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ANOTHER DERIVATION OF THE GEOMETRICAL KPZ RELATIONSFRANÇOIS DAVID AND MICHEL BAUERAbstrat. We give a physiist's derivation of the geometrial (in the spirit of Duplantier-She�eld) KPZ relations, via heat kernel methods. It gives a ovariant way to de�neneighborhoods of fratals in 2d quantum gravity, and shows that these relations are inthe realm of onformal �eld theory.
The Knizhnik-Polyakov-Zamolodhikov (KPZ) relations relate the onformal weights

∆0 of the (primary) �elds operators of a two dimensional onformal �eld theory (CFT) tothe saling dimensions ∆ of these operators when this theory is oupled to two dimensionalquantum gravity. They read (for unitary CFT with entral harge c, as well as for manyinteresting non-unitary CFT orresponding to geometrial models)
∆0 = ∆ +

γ2

4
∆(∆ − 1) , γ =

√

25 − c

6
−

√

1 − c

6
(1)The initial derivation of the KPZ relations was obtained by quantizing 2d gravity in alight one gauge [1℄. The ∆'s appear as weights for the SL(2, R) urrent algebra in theresulting e�etive theory. Another derivation is provided by using the onformal gauge[3℄, then the e�etive theory is known to be the elebrated quantum Liouville theory [2℄.The saling dimensions ∆'s are determined by the same anomaly onsisteny onditions(absene of onformal/gravitational anomalies) for the �eld operators as the onditionsholding for the Liouville theory itself. They have been generalized to supersymmetritheories [4℄.The ∆'s an be extrated from the saling behaviour of the orrelation funtions forthe quantum CFT+gravitation theory. Besides numerous expliit alulations of theorrelation funtions in the Liouville theory [5℄, these KPZ relations have been extensivelyheked to hold in the ontinuum limit of disretized models of 2d gravity onstrutedby random matries and disrete random surfaes models [6℄. These �algebrai KPZrelations� are thus perfetly sound and mathematially meaningfull. They are now animportant ingredient in the theory on non-ritial strings, topologial strings, et.Many interesting onformal �eld theories an be onstruted as the saling limit of 2dstatistial models expressed in tems of random geometrial objets on the plane. This isthe ase for polymers, interating random walk models, random loops and O(n) models,perolation usters, interfae models, Hamiltonian walks and travelling salesman prob-lems, et... The saling operators an be viewed as reating �geometrial objets" (do-mains and lusters boundary, ontat points, defet lines, et...) in those models andthe onformal weights ∆0 are related to the fratal (and multifratal) dimensions of thesegeometrial objets. Often these geometrial statistial models an be onstruted on aDate: Otober 16, 2008. 1
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2 FRANÇOIS DAVID AND MICHEL BAUERrandom lattie, and the ∆'s are assoiated to the saling dimensions of the orrespondinggeometrial objets in this random geometry. For these models the KPZ relations havethus a geometrial interpretation. This orrespondane has been used by Duplantier [7℄to study the multifratal geometrial features of many 2d models.Reently Duplantier and She�eld have introdued a new and very interesting proba-bilisti approah to these geometri KPZ relations [8℄. Given a fratal (possibly random)set X in the plane R
2 (with its standard measure dz), ompare its standard Hausdor�dimension dH = 2 − 2x with its �quantum� Hausdor� dimension dQ

H = 2 − 2∆ in theLiouville random measure dµ(z) ∝ eγϕ(z)dz where ϕ(z) is the Gaussian free �eld (orre-sponding to the Liouville �eld). It is proven in [8, 10℄ that the relation between ∆ and
x is exatly the KPZ relation (1) between ∆0 and ∆. These ideas have also been used in[9, 10℄ to prove similar formulas for some one dimensional random multifratal measures,of interest for some other problems.Besides their mathematial interest, these results raise very interesting questions about2d quantum gravity.(1) This approah relies on a ruial assumption, in ommon with the CFT treatment of[3, 4℄, namely that the Liouville theory is the orret e�etive theory for 2d gravity, withits ouplings �xed by the anomaly onsisteny ondition. The treatment of the e�etivetheory is however very di�erent, sine based on rigorous probabilisti methods.(2) These geometri KPZ relations have a large but not omplete overlap with the originalalgebrai KPZ relations. On one hand not all CFT have a purely geometri formulation.On the other hand, and more importantly, most fratal sets X in the plane (deterministifratals, random but not onformally invariant fratals) do not orrespond to some CFTobservables. It is also not possible in general to onstrut similar fratals in a randommetri bakground (e.g. on a large disrete random surfae).(3) In [8℄ the quantum Hausdor� dimension of the fratal X is onstruted by treating
eγϕ(z) as a random measure, but not as a random metri. Indeed dQ

H is estimated bystandard methods of ball overings or square box deompositions in the plane. Thus theLiouville �eld ϕ de�nes a random �quantum� measure, but the underlying geometry ofthe plane stays �lassial�. The reason seems tehnial, sine the problem of de�ning andstudying �Riemannian balls� (de�ned in term of the geodesi distane) in a random metriis a di�ult one. Thus it is not ompletely obvious why the probabilisti tehniques of[8, 10℄ give the �right� result.In this note we give a �eld theoretial derivation of the geometrial KPZ relations, usingCFT tehniques. This derivation has a drawbak at the level of mathematial rigor - wework at the level of quantum �eld theory physis, not at the level of pure mathematisand probability theory - but has some advantages. Besides providing an alternate, simpleand short derivation of the results of [8℄ aessible to theoretial physiists, we formulatethe problem of the geometri KPZ relations in a ovariant way, by de�ning the quantumHausdor� dimension with respet to the quantum metri, not only the quantum measure.This is done by using heat kernel tehniques. Thus it an be used to de�ne onsistentlythe Hausdor� dimension of a (random) geometrial objet on a disrete random geometry,for instane to test the geometrial KPZ relations in numerial simulations.Let us onsider a fratal set X in the omplex plane with fratal dimension dH = 2−2x(for simpliity we do not onsider the ase of multifratal sets). For onsisteny and inorder to have a large distane IR regulator one should for instane onsider that X lies



ANOTHER DERIVATION OF THE GEOMETRICAL KPZ RELATIONS 3in a ompat domain D ⊂ R
2. The �at measure dµ(z) = dz on R

2 indues a measure
dµX(z) with support X, whih has dimension dH . This measure is onstruted (in a loosesense) for instane by approximating X by some �fat overing� Xǫ of X by irles of radius
∼ ǫ, and de�ning dµX as the limit of the standard �at measure restrited on Xǫ, properlyresaled by the fator ǫ−dH . This means in partiular that if we hoose a point z0 ∈ Xand measure the volume of X in the dis of radius r entered at z0, this sales for small
r as

VX(z0, r) =

∫

|z−z0|≤r

dµX(z) ≃
r→0

(r2)1−x (2)If we onsider the situation of a smooth onformal Riemannian metri g(z) = eγϕ0(z)1 onthe plane, with ϕ0(z) a smooth funtion (γ > 0 plays no role at that stage), the measureon the plane is now dµϕ0(z) = dz eγϕ0(z) and the indued measure on the fratal X is
dµϕ0

X (z) = dµX(z) eγ(1−x)ϕ0(z) (3)Indeed the measure stays loal and we an loally treat the metri as onstant. The loalsaling (2) is of ourse still valid.Following [8℄ we now onsider the quantum Liouville ase, where the metri g(z) is arandom variable, still of the form eγϕ(z), where ϕ(z) is a random massless free �eld. Themeasure dµϕ
X(z) is now a random measure with support on X, and the question is toompute this measure and its �quantum dimension� dQ

H = 2 − 2∆. As shown in [8℄, andas expeted on general grounds, (3) annot be stays orret and ∆ must be di�erent from
x. Indeed ϕ �utuates at arbitrarily small distane sales a ≪ ǫ muh smaller than the�regulator� ǫ used to de�ne the measure and its dimension, so that the orret limit a → 0,then ǫ → 0 di�ers from the naive one ǫ → 0, then a → 0 (this is the usual renormalisationphenomenon). This quantum measure must still be loal, and if it has saling dimension
∆ it must be of the form

dµϕ
X(z) ∝ dµX(z) eγ(1−∆)ϕ(z) (4)At that stage this must be onsidered as an ansatz. We shall show that ∆ an be easilyalulated by a self-onsisteny saling argument.For this argument we must extend to the quantum ase the saling (2) for the volumeof X in a disk of radius r, with the exponent dH = 2 − 2x replaed by dQ

H = 2 − 2∆ inthe r.h.s. of (2), but we must take a ovariant de�nition of the �disk of size r� around z0.One would like to onsider the geodesi disk Bz0,r = {z; dϕ0
(z, z0) ≤ r} with dϕ0

(z, z0)the geodesi distane in the metri g, but this beomes problemati in a random metri.Instead we hoose to de�ne the neibourhood of z0 as the �domain� �lled by a di�usionproess at time t = r2, i.e. by using the heat kernel in the random metri g.Let us �rst onsider the ase of a lassial (non-�utuationg) smooth metri, i.e. asmooth �eld ϕ0(z). The heat kernel Kϕ0(z, z0; t) is the integral kernel for the exponentialof the Laplaian
Kϕ0(z, z′; t) = 〈z|et∆ϕ0 |z′〉 (5)where ∆ϕ0

z is the ovariant Laplae-Beltrami operator in the metri g

∆ϕ0

z = e−γϕ0(z) ∆z , ∆z = 4
∂

∂z

∂

∂z̄
(6)



4 FRANÇOIS DAVID AND MICHEL BAUERThe heat kernel K(z, z0; t) is a salar funtion of z and it is onentrated in a region ofsize r =
√

t around z0 at short times t. It is a standard tool in quantum �eld theory(in partiular to study QFT in general bakground �elds and metris), in di�erentialgeometry and in topology. It has been already onsidered in the ontext of 2d gravity[11℄. The heat kernel in �at spae (ϕ0(z) = 0) is simply
K0(z, z′; t) =

1

4πt
exp

(

−|z − z′|2
4t

) (7)We hoose to extrat the short distane behavior of the fratal measure dµϕ0

X from itsonvolution with the heat kernel. We thus onsider the average integral
Bϕ0

X (z0, t) =

∫

D

dµϕ0

X (z) Kϕ0

t (z, z0) (8)It is onvenient to study the small t behavior of BX through its Mellin-Barnes transform
Mϕ0

X (z0, s) =

∫ ∞

0

dt ts−1 Bϕ0

X (z0, t) =

∫

D

dµϕ0

X (dz) Mϕ0(z, z0; s) (9)with Mϕ0(z, z0; s) the Mellin-Barnes transform of the heat kernel Kϕ0(z, z0; t)

Mϕ0(z, z′; s) = Γ(s) 〈z|
(

1

−∆ϕ0
z

)s

|z′〉 (10)Of ourse in a smooth metri at short distane Mϕ0(z, z′; s) behaves as in �at spae
Mϕ0(z, z′; s) ≃

z→z0

M0(z − z′; s) = Γ(s) 〈z|
(

1

−∆z

)s

|z′〉 ≃ |z − z′|2s−2 (11)The integral (9) de�ning Mϕ0

X (z0, s) behaves at small distane z → z0 as
∫

dµX(z) |z − z0|2−2s (12)and the short distane behaviour of the fratal measure dµX , given by (2), implies thatthe integral (9) is onvergent as long as s > x, and therefore that the Mellin transform
Mϕ0

X (z0, s) is analyti as long as Re(s) > x, and has a singularity (a pole) at s = x. Bythe inverse Mellin transform formula the original funtion behaves at small t as
Bϕ0

X (z0, t) ≃ t−x , t → 0 (13)as expeted, and as in the �at spae ase.We now onsider the quantum ase, where ϕ(z) is not a �xed smooth metri, but arandom massless free �eld orresponding to the Liouville model. The ation for ϕ isnormalized as in [8℄
S[ϕ] =

1

4π

∫

dz (∇ϕ(z))2 (14)so that the propagator (the ovariane matrix) is simply (at short distane)
〈ϕ(z)ϕ(z′)〉 = G0(z, z

′) ≃ − log |z − z′| (15)and the �oupling onstant� γ whih enters in the random metri g = eγϕ(z)1 is 0 ≤ γ ≤ 2.There will be UV divergenes in the alulations involving the metri, they will be takeninto aount by multipliative renormalisation of the metri and of the measures in thestandard way (normal produts) and we shall not need to make them more preise.



ANOTHER DERIVATION OF THE GEOMETRICAL KPZ RELATIONS 5As argued above, the measure dµϕ
X(z) on the fratal X is now also a random measure,loally orrelated to ϕ, and taken to be of the form (4). A priori∆ 6= x sine the dimensionof the measure is modi�ed by the short distane �utuations of the metri. The quantumaverage of the fratal measure around z0 is now de�ned as

BQ

X(z0, t) =

〈
∫

D

dµϕ
X(z) Kϕ(z, z0; t)

〉

ϕ

(16)and we shall ompute the quantum saling exponent ∆ for X by noting that BQ

X mustobey the self-onsistent short time saling
BQ

X(z0, t) ≃ t−∆ , t → 0 (17)As previously we onsider the Mellin-Barnes transform of BQ

X(z0, t), whih reads
MQ

X(z0, s) =

〈
∫

D

dµϕ
X(z) Mϕ(z, z0; s)

〉

ϕ

= Γ(s)

∫

D

dµX(z)
〈

eγ(1−∆)ϕ(z) Mϕ(z, z0; s)
〉

ϕ(18)The singularity in the s variable still omes from the short distane behavior of theintegrand. We laim that
〈

eγ(1−∆)ϕ(z) Mϕ(z, z0; s)
〉

ϕ
∝ |z − z0|2s−2+ γ2

2
(s−1)(2∆−s) (19)To show this we write

eγ(1−∆)ϕ(z) Mϕ(z, z0; s) = eγ(1−∆)ϕ(z)〈z|
(

1

−∆ϕ
z

)s

|z0〉 (20)and we use the usual �replia� trik. We study (20) for positive integers s and we analyt-ially ontinue the result to the interesting domain 0 < s < 1. For s integer we use (6)to write the propagator (the inverse of the Laplaian) as (−∆ϕ
z )−1 = (−∆z)

−1eγϕ and torewrite the r.h.s. of (20) as
∫∫

dz1 · · · dzs−1 eγ(1−∆z)ϕ(z)〈z|
(

1

−∆z

)

|zs−1〉 eγϕ(zs−1)〈zs−1|
(

1

−∆z

)

|zs−2〉 · · ·

· · · eγϕ(z2)〈z2|
(

1

−∆z

)

|z1〉eγϕ(z1)〈z1|
(

1

−∆z

)

|z0〉 (21)where 〈z|(−∆z)
−1|z′〉 is the massless propagator in �at spae. The quantum ϕ average isperformed easily using Wik theorem. At short distanes it reads

〈

eγ(1−∆)ϕ(z)eγϕ(zs−1) · · · eγϕ(z1)
〉

ϕ
∝

s−1
∏

j=1

|z − zj |−γ2(1−∆)
∏

0<i<j<s

(zi − zj |−γ2 (22)We are interested in the singular part in the z → z0 expansion of (21) whih omes fromthe setor where all the |zj − z0| are of the order |z− z0|, sine this will give the dominantontribution (after analyti ontinuation to 0 < s < 1). the r.h.s. of (22) is of dimension(in z) −γ2((1−∆)(s− 1) + (s− 1)(s− 2)/2) and by power ounting we obtain (19) (thelogarithms oming from the massless propagators do not hange this saling, and mightjust give a global log[z − z0| for integer s).



6 FRANÇOIS DAVID AND MICHEL BAUERNow omparing (19) to (11) and (18) to (12) we see that the �rst singularity of MQ

X(z0, s)ours at sc given by
2x − 2 = 2sc − 2 +

γ2

2
(sc − 1)(2∆ − sc) (23)and the onsisteny ondition sc = ∆ implies

x = ∆ +
γ2

4
∆(∆ − 1) (24)Q.E.D.The same onstrution and the same argument an be used to derive the geometriboundary KPZ relations onsidered also in [8℄. The Liouville free �eld ϕ is de�ned in asimply onneted domain D with a smooth boundary ∂D, with free boundary onditions(i.e. Neuman b.. ∂⊥ϕ = 0 on ∂D). For simpliity we take for D the upper half planeand for ∂D the real axis R. Now let X be a fratal subset of ∂D, with fratal dimension

d̃H = 1 − x̃. If du is the standard (one dimensional) mesure on ∂D, the indued mesurewith support on X is denoted dµ̃X(u). If we �rst onsider a smooth non-�utuatingonformal metri g(z) = eγϕ0(z)1 in D given by a smooth ϕ0(z), the indued metri onthe boundary is h(u) = eγϕ0(z)1 and the indued measures on the boundary ∂D and thefratal X are respetively dµ̃ϕ0(u) = du eγϕ0(u)/2 and
dµ̃ϕ0

X (u) = dµ̃X(u) e
γ

2
(1−x̃)ϕ0(u) (25)To de�ne the boundary fratal dimension d̃X of X in a ovariant way we use the bound-ary heat kernel K̃ϕ0(u, u′; t), solution of the one dimensional di�usion equation on theboundary ∂D

K̃ϕ0(u, u′; t) = 〈u|et ∆̃
ϕ0
u |u′〉 (26)where ∆̃ϕ0

u is the one dimensional Laplae-Beltrami operator on ∂D in the metri h(u)

∆̃ϕ0

u = e−
γ

2
ϕ0(u) ∂u e−

γ

2
ϕ0(u) ∂u = (Dϕ0

u )2 , Dϕ0

u = e−
γ

2
ϕ0(u)∂u (27)In the �at metri ϕ0 = 0 it is of ourse simply

K̃0(u, u′; t) =
1√
4π t

exp

(

−|u − u′|2
4t

) (28)The average of the boundary heat kernel over the boundary fratal X sales at small timeas
B̃ϕ0

X (u0, t) =

∫

∂D

dµ̃ϕ0

X (u) K̃ϕ0(u, u0; t) ≃ t−x̃/2 , t → 0 (29)Equivalently its Mellin-Barnes transform
M̃ϕ0

X (u0, s) =

∫

∂D

dµ̃ϕ0

X (u) M̃ϕ0(u, u0; s) , M̃ϕ0(u, u0; s) = Γ(s) 〈u|
(

1

−Dϕ0
u

)2s

|u0〉(30)has its �rst pole at s = x̃/2.In the quantum ase, the fratal dimension is renormalized as d̃Q

H = (1 − ∆̃) and theboundary measure on X is taken to be
dµ̃Q

X(u) = dµ̃X(u) e
γ

2
(1−∆̃)ϕ(u) (31)



ANOTHER DERIVATION OF THE GEOMETRICAL KPZ RELATIONS 7
∆̃ is �xed by the self-onsisteny ondition for the small time saling for the boundaryheat kernel average

B̃Q

X(u0, t) =

∫

∂D

〈dµ̃ϕ
X(u)K̃ϕ(u, u0; t)〉ϕ ≃ t−∆̃/2 , t → 0 (32)or equivalently that its Mellin-Barnes transform M̃Q

X(u0, s) has its �rst pole at sc = ∆̃/2.We thus have ompute the short distane behavior of the v.e.v. of the measure dµ̃Q

X timesthe Mellin-Barnes transform of the boundary heat kernel M̃ϕ(u, u0; s) The alulationgoes along the same lines as in the bulk ase. But now the e.v. of exponentials of ϕ aretaken on the boundary. The Neuman boundary onditions implies that the short distanebehavior of the orrelator is now
〈ϕ(u)ϕ(u′)〉 = G̃0(u, u′) ≃ −2 log |u − u′| , (33)while M̃ϕ(u, u0; s) is the kernel for the boundary operator (−Du)

−2s instead of the bulkoperator (−∆z)
−s. The �nal result is
〈eγ

2
(1−∆̃)ϕ(u) M̃ϕ(u, u0; s)〉ϕ ∝

u→u0

|u − u0|2s−1+ γ2

2
(2s−1)(∆̃−s)) (34)This implies that M̃ϕ(u, u0; s) has its �rst singularity at sc given by

x̃ − 1 = 2sc − 1 +
γ2

2
(2sc − 1)(∆̃ − sc)) (35)and the onsisteny ondition sc = ∆̃/2 implies the boundary KPZ relation

x̃ = ∆̃ +
γ2

4
∆̃(∆̃ − 1) (36)similar to (24).Let us disuss our results. Formula (19) (and its boundary ounterpart (34)) is therux of the argument. It is obtained here by a replia argument. Sine the heat kernel isthe solution of a di�usion equation, it an be studied by probabilisti methods, and thesemethods ould probably be used to obtain a more rigorous derivation of (19).The fat that the heat kernel is a natural objet to formulate in a ovariant way thegeometri KPZ relations is not surprising. The heat kernel has simple properties underonformal transformations. In partiular its short distane and time behaviors are relatedto the spetral dimension of spae, and it is known that in 2d quantum gravity the spetraldimension of spae-time is still ds = 2 (and the spetral dimension of its boundary d̃s = 1)[11℄. We expet the situation to be quite di�erent and interesting to study when dealingwith the intrinsi quantum Hausdor� dimension (de�ned in term of the geodesi distane),whih is know to be dQ

H = 4 in the c = 0 (γ = 8/3) ase [12℄, but is very di�ult to studyin the general ase [13℄. Referenes[1℄ V. G. Knizhnik, A. M. Polyakov & A. B. Zamolodhikov, Fratal struture of 2D-quantum gravity,Modern Phys. Lett. A, 3 (1988) 819-826.[2℄ A. M. Polyakov, Quantum geometry of bosoni strings, Phys. Lett. B, 103 (1981) 207-210,A. M. Polyakov, Quantum geometry of fermioni strings, Phys. Lett. B, 103 (1981)211-213.
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