yield similar radii, as we shall see explicitly later.

Decreasing the Knudsen number K amounts to in-
creasing the number of collisions, hence the “freeze-out”
time when the last collision occurs. To show this ex-
plicitly, Fig. 2 displays Ro(pt) in ideal hydrodynamics,
assuming sudden freeze-out at time t. The equations of
hydrodynamics are solved using a first-order Godunov
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FIG. 3: Ro and Rs, averaged over the interval 0.25 < pt <
0.75 GeV/c, versus 1/K, which scales like the number of
collisions per particle. The lines are 3-parameter fits with
Eq. (11). The dotted curve shows, for sake of illustration, the
variation of elliptic flow in a non-central collision, scaled by
the hydrodynamical limit (from [15]).

scheme [30]. For sake of consistency with the transport
calculation, the equation of state of the fluid is that of
a two-dimensional ideal gas, and there is no longitudinal
expansion [15]. Hydrodynamics at t = 0.2 fm/c gives
the same radii as the transport calculation for large K in
Fig. 1, because we have chosen the same initial conditions
for both calculations. As time evolves, Ro increases; the
increase is more pronounced and occurs later at low pt.
At a given pt, the value of Ro converges as t increases.
This is by no means a trivial result: the location of the
last interaction, 〈xo〉 in Eq. (10), increases linearly with
t. Only the dispersion Ro of this location converges. Hy-
drodynamics at large t is almost identical to transport
at small K (the relative difference is less than 5%). This
is also a non-trivial result, although it is implicit in all
hydrodynamical studies of HBT observables [5]: HBT
observables are defined at the last scattering, when the
system is no longer in local equilibrium, and hydrody-
namics is not valid.

Hydrodynamical calculations usually yield a value of
Ro/Rs which is much too large, of the order of 1.5, while
RHIC data are compatible with 1. While Ro increases
with time in hydrodynamics, Rs decreases. Initially,
Ro(pt) = Rs(pt) by symmetry. In the transport calcu-
lation, the same behavior is observed as the number of
collisions per particle 1/K increases, as shown in Fig. 3.
However, this increase is quite slow. The same curve
shows, for sake of illustration, the increase of the elliptic
flow v2 with 1/K for a noncentral collision [15]. Elliptic

flow converges to the “hydrodynamic limit” much faster

than HBT radii. In order to put this statement on a
quantitative basis, we fit our numerical results for Ro(K)
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with the following formula [15]:

Ro(K) = Rf.s.
o +

Rhydro
o − Rf.s.

o

1 + K/K0

. (11)

The fit parameters are the free-streaming (K → ∞) limit
Rf.s.

o , the hydrodynamic (K → 0) limit Rhydro
o , and K0,

the value of the Knudsen number for which Ro(K) is half-
way between free-streaming and hydro. A similar formula
can be used for Rs(K). It fits our numerical results per-
fectly (see Fig. 3). The value of K0 is 0.167 ± 0.007 for
Ro and 0.215 ± 0.006 for Rs, while it is 0.7 for v2 [15]:
convergence toward the hydrodynamic limit requires 3-4
times more collisions for HBT radii than for elliptic flow.
The other fit parameters are Rhydro

o = 3.071 ± 0.006 fm
and Rhydro

s = 2.088 ± 0.006 fm: we recover the HBT
puzzle Ro/Rs ≃ 1.5 in the hydrodynamical limit.

We now discuss the value of Ro/Rs at RHIC. The cen-
trality dependence of v2 suggests that K ≃ 0.3 in cen-
tral Au-Au collisions [24]. For this value, v2 is already
70% of the hydrodynamic limit. On the other hand,
Ro/Rs ≃ 1.16, which is significantly below the hydro-
dynamic limit of 1.5. A similar value (Ro/Rs ≃ 1.2)
was found with the AMPT transport code [12]. A more
detailed comparison is shown in Fig. 4, which displays
Ro/Rs versus pt for the two sets of initial conditions,
Eqs. (2) and (4). K has been fixed to the value which is
favored by v2 data [24], i.e., K = 0.3 for central collisions.
For both sets of initial conditions, Ro/Rs is essentially
independent of pt, while data show a slight decrease. In
this respect, our results differ from the covariant MPC
model (which is in principle equivalent to ours, with the
longitudinal expansion taken into account), where Ro/Rs

is found smaller than 1 at large pt [13].
Our value of Ro/Rs for central collisions is in much

better agreement with experimental data than models
based on ideal hydrodynamics, which give a value around

1.5. It has been recently argued that ideal hydrodynam-
ics with an early freeze-out [32] also explains the HBT
puzzle. Our results also show that increasing the Knud-
sen number amounts to decreasing the freeze-out time in
ideal hydrodynamics. Viscous corrections to ideal hydro-
dynamics, which incorporate deviations to local equilib-
rium to first order in the Knudsen number K, also lead
to a reduced Ro/Rs (together with a reduced longitudi-
nal radius RL, also closer to data). However, the value
of η/s required to match [10] the data is much larger
than that inferred from the study of elliptic flow [33], so
that viscous corrections explain only a small part of the
HBT puzzle [11]. However, viscous hydrodynamics itself
breaks down at freeze-out, and may not be a reliable tool
for estimating HBT radii. Our results suggest that devi-
ations from equilibrium have larger effects on HBT radii
than inferred from viscous hydrodynamics. We find that
partial thermalization, which has been shown to explain
the centrality dependence of v2, also solves most of the
HBT puzzle for Ro/Rs.

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2

R
o 

[f
m

]

pt [GeV/c]

Thermal
CGC

Phenix π+π+

Phenix π-π-

Phobos π+π+

Phobos π-π-

Star π+π+

Star π-π-
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While our transport calculation gives a plausible ex-
planation for the small Ro/Rs, it completely misses the
absolute value of HBT radii. This is shown in Fig. 5,
which displays a comparison between Ro(pt) from our
transport calculation with data from STAR [31], PHO-
BOS [34] and PHENIX [35]. Experimental values are
much larger. This is due to the equation of state [7, 36],
which is that of an ideal gas in our calculation. Our HBT
volume RoRs is essentially independent of the number of
collisions 1/K. It has been argued that this is a general
result for an ideal gas, due to entropy conservation [37].
The equation of state of QCD, on the other hand, has a
sharp structure around Tc ∼ 170 MeV: as the tempera-
ture decreases, the entropy density drops by an order of
magnitude in a narrow interval around Tc. In a heavy-
ion collision, the volume increases by a large factor with
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essentially no change in the temperature. This explains
why HBT volumes increase at the transition. A com-
plete study must also take into account the longitudinal
expansion, and its effect on the longitudinal radius RL.

IV. AZIMUTHALLY SENSITIVE HBT

For a non-central collision, the interaction region is el-
liptic, and HBT radii depend on φ. Azimuthally-sensitive
interferometry has been investigated theoretically within
hydrodynamical models [38, 39, 40, 41, 42] and trans-
port models [43]. We first briefly recall why and how
radii depend on φ. We then study how the various radii
depend on the Knudsen number. Finally, we introduce
dimensionless ratios of oscillation amplitudes, which do
not seem to have not been studied previously, and we
compare our results with experimental data [31].
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FIG. 6: Illustration of φ dependent HBT radii.

Fig. 6 illustrates the φ dependence of transverse radii.
The initial distribution of matter is elongated along the
y axis, so that Ro has a maximum at φ = π/2, while Rs

has a maximum at φ = 0. Finally, Ros differs from zero
when the principal axes of the region of homogeneity are
tilted relative to the direction of momentum.

Before we present our results, let us briefly explain how
the φ dependence of the radii is evaluated in the Monte-
Carlo solution of the Boltzmann equation. The radii (10)
involve average values, such as 〈xo〉, which depend on φ.
Such averages can be computed by binning in φ, and
computing the average in each bin:

〈xo〉 =

∑N
i=1(xo)i

N
, (12)

where N is the number of particles in the bin, which
depends on φ due to elliptic flow. Since the φ dependence
is smooth, more accurate results are obtained by fitting
both the numerator and the denominator of Eq. (12) by
Fourier series, using the symmetries φ → −φ and φ →
φ + π to restrain the number of terms [44]. Since the
Fourier expansion converges rapidly, we keep terms only
up to order cos 4φ and sin 4φ.

Fig. 7 displays the φ dependence of R2
o, R2

s, and Ros.
The variation of R2

o and R2
s is clearly dominated by a

cos 2φ term, while the variation of Ros goes like sin 2φ.
The mean value of R2

o is slightly higher than the mean
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FIG. 7: Azimuthal dependence of HBT Radii. Thermal initial
conditions, with σx = 1.95 fm, σy = 2.6 fm, corresponding
roughly to a Au-Au collision at RHIC with impact parameter
b = 7 fm. The pt interval is the same as in Fig. 3. The
Knudsen number is K = 0.4.

value of R2
s, which is not surprising since final-state inter-

actions increase Ro and decrease Rs. At φ = 0, however,
Ro < Rs, reflecting the initial eccentricity of the system.
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fm

1/K

Ro(π/2)

Rs(0)

Ro(0)

Rs(π/2)

FIG. 8: In-plane (φ = 0) and out-of-plane (φ = π/2 radii
versus K−1 for thermal initial conditions. Initial conditions
and pt interval as in Fig. 7. Lines are 3-parameter fits using
Eq. (11).

Fig. 8 displays radii in the reaction plane (φ = 0)
and out of the reaction plane (φ = π/2) versus K.
Ro increases and Rs decreases as the number of col-
lisions 1/K increases, as already observed for central
collisions (Fig. 3). Upon closer scrutiny, Fig. 8 reveals
that the slope of the curves differ. This is reflected
by the value of the parameter fit K0 in Eq. (11). K0

is largest for Ro(0) (K0 = 0.38 ± 0.01), smallest for
Ro(π/2) (K0 = 0.04 ± 0.05), and intermediate for Rs(0)
and Rs(π/2) (K0 = 0.26 ± 0.03 and 0.20 ± 0.02, respec-
tively). Our interpretation is that thermalization is faster
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in plane than out of plane, which is natural since collec-
tive flow is preferentially in plane.

We now study quantitatively how oscillation ampli-
tudes vary with K. There are three such amplitudes,
as illustrated in Fig. 7:

∆R2
o = R2

o(π/2) − R2
o(0)

∆R2
s = R2

s(0) − R2
s(π/2)

∆Ros = Ros(3π/4)− Ros(π/4). (13)

In Fig. 7, all three amplitudes are clearly comparable.
If K ≫ 1, particles escape freely after they have been
produced. Setting t = 0 in Eq. (9) and using the fact
that the initial distribution is centered at x = y = 0 and
has y → −y symmetry, one easily shows that all three
amplitudes are equal to 〈y2 − x2〉. The results are inte-
grated over the pt range 0.25 < pt < 0.75 GeV/c, but our
results depend weakly on pt. In particular, we do not see
the inversion of oscillations at large pt reported in earlier
hydrodynamical calculations [38, 40]. This inversion was
not observed in more recent calculations [42].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12

1/K

∆Ro
2/∆Rs

2

∆Ros/∆Ro
2

εs/ε

FIG. 9: Ratios of oscillation amplitudes versus K−1 for ther-
mal initial conditions. R2

o, R2

s and Ros are integrated over the
pt interval 0.5 < pt < 0.75 GeV/c. Lines are drawn to guide
the eye.

Oscillation amplitudes scale like the eccentricity of the
overlap area between the two nuclei, which depends on
centrality and is not known directly. This dependence
can be avoided by considering ratios of oscillation am-
plitudes. Out of 3 amplitudes, one may construct 2 ra-
tios, ∆Ros/∆R2

o and ∆R2
o/∆R2

s. These ratios can be
extracted directly from experimental data, and are equal
to unity in the free-streaming limit (large K). They are
plotted in Fig. 9 versus 1/K. Final-state interactions in-
crease the oscillations of Ro relative to Rs, much in the
same way as they increase Ro relative to Rs for central
collisions. The opposite behavior was found in hydro [40]
and blast-wave [4] calculations, and we do not understand
the origin of this discrepancy.

For realistic values of K, both ratios deviate little from
unity. It is also interesting to compare the eccentricity

STAR data our results
K = 0.32 K = 0.51

∆R2

o/∆R2

s 1.45 ± 0.61 1.08 ± 0.02 1.05 ± 0.02
∆Ros/∆R2

o 0.68 ± 0.42 0.97 ± 0.03 0.99 ± 0.03
ǫs 0.080 ± 0.026 0.205 ± 0.003 0.213 ± 0.005

STAR data our results
K = 0.31 K = 0.49

∆R2

o/∆R2

s 1.09 ± 0.46 1.14 ± 0.02 1.06 ± 0.02

∆Ros/∆R2

o 0.65 ± 0.31 0.90 ± 0.04 0.92 ± 0.04
ǫs 0.086 ± 0.017 0.172 ± 0.005 0.174 ± 0.005

TABLE I: Comparison between results from STAR [31] and
our calculations. Top: centrality interval 20-30% and kt ∈

[0.15, 0.25] GeV/c. Bottom: centrality interval 10-20% and
kt ∈ [0.35, 0.45] GeV/c.

seen in HBT radii, for instance in Rs:

ǫs ≡ R2
s(0) − R2

s(π/2)

R2
s(0) + R2

s(π/2)
(14)

with the initial eccentricity

ǫ =
σ2

y − σ2
x

σ2
y + σ2

x

. (15)

In the limit K → ∞, ǫs and ǫ are strictly equal for both
sets of initial conditions. The ratio ǫs/ǫ is plotted in
Fig. 9. It also remains close to unity. We conclude that
none of the observables we can construct from oscillation
amplitudes is an interesting probe of thermalization. For
realistic values of K, the region of homogeneity essen-
tially retains the shape of the initial distribution.

Although our model calculation is too crude to repro-
duce the magnitude of HBT radii, we expect that the
above ratios are less model dependent; in particular, they
all go to 1 in the absence of final-state interactions. A
comparison with existing data is therefore instructive.
Table I displays comparisons between our results and ex-
perimental data from STAR [31]. The correspondence
between centrality and eccentricity was taken from [45].
For each set of data, the two values of the Knudsen num-
ber span the range inferred from the centrality depen-
dence of v2 [24]. Note that the pt ranges differ for the
two centrality intervals. This is the reason why our re-
sults are also slightly different, although the values of K
are essentially the same. Our results for ∆R2

o/∆R2
s and

∆Ros/∆R2
o are compatible with experimental data, but

the latter have large error bars. On the other hand, the
experimental value of ǫs is smaller by a factor 2 than
our value. In our calculations, ǫs remains very close to
the initial eccentricity (see Fig. 9). Experimentally, how-
ever, the initial eccentricity seems to be washed out by
the expansion. This is a spectacular effect, whose im-
portance doesn’t seem to have been fully appreciated so
far. Hydrodynamical calculations have been reported [42]
which are in fair agreement with the measured value of ǫs.
These calculations use a soft equation of state: it is likely
that the soft equation of state of QCD is responsible for
the reduced eccentricity seen in data.
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V. CONCLUSIONS

We have carried out a systematic study of how HBT
observables evolve with the degree of thermalization in
the system, characterized by the Knudsen number K.
The number of collisions per particle scales like 1/K, and
local equilibrium corresponds to the limit K → 0. Our
results show that HBT observables depend very weakly
on K:

• A decrease of Ro with pt is expected from initial
conditions; collective flow only makes this decrease
slightly stronger.

• The ratio Ro/Rs increases very slowly when one
approaches the hydrodynamical limit. For the val-
ues of K found in Ref. [24], it is lower than 1.2,
and much lower than predicted by hydrodynamics.
Partial thermalization solves most of the HBT puz-
zle.

• For non-central collisions, the variations of R2
o, R2

s

and Ros with azimuth have almost equal ampli-
tudes. The final eccentricity seen in the side radius

R2
s is very close to the initial eccentricity.

Our results are in quantitative agreement with data for
Ro/Rs, ∆Ros/∆R2

o and ∆R2
o/∆R2

s. On the other hand,
our absolute values for Ro and Rs are much too small.
Experimentally, it is also found that the final eccentric-
ity is smaller than the initial eccentricity, almost by a
factor 2. Both effects cannot be due to flow alone. On
the other hand, they might be a signature of the soft-
ness of the QCD equation of state or, equivalently, of the
transition from a quark-gluon plasma to a hadron gas.
When the quark-gluon plasma transforms into hadrons,
the volume of the system increases by a large factor: the
source swells, which results in larger radii and a smaller
eccentricity.

Acknowledgments

C. G. and J.Y.O. thank M. Lopez Noriega, M. A. Lisa,
S. Pratt and Yu. Sinyukov for useful discussions. T.L.
thanks W. Florkowski for discussions. T.L. is supported
by the Academy of Finland, contract 126604.

[1] M. A. Lisa, S. Pratt, R. Soltz and U. Wiede-
mann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005),
[arXiv:nucl-ex/0505014].

[2] S. V. Akkelin and Y. M. Sinyukov, Phys. Lett. B356,
525 (1995).

[3] R. H. Brown and R. Q. Twiss, Nature 177, 27 (1956).
[4] F. Retiere and M. A. Lisa, Phys. Rev. C70, 044907

(2004), [arXiv:nucl-th/0312024].
[5] P. F. Kolb and U. W. Heinz, arXiv:nucl-th/0305084.
[6] T. Hirano and K. Tsuda, Phys. Rev. C66, 054905 (2002),

[arXiv:nucl-th/0205043].
[7] D. Zschiesche, S. Schramm, H. Stoecker and W. Greiner,

Phys. Rev. C65, 064902 (2002), [arXiv:nucl-th/0107037].
[8] J. Socolowski, O., F. Grassi, Y. Hama and T. Ko-

dama, Phys. Rev. Lett. 93, 182301 (2004),
[arXiv:hep-ph/0405181].

[9] P. Huovinen and P. V. Ruuskanen, Ann. Rev. Nucl. Part.
Sci. 56, 163 (2006), [arXiv:nucl-th/0605008].

[10] P. Romatschke, Eur. Phys. J. C52, 203 (2007),
[arXiv:nucl-th/0701032].

[11] S. Pratt, arXiv:0811.3363 [nucl-th].
[12] Z.-w. Lin, C. M. Ko and S. Pal, Phys. Rev. Lett. 89,

152301 (2002), [arXiv:nucl-th/0204054].
[13] D. Molnár and M. Gyulassy, Phys. Rev. Lett. 92, 052301

(2004).
[14] Q. Li, M. Bleicher and H. Stoecker, Phys. Rev. C73,

064908 (2006).
[15] C. Gombeaud and J.-Y. Ollitrault, Phys. Rev. C77,

054904 (2008), [arXiv:nucl-th/0702075].
[16] F. Karsch and E. Laermann, arXiv:hep-lat/0305025.
[17] A. Krasnitz, Y. Nara and R. Venugopalan, Phys. Rev.

Lett. 87, 192302 (2001), [arXiv:hep-ph/0108092].
[18] T. Lappi, Phys. Rev. C67, 054903 (2003),

[arXiv:hep-ph/0303076].

[19] L. D. McLerran and R. Venugopalan, Phys. Rev. D49,
2233 (1994), [arXiv:hep-ph/9309289].

[20] A. Krasnitz, Y. Nara and R. Venugopalan, Nucl. Phys.
A727, 427 (2003), [arXiv:hep-ph/0305112].

[21] T. Lappi, Eur. Phys. J. C55, 285 (2008),
[arXiv:0711.3039 [hep-ph]].

[22] PHENIX, S. S. Adler et al., Phys. Rev. C69, 034909
(2004), [arXiv:nucl-ex/0307022].

[23] R. S. Bhalerao, J.-P. Blaizot, N. Borghini and
J.-Y. Ollitrault, Phys. Lett. B627, 49 (2005),
[arXiv:nucl-th/0508009].

[24] H.-J. Drescher, A. Dumitru, C. Gombeaud and J.-
Y. Ollitrault, Phys. Rev. C76, 024905 (2007),
[arXiv:0704.3553 [nucl-th]].

[25] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang and S. Pal, Phys.
Rev. C72, 064901 (2005), [arXiv:nucl-th/0411110].

[26] P. Huovinen and D. Molnar, Phys. Rev. C79, 014906
(2009), [arXiv:0808.0953 [nucl-th]].

[27] M. L. Miller, K. Reygers, S. J. Sanders and P. Stein-
berg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007),
[arXiv:nucl-ex/0701025].

[28] A. N. Makhlin and Y. M. Sinyukov, Z. Phys. C39, 69
(1988).

[29] J. Y. Ollitrault, NATO Sci. Ser. II 87, 237 (2002).
[30] J.-Y. Ollitrault, Phys. Rev. D46, 229 (1992).
[31] STAR, J. Adams et al., Phys. Rev. C71, 044906 (2005),

[arXiv:nucl-ex/0411036].
[32] W. Broniowski, M. Chojnacki, W. Florkowski and

A. Kisiel, Phys. Rev. Lett. 101, 022301 (2008),
[arXiv:0801.4361 [nucl-th]].

[33] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,
172301 (2007), [arXiv:0706.1522 [nucl-th]].

[34] PHOBOS, B. B. Back et al., Phys. Rev. C73, 031901
(2006), [arXiv:nucl-ex/0409001].

http://arXiv.org/abs/nucl-ex/0505014
http://arXiv.org/abs/nucl-th/0312024
http://arXiv.org/abs/nucl-th/0305084
http://arXiv.org/abs/nucl-th/0205043
http://arXiv.org/abs/nucl-th/0107037
http://arXiv.org/abs/hep-ph/0405181
http://arXiv.org/abs/nucl-th/0605008
http://arXiv.org/abs/nucl-th/0701032
http://arXiv.org/abs/0811.3363
http://arXiv.org/abs/nucl-th/0204054
http://arXiv.org/abs/nucl-th/0702075
http://arXiv.org/abs/hep-lat/0305025
http://arXiv.org/abs/hep-ph/0108092
http://arXiv.org/abs/hep-ph/0303076
http://arXiv.org/abs/hep-ph/9309289
http://arXiv.org/abs/hep-ph/0305112
http://arXiv.org/abs/0711.3039
http://arXiv.org/abs/nucl-ex/0307022
http://arXiv.org/abs/nucl-th/0508009
http://arXiv.org/abs/0704.3553
http://arXiv.org/abs/nucl-th/0411110
http://arXiv.org/abs/0808.0953
http://arXiv.org/abs/nucl-ex/0701025
http://arXiv.org/abs/nucl-ex/0411036
http://arXiv.org/abs/0801.4361
http://arXiv.org/abs/0706.1522
http://arXiv.org/abs/nucl-ex/0409001


9

[35] PHENIX, S. S. Adler et al., Phys. Rev. Lett. 93, 152302
(2004), [arXiv:nucl-ex/0401003].

[36] S. Pratt and J. Vredevoogd, Phys. Rev. C78, 054906
(2008), [arXiv:0809.0516 [nucl-th]].

[37] S. V. Akkelin and Y. M. Sinyukov, Phys. Rev. C70,
064901 (2004).

[38] U. W. Heinz and P. F. Kolb, Phys. Lett. B542, 216
(2002), [arXiv:hep-ph/0206278].

[39] B. Tomasik, AIP Conf. Proc. 828, 464 (2006),
[arXiv:nucl-th/0509100].

[40] E. Frodermann, R. Chatterjee and U. Heinz, J. Phys.
G34, 2249 (2007), [arXiv:0707.1898 [nucl-th]].

[41] M. Csanad, B. Tomasik and T. Csorgo, Eur. Phys. J.

A37, 111 (2008), [arXiv:0801.4434 [nucl-th]].
[42] A. Kisiel, W. Broniowski, M. Chojnacki and

W. Florkowski, Phys. Rev. C79, 014902 (2009),
[arXiv:0808.3363 [nucl-th]].

[43] T. J. Humanic, Int. J. Mod. Phys. E15, 197 (2006),
[arXiv:nucl-th/0510049].

[44] U. Heinz, A. Hummel, M. A. Lisa and U. A. Wiedemann,
Phys. Rev. C 66, 044903 (2002).

[45] P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola
and K. Tuominen, Nucl. Phys. A696, 197 (2001),
[arXiv:hep-ph/0103234].

http://arXiv.org/abs/nucl-ex/0401003
http://arXiv.org/abs/0809.0516
http://arXiv.org/abs/hep-ph/0206278
http://arXiv.org/abs/nucl-th/0509100
http://arXiv.org/abs/0707.1898
http://arXiv.org/abs/0801.4434
http://arXiv.org/abs/0808.3363
http://arXiv.org/abs/nucl-th/0510049
http://arXiv.org/abs/hep-ph/0103234

