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Abstract. We give a physicist’s derivation of the geometrical (in the spirit of Duplantier-
Sheffield) KPZ relations, via heat kernel methods. It gives a covariant way to define
neighborhoods of fractals in 2d quantum gravity, and shows that these relations are in
the realm of conformal field theory.

The Knizhnik-Polyakov-Zamolodchikov (KPZ) relations relate the conformal weights
∆0 of the (primary) fields operators of a two dimensional conformal field theory (CFT) to
the scaling dimensions ∆ of these operators when this theory is coupled to two dimensional
quantum gravity. They read (for unitary CFT with central charge c, as well as for many
interesting non-unitary CFT corresponding to geometrical models)

∆0 = ∆ +
γ2

4
∆(∆− 1) , γ =

√
25− c

6
−
√

1− c
6

(1)

The initial derivation of the KPZ relations was obtained by quantizing 2d gravity in a
light cone gauge [1]. The ∆’s appear as weights for the SL(2,R) current algebra in the
resulting effective theory. Another derivation is provided by using the conformal gauge
[3], then the effective theory is known to be the celebrated quantum Liouville theory [2].
The scaling dimensions ∆’s are determined by the same anomaly consistency conditions
(absence of conformal/gravitational anomalies) for the field operators as the conditions
holding for the Liouville theory itself. They have been generalized to supersymmetric
theories [4].

The ∆’s can be extracted from the scaling behaviour of the correlation functions for
the quantum CFT+gravitation theory. Besides numerous explicit calculations of the
correlation functions in the Liouville theory [5], these KPZ relations have been extensively
checked to hold in the continuum limit of discretized models of 2d gravity constructed
by random matrices and discrete random surfaces models [6]. These “algebraic KPZ
relations” are thus perfectly sound and mathematically meaningfull. They are now an
important ingredient in the theory on non-critical strings, topological strings, etc.

Many interesting conformal field theories can be constructed as the scaling limit of 2d
statistical models expressed in tems of random geometrical objects on the plane. This is
the case for polymers, interacting random walk models, random loops and O(n) models,
percolation custers, interface models, Hamiltonian walks and travelling salesman prob-
lems, etc... The scaling operators can be viewed as creating “geometrical objects" (do-
mains and clusters boundary, contact points, defect lines, etc...) in those models and
the conformal weights ∆0 are related to the fractal (and multifractal) dimensions of these
geometrical objects. Often these geometrical statistical models can be constructed on a
random lattice, and the ∆’s are associated to the scaling dimensions of the corresponding
geometrical objects in this random geometry. For these models the KPZ relations have
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thus a geometrical interpretation. This correspondance has been used by Duplantier [7]
to study the multifractal geometrical features of many 2d models.

Recently Duplantier and Sheffield have introduced a new and very interesting proba-
bilistic approach to these geometric KPZ relations [8]. Given a fractal (possibly random)
set X in the plane R2 (with its standard measure dz), compare its standard Hausdorff
dimension dH = 2 − 2x with its “quantum” Hausdorff dimension dQ

H = 2 − 2∆ in the
Liouville random measure dµ(z) ∝ eγϕ(z)dz where ϕ(z) is the Gaussian free field (corre-
sponding to the Liouville field). It is proven in [8, 10] that the relation between ∆ and
x is exactly the KPZ relation (1) between ∆0 and ∆. These ideas have also been used in
[9, 10] to prove similar formulas for some one dimensional random multifractal measures,
of interest for some other problems.

Besides their mathematical interest, these results raise very interesting questions about
2d quantum gravity.
(1) This approach relies on a crucial assumption, in common with the CFT treatment of
[3, 4], namely that the Liouville theory is the correct effective theory for 2d gravity, with
its couplings fixed by the anomaly consistency condition. The treatment of the effective
theory is however very different, since based on rigorous probabilistic methods.
(2) These geometric KPZ relations have a large but not complete overlap with the original
algebraic KPZ relations. On one hand not all CFT have a purely geometric formulation.
On the other hand, and more importantly, most fractal sets X in the plane (deterministic
fractals, random but not conformally invariant fractals) do not correspond to some CFT
observables. It is also not possible in general to construct similar fractals in a random
metric background (e.g. on a large discrete random surface).
(3) In [8] the quantum Hausdorff dimension of the fractal X is constructed by treating
eγϕ(z) as a random measure, but not as a random metric. Indeed dQ

H is estimated by
standard methods of ball coverings or square box decompositions in the plane. Thus the
Liouville field ϕ defines a random “quantum” measure, but the underlying geometry of
the plane stays “classical”. The reason seems technical, since the problem of defining and
studying “Riemannian balls” (defined in term of the geodesic distance) in a random metric
is a difficult one. Thus it is not completely obvious why the probabilistic techniques of
[8, 10] give the “right” result.

In this note we give a field theoretical derivation of the geometrical KPZ relations, using
CFT techniques. This derivation has a drawback at the level of mathematical rigor - we
work at the level of quantum field theory physics, not at the level of pure mathematics
and probability theory - but has some advantages. Besides providing an alternate, simple
and short derivation of the results of [8] accessible to theoretical physicists, we formulate
the problem of the geometric KPZ relations in a covariant way, by defining the quantum
Hausdorff dimension with respect to the quantum metric, not only the quantum measure.
This is done by using heat kernel techniques. Thus it can be used to define consistently
the Hausdorff dimension of a (random) geometrical object on a discrete random geometry,
for instance to test the geometrical KPZ relations in numerical simulations.

Let us consider a fractal set X in the complex plane with fractal dimension dH = 2−2x
(for simplicity we do not consider the case of multifractal sets). For consistency and in
order to have a large distance IR regulator one should for instance consider that X lies
in a compact domain D ⊂ R2. The flat measure dµ(z) = dz on R2 induces a measure
dµX(z) with support X, which has dimension dH . This measure is constructed (in a loose
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sense) for instance by approximating X by some “fat covering” Xε of X by circles of radius
∼ ε, and defining dµX as the limit of the standard flat measure restricted on Xε, properly
rescaled by the factor ε−dH . This means in particular that if we choose a point z0 ∈ X
and measure the volume of X in the disc of radius r centered at z0, this scales for small
r as

VX(z0, r) =

∫
|z−z0|≤r
dµX(z) '

r→0
(r2)1−x (2)

If we consider the situation of a smooth conformal Riemannian metric g(z) = eγϕ0(z)1 on
the plane, with ϕ0(z) a smooth function (γ > 0 plays no role at that stage), the measure
on the plane is now dµϕ0(z) = dz eγϕ0(z) and the induced measure on the fractal X is

dµϕ0

X (z) = dµX(z) eγ(1−x)ϕ0(z) (3)

Indeed the measure stays local and we can locally treat the metric as constant. The local
scaling (2) is of course still valid.

Following [8] we now consider the quantum Liouville case, where the metric g(z) is a
random variable, still of the form eγϕ(z), where ϕ(z) is a random massless free field. The
measure dµϕX(z) is now a random measure with support on X, and the question is to
compute this measure and its “quantum dimension” dQ

H = 2 − 2∆. As shown in [8], and
as expected on general grounds, (3) cannot stay correct and ∆ must be different from
x. Indeed ϕ fluctuates at arbitrarily small distance scales a � ε much smaller than the
“regulator” ε used to define the measure and its dimension, so that the correct limit a→ 0,
then ε→ 0 differs from the naive one ε→ 0, then a→ 0 (this is the usual renormalisation
phenomenon). This quantum measure must still be local, and if it has scaling dimension
∆ it must be of the form

dµϕX(z) ∝ dµX(z) eγ(1−∆)ϕ(z) (4)
At that stage this must be considered as an ansatz. We shall show that ∆ can be easily
calculated by a self-consistency scaling argument.

For this argument we must extend to the quantum case the scaling (2) for the volume
of X in a disk of radius r, with the exponent dH = 2 − 2x replaced by dQ

H = 2 − 2∆ in
the r.h.s. of (2), but we must take a covariant definition of the “disk of size r” around z0.
One would like to consider the geodesic disk Bz0,r = {z; dϕ0(z, z0) ≤ r} with dϕ0(z, z0)
the geodesic distance in the metric g, but this becomes problematic in a random metric.
Instead we choose to define the neibourhood of z0 as the “domain” filled by a diffusion
process at time t = r2, i.e. by using the heat kernel in the random metric g.

Let us first consider the case of a classical (non-fluctuating) smooth metric, i.e. a
smooth field ϕ0(z). The heat kernel Kϕ0(z, z0; t) is the integral kernel for the exponential
of the Laplacian

Kϕ0(z, z′; t) = 〈z|et∆ϕ0 |z′〉 (5)
where ∆ϕ0

z is the covariant Laplace-Beltrami operator in the metric g

∆ϕ0
z = e−γϕ0(z) ∆z , ∆z = 4

∂

∂z

∂

∂z̄
(6)

The heat kernel K(z, z0; t) is a scalar function of z and it is concentrated in a region of
size r =

√
t around z0 at short times t. It is a standard tool in quantum field theory

(in particular to study QFT in general background fields and metrics), in differential
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geometry and in topology. It has been already considered in the context of 2d gravity
[11]. The heat kernel in flat space (ϕ0(z) = 0) is simply

K0(z, z′; t) =
1

4πt
exp

(
−|z − z

′|2

4t

)
(7)

We choose to extract the short distance behavior of the fractal measure dµϕ0

X from its
convolution with the heat kernel. We thus consider the average integral

Bϕ0

X (z0, t) =

∫
D

dµϕ0

X (z)Kϕ0
t (z, z0) (8)

Remember that the integration domain D is a large subset of the plane. It is convenient
to study the small t behavior of BX through its Mellin-Barnes transform

Mϕ0

X (z0, s) =

∫ ∞
0

dt ts−1Bϕ0

X (z0, t) =

∫
D

dµϕ0

X (dz)Mϕ0(z, z0; s) (9)

with Mϕ0(z, z0; s) the Mellin-Barnes transform of the heat kernel Kϕ0(z, z0; t)

Mϕ0(z, z′; s) = Γ(s) 〈z|
(

1

−∆ϕ0
z

)s
|z′〉 (10)

Of course in a smooth metric at short distance Mϕ0(z, z′; s) behaves as in flat space

Mϕ0(z, z′; s) '
z→z′

M0(z − z′; s) = Γ(s) 〈z|
(

1

−∆z

)s
|z′〉 ' |z − z′|2s−2 (11)

The integral (9) defining Mϕ0

X (z0, s) behaves at small distance z → z0 as∫
dµX(z) |z − z0|2s−2 (12)

and the short distance behaviour of the fractal measure dµX , given by (2), implies that
the integral (9) is convergent as long as s > x, and therefore that the Mellin transform
Mϕ0

X (z0, s) is analytic as long as Re(s) > x, and has a singularity (a pole) at s = x. By
the inverse Mellin transform formula the original function behaves at small t as

Bϕ0

X (z0, t) ' t−x , t→ 0 (13)

as expected, and as in the flat space case.

We now consider the quantum case, where ϕ(z) is not a fixed smooth metric, but a
random massless free field corresponding to the Liouville model. The action for ϕ is
normalized as in [8]

S[ϕ] =
1

4π

∫
dz (∇ϕ(z))2 (14)

so that the propagator (the covariance matrix) is simply (at short distance)

〈ϕ(z)ϕ(z′)〉 = G0(z, z′) ' − log |z − z′| (15)

and the “coupling constant” γ which enters the random metric g = eγϕ(z)1 is 0 ≤ γ ≤ 2.
There will be UV divergences in the calculations involving the metric, they will be taken
into account by multiplicative renormalisation of the metric and of the measures in the
standard way (normal products) and we shall not need to make them more precise.

As argued above, the measure dµϕX(z) on the fractal X is now also a random measure,
locally correlated with ϕ, and taken to be of the form (4). A priori ∆ 6= x since the
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dimension of the measure is modified by the short distance fluctuations of the metric.
The quantum average of the fractal measure around z0 is now defined as

BQ

X(z0, t) =

〈∫
D

dµϕX(z)Kϕ(z, z0; t)

〉
ϕ

(16)

and we shall compute the quantum scaling exponent ∆ for X by noting that BQ

X must
obey the self-consistent short time scaling

BQ

X(z0, t) ' t−∆ , t→ 0 (17)

As previously we consider the Mellin-Barnes transform of BQ

X(z0, t), which reads

MQ

X(z0, s) =

〈∫
D

dµϕX(z)Mϕ(z, z0; s)

〉
ϕ

= Γ(s)

∫
D

dµX(z)
〈
eγ(1−∆)ϕ(z)Mϕ(z, z0; s)

〉
ϕ

(18)
The singularity in the s variable still comes from the short distance behavior of the
integrand. We claim that〈

eγ(1−∆)ϕ(z) Mϕ(z, z0; s)
〉
ϕ
∝ |z − z0|2s−2+ γ2

2
(s−1)(2∆−s) (19)

To show this we write

eγ(1−∆)ϕ(z) Mϕ(z, z0; s) = eγ(1−∆)ϕ(z)〈z|
(

1

−∆ϕ
z

)s
|z0〉 (20)

and we use the usual “replica” trick. We study (20) for positive integers s and we analyt-
ically continue the result to the interesting domain 0 < s < 1. For s integer we use (6)
to write the propagator (the inverse of the Laplacian) as (−∆ϕ

z )−1 = (−∆z)
−1eγϕ and to

rewrite the r.h.s. of (20) as∫∫
dz1 · · · dzs−1 eγ(1−∆z)ϕ(z)〈z|

(
1

−∆z

)
|zs−1〉 eγϕ(zs−1)〈zs−1|

(
1

−∆z

)
|zs−2〉 · · ·

· · · eγϕ(z2)〈z2|
(

1

−∆z

)
|z1〉eγϕ(z1)〈z1|

(
1

−∆z

)
|z0〉 (21)

where 〈z|(−∆z)
−1|z′〉 is the massless propagator in flat space. The quantum ϕ average is

performed easily using Wick theorem. At short distances it reads〈
eγ(1−∆)ϕ(z)eγϕ(zs−1) · · · eγϕ(z1)

〉
ϕ
∝

s−1∏
j=1

|z − zj|−γ
2(1−∆)

∏
0<i<j<s

|zi − zj|−γ
2

(22)

We are interested in the singular part in the z → z0 expansion of (21) which comes from
the sector where all the |zj− z0| are of the order |z− z0|, since this will give the dominant
contribution (after analytic continuation to 0 < s < 1). The r.h.s. of (22) is of dimension
(in z) −γ2((1−∆)(s− 1) + (s− 1)(s− 2)/2) and by power counting we obtain (19) (the
logarithms coming from the massless propagators do not change this scaling, and might
just give a global log[z − z0| for integer s).

Now comparing (19) to (11) and (18) to (12) we see that the first singularity ofMQ

X(z0, s)
occurs at sc given by

2x− 2 = 2sc − 2 +
γ2

2
(sc − 1)(2∆− sc) (23)
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and the consistency condition sc = ∆ implies

x = ∆ +
γ2

4
∆(∆− 1) (24)

Q.E.D.

The same construction and the same argument can be used to derive the geometric
boundary KPZ relations considered also in [8]. The Liouville free field ϕ is defined in a
simply connected domain D with a smooth boundary ∂D, with free boundary conditions
(i.e. Neuman b.c. ∂⊥ϕ = 0 on ∂D). For simplicity we take for D the upper half plane
and for ∂D the real axis R. Now let X be a fractal subset of ∂D, with fractal dimension
d̃H = 1 − x̃. If du is the standard (one dimensional) mesure on ∂D, the induced mesure
with support on X is denoted dµ̃X(u). If we first consider a smooth non-fluctuating
conformal metric g(z) = eγϕ0(z)1 in D given by a smooth ϕ0(z), the induced metric on
the boundary is h(u) = eγϕ0(z)1 and the induced measures on the boundary ∂D and the
fractal X are respectively dµ̃ϕ0(u) = du eγϕ0(u)/2 and

dµ̃ϕ0

X (u) = dµ̃X(u) e
γ
2

(1−x̃)ϕ0(u) (25)

To define the boundary fractal dimension d̃X of X in a covariant way we use the bound-
ary heat kernel K̃ϕ0(u, u′; t), solution of the one dimensional diffusion equation on the
boundary ∂D

K̃ϕ0(u, u′; t) = 〈u|et ∆̃
ϕ0
u |u′〉 (26)

where ∆̃ϕ0
u is the one dimensional Laplace-Beltrami operator on ∂D in the metric h(u)

∆̃ϕ0
u = e−

γ
2
ϕ0(u) ∂u e−

γ
2
ϕ0(u) ∂u = (Dϕ0

u )2 , Dϕ0
u = e−

γ
2
ϕ0(u)∂u (27)

In the flat metric ϕ0 = 0 it is of course simply

K̃0(u, u′; t) =
1√
4π t

exp

(
−|u− u

′|2

4t

)
(28)

The average of the boundary heat kernel over the boundary fractal X scales at small time
as

B̃ϕ0

X (u0, t) =

∫
∂D

dµ̃ϕ0

X (u) K̃ϕ0(u, u0; t) ' t−x̃/2 , t→ 0 (29)

Equivalently its Mellin-Barnes transform

M̃ϕ0

X (u0, s) =

∫
∂D

dµ̃ϕ0

X (u) M̃ϕ0(u, u0; s) , M̃ϕ0(u, u0; s) = Γ(s) 〈u|
(

1

−Dϕ0
u

)2s

|u0〉

(30)
has its first pole at s = x̃/2.

In the quantum case, the fractal dimension is renormalized as d̃Q

H = (1 − ∆̃) and the
boundary measure on X is taken to be

dµ̃Q

X(u) = dµ̃X(u) e
γ
2

(1−∆̃)ϕ(u) (31)

∆̃ is fixed by the self-consistency condition for the small time scaling for the boundary
heat kernel average

B̃Q

X(u0, t) =

∫
∂D

〈dµ̃ϕX(u)K̃ϕ(u, u0; t)〉ϕ ' t−∆̃/2 , t→ 0 (32)
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or equivalently that its Mellin-Barnes transform M̃Q

X(u0, s) has its first pole at sc = ∆̃/2.
We thus have compute the short distance behavior of the v.e.v. of the measure dµ̃Q

X times
the Mellin-Barnes transform of the boundary heat kernel M̃ϕ(u, u0; s) The calculation
goes along the same lines as in the bulk case. But now the e.v. of exponentials of ϕ are
taken on the boundary. The Neuman boundary conditions implies that the short distance
behavior of the correlator is now

〈ϕ(u)ϕ(u′)〉 = G̃0(u, u′) ' −2 log |u− u′| , (33)

while M̃ϕ(u, u0; s) is the kernel for the boundary operator (−Du)
−2s instead of the bulk

operator (−∆z)
−s. The final result is

〈e
γ
2

(1−∆̃)ϕ(u) M̃ϕ(u, u0; s)〉ϕ ∝
u→u0

|u− u0|2s−1+ γ2

2
(2s−1)(∆̃−s)) (34)

This implies that M̃ϕ(u, u0; s) has its first singularity at sc given by

x̃− 1 = 2sc − 1 +
γ2

2
(2sc − 1)(∆̃− sc)) (35)

and the consistency condition sc = ∆̃/2 implies the boundary KPZ relation

x̃ = ∆̃ +
γ2

4
∆̃(∆̃− 1) (36)

similar to (24).

Let us discuss our results. Formula (19) (and its boundary counterpart (34)) is the
crux of the argument. It is obtained here by a replica argument. Since the heat kernel is
the solution of a diffusion equation, it can be studied by probabilistic methods, and these
methods could probably be used to obtain a more rigorous derivation of (19).

The fact that the heat kernel is a natural object to formulate in a covariant way the
geometric KPZ relations is not surprising. The heat kernel has simple properties under
conformal transformations. In particular its short distance and time behaviors are related
to the spectral dimension of space, and it is known that in 2d quantum gravity the
spectral dimension of space-time is still ds = 2 (and the spectral dimension of its boundary
d̃s = 1) [11]. We expect the situation to be quite different and interesting to study when
dealing with the intrinsic quantum Hausdorff dimension (defined in terms of the geodesic
distance), which is know to be dQ

H = 4 in the c = 0 (γ = 8/3) case [12], but is very difficult
to study in the general case [13].
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