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Abstract – We show that a new glassy phase can emerge in the presence of strong magnetic
frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties
solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by
Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence
bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap
is observed), it is characterized by long-range critical valence bond correlations and is not related
to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals
and spin glasses.

Copyright c© EPLA, 2008

The interplay of strong quantum fluctuations and
geometrically frustrated magnetic interactions can give
rise to new low-temperature phases. As noticed by
Anderson [1] a way to minimize the effect of frustration
and obtain a low-energy state is coupling the electrons in
valence bonds. A very good variational wave function that
is generically in competition with the antiferromagnetic
(or more general magnetic) state can be obtained by
forming a superposition of short-range valence bonds
that are arranged as dimers on the lattice. If no lattice
symmetry is broken this corresponds to the (so-called)
resonating valence bond liquid (RVBL). In the last
decades, this state has received a lot of attention in
connection with the unusual physical behavior of the
normal phase of underdoped high-Tc superconductors [2].
Indeed Anderson [3] proposed that the holes created by
doping the antiferromagnetic insulator (of the high Tc’s
phase diagram) can gain substantial kinetic energy in the
RVBL state and not in an antiferromagnetic background.
As a consequence, doping favors the RVBL state which
could then become the thermodynamic stable phase and
be responsible for the unusual behavior of underdoped
samples. Concomitantly, resonating valence bond ground
states have been the focus of an intense activity [4] in
the context of frustrated magnets. RVBL or spin liquids
have been found for several models [4]. These states
can undergo quantum phase transitions where lattice
symmetries are spontaneously broken. This gives rise to
valence bond crystals (VBC). Different models are known
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to lead to this type of ground states [4] characterized
by long-range dimer-dimer correlations. The situation
in experiments is complicated by unavoidable magneto-
elastic couplings: making the difference between induced
and spontaneous dimerization is a difficult task. A first
experimental example of spontaneously broken states has
been apparently found in [5].
The aim of this work is to study a new kind of valence

bond state: the valence bond glass (VBG). Similarly to
VBC the arrangement of the dimers (or valence bonds)
breaks the lattice symmetry. However, contrary to VBC,
this corresponds to an amorphous dimerization and not
a crystalline one. Although VBG are analogous to spin
glasses [6] they are physically quite different. In particular
the spins do not freeze in a disordered profile. We expect
that the VBG phase can arise in the presence of strong
magnetic frustration as one of the competing ground
states. Quenched disorder is not necessary to stabilize the
VBG, as we shall show, although it will certain favor it
over more ordered states1. In the following we shall inves-
tigate the properties of the valence bond glass phase focus-
ing on the Hubbard-Heisenberg model within the large-N
approximation introduced by Affleck and Marston [11].
We choose this model because it is a starting point to
study both the physics of high-Tc super-conductors and
frustrated quantum magnets [4,11,12]. The underlying

1The existence of glassiness without quenched disorder is
a phenomenon well known in classical systems (e.g. structural
glasses [7]) and also conjectured for some quantum frustrated
magnets [8] (see however [9,10]).
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lattice we shall focus on is a Bethe lattice [13] with
connectivity z (these are also called z-random regular
graphs in the mathematical literature, see, e.g., [13,14]
for an introduction and a figure). This type of graphs
have locally a tree-like structure which introduces useful
simplification in the analysis of the model [13]. Further-
more they provide the simplest example of geometrically
frustrated lattices: topological disorder and geometrical
frustration are introduced by very long loops (whose
average length scales as logN where N is the number
of sites), which disfavor crystalline states and let emerge
easily the glassy phases [15,16] (e.g. a classical antiferro-
magnet on a random regular graph exhibits a spin glass
transition at low temperature [15]).
We consider the SU(N) version of the Hubbard-

Heisenberg model introduced in [11]:

H = −t
∑
〈i,j〉
(c†i,αcj,α+h.c.)+

U

N

∑
i

(
ni− N

2

)2

+
J

N

∑
〈i,j〉
Si ·Sj , (1)

where ci,α denotes the destruction operator of an electron
of spin index α (α= 1, . . . , N with N even) on the
site i. The sum 〈i, j〉 is restricted on nearest-neighbor
sites on the lattice. the first two terms correspond to
the SU(N) Hubbard model, the last term accounts
for the nearest-neighbor antiferromagnetic interaction
(J > 0) (see footnote 2). We focus on the N →∞ limit
at half-filling. In this case one finds that for every
site ni/(N/2) =

∑
α c
†
i,αci,α/(N/2) = 1 up to sublead-

ing terms in the large-N limit, see [11] and below.
As a consequence the Hubbard interaction becomes
irrelevant and can be dropped (instead it has to be
kept away from half-filling [11]). Using that Si ·Sj equals
−∑α,β c†i,αcj,αc†j,βci,β up to constant terms in the large-N
limit [11,17], the Hamiltonian can be rewritten in a SU(N)
manifestly invariant form. At half-filling it reads

H=−t
∑
〈i,j〉
(c†i,αcj,α+h.c.)−

J

N

∑
〈i,j〉
c†i,αcj,αc

†
j,βci,β . (2)

Note that all terms constant or subeading in the large-
N limit have been neglected. Here and henceforth the
summation over the SU(N) indices will be skipped for
simplicity. The partition function of the system at finite
temperature, β−1, can be written as a path integral where
the statistical weight of each trajectory is the integral
over the imaginary time of the Lagrangian L(c, c†) =
H+∑i c†i,α (d/dτ) ci,α. The functional integral is of course
non-trivial, due to the presence of the non-linear interac-
tion. However, one can perform a Hubbard-Stratonovich
transformation which allows to rewrite the Lagrangian

2As discussed in [11], the antiferromagnetic interaction is not
generated in perturbation theory at N =∞, so it has to be added in
the original Hamiltonian.

quadratically in the fermions, at the expense of introduc-
ing a new (complex) bosonic field, χij , on each edge of the
lattice [11]:

L(c, c†, χ) =
∑
〈i,j〉

{
N

J
|χij |2−

[
(t+χij) c

†
i,αcj,α+h.c.

]}

+
∑
i

c†i,α

(
d

dτ

)
ci,α. (3)

The equation of motion of the auxiliary bosonic field reads

〈χij(τ)〉= J
N
〈c†j,α(τ)ci,α(τ)〉. (4)

χij is the valence bond field and gives an extra contribu-
tion to the electron hopping amplitude between the sites
i and j. The number of valence bonds on link (ij) is given
by N |χij |2/J up to subleading terms [11].
The advantage of this representation is that the integral

over the fermionic degrees of freedom is now Gaussian.
Therefore, they can be integrated out, leading to an effec-
tive action which depends only on the bosonic variables:

Seff =N

∫ β
0

dτ
∑
〈i,j〉

1

J
|χij |2−NTr logM, (5)

where the matrix M is given by M= [(d/dτ)I− tC− χ̂], C
being the connectivity matrix of the lattice, i.e., Cij = 1
if i and j are nearest neighbors on the lattice and
zero otherwise. χ̂ has an analogous definition except that
χ̂ij = χij if i and j are nearest neighbors.
So far, these transformations are exact and do not

depend on the particular choice of the lattice. In the
N →∞ limit the saddle point integration over the bosonic
variables, χij , becomes exact and we can compute the free
energy of the system by seeking the lowest minimum of
the effective action. Assuming that at the saddle point the
valence bond operators are time independent, the problem
reduces to finding the minima of the “classical” free energy
βF (χ) = Seff/N (N being the number of SU(N) indices),

F (χ) =
∑
〈i,j〉

1

J
|χij |2− 1

β

∑
λ

log[1+ exp(−βλ)] . (6)

We denote by λ the eigenvalues of the one-particle Hamil-
tonian

H1 =−
∑
〈i,j〉

[
(t+χij) c

†
i cj +h.c.

]
. (7)

Note that the (complex) bosonic variables χij can have any
arbitrary spatial dependence and that there is no need to
introduce the chemical potential since it is expected, and
found, to be zero at half-filling3. For simplicity we will

3Although random regular graphs are not bipartite, they behave
in a similar way. In particular, for all phases, we find electronic
densities of state that are symmetric around zero. Thus, the chemical
potential is zero at half-filling. Furthermore, for all phases we find
that 〈ni/(N/2)〉= 1. This is indeed expected for a half-filled system
on a bipartite lattice. Actually, analysing the fluctuations in the
large-N limit, one finds that ni/(N/2) is equal to identity operator
up to subleading terms.
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set J = 1 in the following, bearing in mind that all energy
scales are measured in units of J .
The saddle point equations consist simply in eq. (4)

where the average on the RHS is performed using the
Hamiltonian H1. Obtaining an analytical solution for a
given particular lattice is, in general, a hard task. However,
in some special cases, the problem can be simplified. In
particular by considering periodic solutions one reduces
the independent degrees of freedom to a finite number (4 in
the case studied by Affleck and Marston [11]). Our aim is
to find whether there are amorphous or chaotic solutions.
Thus, in our case, obtaining a full analytical solution seems
extremely difficult.
On infinite random graphs the Bethe-Peierls approxi-

mation is exact [15]: around any given point the graph
has a tree-like structure, and it is possible to write down
self-consistent iterative relations. The procedure is stan-
dard. We will recall it very briefly below. For more detailed
explanation, see, e.g., [15,18]. Let us consider the general
merging of z− 1 branches of the graph with sites j ∈
{1, . . . , z− 1}, onto the site i. The key ingredient to setup
the iterative procedure are the local “cavity” Green’s func-
tions for each site j, Gj , representing the effect of all the
rest of the graph on the site j in the absence of the site i.
Technically, they are obtained by tracing out all degrees of
freedom but the ones in i. For any given configuration of
the valence bonds {χij} this consists in performing consec-
utive Gaussian functional integrals. The resulting contri-
bution due to the integration over all degrees of freedom
but i are independent and Gaussian. One can then write
the following recursion relation between the cavity Green’s
function:

Gi(νn) = iνn−
z−1∑
j

|t+χij |2
Gj(νn) , (8)

where νn = (2n+1)π/β are the fermionic Matsubara
frequencies. The full Green’s functions, Gi(νn) =

−β〈ciα(νn)c†iα(νn)〉, can be calculated on each site as
a function of the Gi on the neighboring sites, by using
eq. (8), where the sum is extended over all the z neighbors.
For any given finite graph, and for any given profile of the
bosonic field, eq. (8) provides a set of solvable equations
for the cavity propagators. Furthermore, by enforcing
the equation of motion for the valence bonds, eq. (4),
one finds that, on each link of the graph, the bosonic
operators must verify:

χij =− 1
β

∑
n

t+χij
Gi(νn)Gj(νn)− |t+χij |2 . (9)

The last equation is non-local, and is reminiscent of the
TAP equations derived in the context of spin glasses [19].
For infinite systems eqs. (8) and (9) allow to treat
the liquid and the dimer phase (see below) in a very
natural way. The analysis in the glass phase is much
more involved and complicated. See [15] for the method
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Fig. 1: Phase diagram of the Hubbard-Heisenberg SU(N)
model at half-filling on the random regular graph (z = 3). We
show the relative positions of the uniform phase (U), the dimer
phase (D), and the valence bond glass (VBG). At ts(T ) the
uniform phase becomes unstable, the valence bond non-linear
susceptibility diverges (see fig. 3), and a continuous transition
from the Fermi liquid to the VBG takes place. At tc(T ) the free
energies of the dimer phase and that of the VBG coincide and
a first-order transition occurs. The dashed line corresponds to
the spinodal of the dimer phase. The probability distributions
of the valence bonds in the different phases are reproduced
schematically in the insets.

used in classical cases4 and [18] for its extension to
quantum cases. As a consequence we will use the previous
approach to study simple (non-disordered) phases and the
transition lines. In order to study the glassy phase we
interpret the free energy, eq. (6), as the Hamiltonian of a
classical system of complex variables. Hence, the problem
of finding the minima of the free energy is reduced to
finding classical ground states. To solve the latter problem
we use Monte Carlo annealing simulations. Basically, we
introduce an auxiliary temperature Taux and, at each step,
we attempt to change either the real or the imaginary
part of χij by a random amount δ ∈ (−δmax, δmax) with
probability 1/2, respectively. Then, we compute the new
free energy, according to eq. (6). The move is accepted with
probability p=min{1, exp[−∆F/Taux]} (see footnote 5).
The auxiliary temperature is finally decreased at constant
rate down to zero temperature.
By employing both the analytical and the numerical

approaches described above, we have derived the phase
diagram of the SU(N) Hubbard-Heisenberg model on the
random regular graph with connectivity z = 3, see fig. 1.

Uniform phase. At high enough temperature and
hopping amplitude the system is in a uniform phase, where
the bond operators are real and equal on each link of
the graph, χij = χ. For a given value of χ, the electronic

4The cavity method that would be needed to analyze the glassy
phase is substantially more difficult than the one developed for
spin glasses on Bethe lattices. The reason is that the valence bond
interaction is on all scales and not only between nearest neighbors.
5The value of δmax is self-adapted during the simulation in such

a way that the average acceptance rate of the moves is 0.3. We have
checked that several different values of the chosen acceptance rate
lead to the same results.
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Fig. 2: Main frame: overlap probability distribution, P (q), at
zero temperature and t= 0.23 in the VBG. The data are aver-
aged over 16 different realizations of the graph, with N = 256.
The delta function in q= 0 corresponds to the fraction of repli-
cas which end up in the same state, and it is expected to
disappear in the thermodynamic limit (e.g., for a system of
N = 128 sites the delta peak in zero is approximately 1.5 bigger
than that for N = 256). Inset: electron spectrum, ρ(λ), at zero
temperature in the different phases. Dotted line: Fermi liquid at
t= 0.34 (point marked by × in fig. 1); continuous line: valence
bond glass at t= 0.23 (point marked by • in fig. 1); dashed line:
dimer phase at t= 0.16 (point marked by � in fig. 1). The elec-
tron spectrum has been computed analytically in the uniform
and in the dimer phase, and numerically in the VBG phase.

density of states can be computed easily since the density
of states of the connectivity matrix is known [20], see the
inset of fig. 2. The uniform phase is translational invariant
and gapless. It is clearly a Fermi liquid.
For each value of T and t, χ(T, t) in the uniform

phase can be computed within the Bethe approximation,
by enforcing translational invariance into eqs. (8) and
(9) (i.e., Gi = G and χij = χ), which reduce to a simple
algebraic equation:

χ=
∑
n

(t+χ)/β

ν2n
2 +(z− 2)|t+χ|2+ νn

√
ν2n
4 +(z− 1)|t+χ|2

.

(10)

One can then check the stability of the liquid solution
with respect to any other solution of the bosonic field.
This amounts in studying the (lowest) eigenvalues of the
Hessian of F (χ). Using the base where the one-particle
Hamiltonian, eq. (7), is diagonal, and Fourier transforming
with respect to the imaginary time, one gets

∂2F (χ)

∂χij(ωn)∂χ�kl(ωn)
=
1

J
δ(i,j)(l,m)−

∑
λ,λ′
viλv

j
λv
l
λ′v
k
λ′

× 1− eβ(λ+λ′)
1+ eβλ+ eβλ′ + eβ(λ+λ′)

λ+λ′

ω2n+(λ+λ
′)2
, (11)

where viλ is the i-th component of the eigenvector asso-
ciated with the eigenvalue λ, and ωn = 2nπ/β are the
bosonic Matsubara frequencies. The first instability of the
uniform solution is expected to correspond to a long wave-
length modulation and should thus occur at ωn=0 first. In

order to analyse it, we generate random regular graphs
of size N and compute λ, viλ. Then, using eq. (11), we
find that the smallest eigenvalue of the Hessian matrix
at zero frequency becomes negative as either T or t are
decreased down to ts(T,N ). We then extrapolate the
value of ts(T,N ) (averaged over several realisations of
the graph) in the N →∞ limit by increasing N from 64
to 1024. The curve ts(T ) in the thermodynamic limit is
shown in fig. 1. In particular, at T = 0 the liquid solution
becomes unstable at ts � 0.29.
Dimer phase. At low enough temperature and

hopping amplitude a dimer phase (or Peierls phase) [11]
is found to minimize the system free energy. In this phase
the valence bonds can assume only two possible values,
χ1 on N/2 links and χ2 on the others N (z− 1)/2, with
|χ1|> |χ2|, in such a way that each site has exactly one
link where the bosonic operator equals χ1 and z− 1
links where it equals χ2. As the random regular graph is
dimerizable [21], the analysis of ref. [17] guarantees that
a dimer phase (with χ2 = 0) is the actual ground state of
the pure antiferromagnetic system (t= 0).
At any given temperature and hopping amplitude,
χ1 and χ2 can be determined analytically within the
Bethe approximation. More precisely, one allows the cavity
Green’s functions and the valence bonds to assume only
two possible values, respectively G1 and G2, and χ1 and
χ2. Taking into account the structure of the dimerized
configurations, one can obtain a closed set of equations,
which can be easily solved:

Ga(νn) = iνn−



(z− 2) |t+χ2|

2

G1(νn) +
|t+χ1|2
G2(νn) , if a= 1,

(z− 1) |t+χ2|
2

G1(νn) , if a= 2,

χa(b) = − 1
β

∑
n

t+χa(b)[Gb(a)(νn)]2− |t+χa(b)|2 . (12)

In the dimer phase, both χ1 and χ2 turn out to be
real (but at t= 0, where the system has a local gauge

symmetry, ciα→ ciαeiθi and c†iα→ c†iαe−iθi). The electron
spectrum in the dimer phase can be found similarly by
computing the resolvent of the matrix tC+ χ̂ in the
dimerized state. The (electronic) density of state has a
gap, see the inset of fig. 2. This also induces a gap in
the spin excitations6. Using the above results, the free
energy of the dimer phase can be determined exactly for
each value of T and t. At small enough temperature and
hopping amplitude the dimer phase corresponds to the
absolute minimum of the free energy. For larger values of t
(or T ) the dimer phase reaches the spinodal line, where the
gap closes and the smallest eigenvalue of the free energy
Hessian matrix vanishes (dashed line in fig. 1). At zero

6The spin Green function can be obtained quite easily from the
electron Green function in the large-N limit [11].

67008-p4



The valence bond glass phase

temperature this happens at t� 0.218. Note that this zero-
temperature spinodal point lies below the corresponding
one of the liquid which is the stable phase at high t. As
a consequence, there is necessarily an intermediate phase.
As we shall show in the following this is the valence bond
glass.

Valence bond glass. In order to study and prove the
existence of the valence bond glass phase we use Monte
Carlo annealing simulations for the reasons explained
previously. First, we check that our numerical procedure
gives back the uniform (dimer) phase at high (low) enough
temperature and hopping amplitude. In the intermediate
region where both phases are unstable (e.g., at zero
temperature for 0.218< t� 0.29) we find that amorphous
configurations of χij correspond to the actual minima of
the free energy. This is a glassy phase, which we call
valence bond glass. This is not a spin glass since the
average value of the spin is zero on each site of the lattice,
〈Si〉= 0, as the SU(N) symmetry is unbroken.
The valence bonds, χij , are real valued and their

disordered profile is described by a non-trivial distribution,
P (χ), as schematically depicted in the inset of fig. 1.
The electron spectrum is gapless in the VBG, although it
exhibits a pseudo-gap, as shown in the inset of fig. 2, which
becomes deeper and deeper as either the temperature or
the hopping amplitude are decreased.
Interestingly enough, similarly to spin glasses [6], on any

given graph different annealing procedures may lead to
different configurations with the same free energy. One can
measure the distributions of the overlaps between different
states, defined as qab =

2
zN
∑
〈i,j〉 |χaij −χbij |. According

to this definition, qab = 0 if the bosonic field has the
same configuration in the two states, whereas qab > 0
otherwise. As in spin glasses, one can define the overlap
distribution P (q) =

∑
a,b wawbδ(q− qab), where wa is the

thermodynamic weight of the amorphous state a [6].
The overlap distribution is apparently continuous. P (q),
averaged over 16 different realizations of the graph is
plotted in fig. 2, at zero temperature and for t= 0.23.
The transition from the uniform phase to the valence

bond glass is continuous: the free energy of the two phases
coincide within our numerical accuracy on the line ts(T )
where the liquid phase becomes unstable. Close to the
transition point, the distribution of the χij is peaked
around the value χ which characterizes the uniform phase,
and it gets broader and broader as the temperature and/or
the hopping amplitude are decreased. This transition
shares many common features with the transition from
the paramagnetic phase to the spin glass phase observed in
mean-field (classical) spin glasses such as, for instance, the
Sherrington-Kirkpatrick model [6]: in both cases, one finds
a continuous transition with a continuous distribution of
the overlaps. As a consequence it is natural to investigate
whether the VBG phase is marginally stable as the spin
glass phase [6]. This means that the VBG phase is critical
not only at the transition but also in the whole region

2.040.0
t-t
s

40.0

2.0

χ V
B

G

2.040.0
T-T

s

2.0

1

χ V
B

G

Fig. 3: Valence bond non-linear susceptibility, χVBG, as a
function of T −Ts at fixed t= 0.1 (left panel) and as a function
of t− ts at zero temperature (right panel). χVBG diverges as a
power law as the transition to the VBG is approached. In both
cases the exponent is compatible with γ ∼ 1. The data are aver-
aged over 8 different realization of graphs with N = 512 sites.

of the phase diagram where it exists. In order to do that
we study whether the spatial correlations among valence
bonds on different links of the lattice 〈χij(ωn)χkl(ωn)〉2c
are long ranged (as previously we focus on ωn = 0 which
is expected to give the main contribution). The inverse of
the free-energy Hessian matrix gives directly the dimer-
dimer correlations. Instead of inverting this matrix, we
follow a less computational demanding route using a kind
of fluctuation-dissipation relation. The idea is to measure
the response of the system, more precisely of the value of
χij , to an external perturbation and relate it to the VBG
susceptibility. The relevant perturbation for the present
case is a local increase of the hopping amplitude on a
given link of the graph, t→ t+ δtkl. Simple integrations
by parts allow one to establish the following identity:

χVBG=
1

zN
∑

(ij) �=(kl)

〈
χ0ij χ

0
kl

〉2
c
=
1

zN
∑

(ij) �=(kl)

(
d〈χ0ij〉
dtkl

)
2,

(13)
where χ0ij is a short-hand notation for χij (ωn = 0) and the
subscript c denotes the connected correlation function. We
measured the response functions in the RHS of eq. (13).
We found, as shown in fig. 3, that the valence bond
glass non-linear susceptibility, χVBG, diverges as a power
law both at fixed t as the temperature is decreased
(χ2 ∼ (T −Ts)−γ), and at fixed T (included T = 0) as
the hopping is decreased (χ2 ∼ (t− ts)−γ′). The exponents
have the mean-field value γ � γ′ � 1. Furthermore we find
that χVBG is infinite (meaning of the order of, and scaling
as, N ) in the whole VBG phase, hence, confirming the
marginality of the VBG phase.
Differently from the transition from the liquid phase

to the VBG, the transition from the dimer phase to
the glassy one is discontinuous. It takes place at tc(T ),
where the free energies of the two phases coincide (at
T = 0 we have that tc � 0.175). The dimer phase becomes
unstable only for larger values of t. Furthermore the non-
linear susceptibility, χVBG, stays finite approaching VBG
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from the dimer phase as it is expected for a first-order
transition.
In summary the valence bond glass phase is character-

ized by an amorphous arrangement of dimers and absence
of magnetic ordering. It has long-range critical dimer-
dimer correlations in the whole VBG phase (not only
at the transition). It has no gap in the electronic and
spin density of states, although we observe a pseudo-
gap. As a consequence it is related to, but quite differ-
ent from, valence bond crystal and spin glass phases.
We expect the VBG phase to be generically one of the
possible low-temperature phases arising from the inter-
play of strong quantum fluctuations and frustration. The
large-N approximation and the type of lattice we chose
favor the glassy phase. In reality it is likely that VBG
will emerge as a true thermodynamic phase only in the
presence of some kind of quenched disorder (not much
if there is already geometrical frustration). In this case
the VBG phase will be in competition with the spin glass
phase which in our treatment is excluded from the begin-
ning because of the type of large-N limit we used. For
simplicity in this paper we have focused on a very simple
and schematic model. Nevertheless, we believe that it
captures some features that might arise in more realistic
models and in actual materials. Our results could indeed
illustrate some physical properties both of quantum frus-
trated magnets and underdoped high-Tc superconductors,
where slow and glassy behaviors have been observed and
seem indeed to be present [8,22]. In the future it would
be important to go beyond the simplifying framework
we focused on. The addition of quenched disorder, the
effect of doping, and the analysis of the resulting prop-
erties of the VBG phase should be addressed to estab-
lish a connection with the unusual behavior of underdoped
high-Tc samples. Similalrly, the effect of quenched disorder
and additional (e.g., next nearest neighbor) magnetic
couplings is an important issue to address for quantum
frustrated magnets. We expect that they would favor the
VBG phase over the dimer phase and let the VBG phase
emerge even in the absence of electron hopping (t= 0). For
example, it is known that a biquadratic spin-spin interac-
tion disfavors the dimer phase [11] and, in the large-N
limit, induces effects similar to the hopping term. In both
cases, the role of 1/N corrections should be elucidated,
and it would be interesting to consider different (and more
realistic) lattices. A first step in this direction would be to
study quantum dimer models which indeed may display
glassy phases [23]. From a more fundamental and tech-
nical point of view obtaining a complete solution of our
model (analytically or by numerical simulations) would be
important to determine whether, as our results suggest,
the VBG phase is completely analogous to the mean-
field spin glass phase [6]. Finally, it is worth studying
the effect of magneto-elastic couplings. Because of the
marginal stability of the VBG phase they could play a
very important role. We expect as experimental signature
of the valence bond glass phase spatially heterogeneous

NMR signals. Furthermore, approaching the (continuous)
transition toward the VBG phase, the VBG susceptibility
diverges and this could lead to anomalous (even diver-
gent) non-linear pressure responses. Finally, we point out
that preliminary results on modified random lattices (e.g.,
random regular graphs where each site is replaced by
square plaquettes) show that also glassy flux phases [11]
might appear. These are characterized by amorphous
circulating micro-currents.
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