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1 Introduction

In [13], the notion of symplectic invariants of a spectral curve was introduced. For any
given algebraic plane curve (called spectral curve) of equation:

0=~E(x,y) = Z&J ztyl (1.1)
2

an infinite sequence of numbers
F9(€),g=0,1,2,...,00, (1.2)

and an infinite sequence of multilinear meromorphic forms W,(Lg) (meromorphic on the
algebraic Riemann surface of equation &£(x,y) = 0) were defined.

Their definition was inspired from hermitian matrix models, i.e. in the case where
E = Em. s the spectral curve (y(z) is the equilibrium density of eigenvalues) of a formal
hermitian matrix integral Zyiv. = fdM e NTr V(M), the F9) were such that:

InZym =Y N>29F9 (&) (1.3)
g=0

The F(9)’s have many remarkable properties (see [13]), in particular invariance under sym-
plectic deformations of the spectral curve, homogeneity (of degree 2 — 2g), holomorphic



anomaly equations (modular transformations), stability under singular limits, ... An im-
portant property also, is that the following formal series

7—(5) = ezg NQ—QQF(g)(g) , (14)

is the “formal” 7 function of an integrable hierarchy.

Although those notions were first developed for matrix models, they extend beyond ma-
trix models, and they make sense for spectral curves which are not matrix models spectral
curves. For instance the (non-algebraic) spectral curve Ewp (z,y) = (27y)? — (sin (27/7))?
is such that F9)(Ewp) = Vol(M,) is the Weyl-Petersson volume of moduli space of Rie-
mann surfaces of genus g (see [11, 12]). Tt is conjectured [3] that the F9)’s are deeply
related to Gromov-Witten invariants, Hurwitz numbers [4] and topological strings [3]. In
particular they are related to the Kodaira-Spencer field theory [8].

There were many attempts to compute also non-hermitian matrix integrals, and an
attempt to extend the method of [13] was first made in [7], and here in this paper we deeply
improve the result of [7]. The aim of the construction we present here, is to define F9)’s
for a “non-commutative spectral curve”, i.e. a non commutative polynomial:

i,J

For instance we can view y as y = hd/0z, and € is a differential operator, which encodes
a linear differential equation.

In this article we choose £(z,y) of degree 2 in the variable y, i.e. the case of a second
order linear differential equation, i.e. Schroedinger equation, and we leave to a further work
the general case.

Here, in this article, we define some F9) (&), which reduce to those of [13] in the limit
h — 0, and which compute non-hermitian matrix model topological expansions.

For instance consider a formal matrix integral:

Z = / AMeNVBTV(M) _ (3, N>729 F(0) (1.6)
Eap, N

where Eog y is one of the Wigner matrix ensembles [16] of rank N: E; y is the set of real
symmetric matrices, F y is the set of hermitian matrices, and Ey n is the set of self-dual
quaternion matrices (see [16] for a review). We define:

-3 ()

Notice that A = 0 for hermitian matrices, i.e. the hermitian case is the classical limit
[y,z] = 0. Notice also that the expected duality 5 < 1/8 (cf [6, 17]) corresponds to
h <> —h, i.e. we expect it to correspond to the duality x < y (for A = 0, the = < y duality
was proved in [14]).

Let us also mention that the topological expansion of non-hermitian matrix integrals
is known to be related to the enumeration of unoriented discrete surfaces, and we expect
that our F¥) = Dok h¥ F@5) can be interpreted as generating functions of such unori-
ented surfaces.

So, in this article, we provide a method for computing F(¢*) for any ¢ and k (which
is more concise than [7]).



Outline of the article.

e In section 2, we introduce our recursion kernel K (z,z’), and we show that the mere
existence of this kernel is equivalent to the Bethe ansatz condition.

e In section 3, we define the W,&g Vs and the F )5, and we study their main properties,

for instance that Wr(bg) is symmetric.

e In section 4, we study the classical limit A~ — 0, and we show that we recover the
algebro-geometric construction of [13].

e This inspires a notion of non-commutative algebraic geometry in section 5.

e In section 6, we study the application to the topological expansion of non-hermitian
matrix integrals.

e In section 7, we study the application to the Gaudin model.
e Section 8 is the conclusion.

e All the technical proofs are written in appendices for readability.

2 Definitions, kernel and Bethe ansatz

Let V'(z) be a rational function (possibly a polynomial), and we call V' (x) the potential.
Let «; be the poles of V'(x) (one of the poles may be at o).

For example, the following potential is called Gaudin potential (see section 7):

Si

T — oy

7

Véaudin(x) =+ Z (21)
i=1

As another example, we will consider formal matrix models in section 6, for which V’(x)

is a polynomial. However, many other choices can be made.

2.1 The problem

Here, in this section, we define the roots s; and 2 kernels G and K, by some analyticity
properties which may seem to come from nowhere. Those were inspired from matrix models
(described in section 6, they are those which allow to perform the computation eq. (6.18).
abstract definitions, are those which allow to define the correlators in section 3). For the
moment let us define the kernels, and postpone the correlators W,(Lg ) to section 3.

Our problem is to find m complex numbers sy, . .., S;,, as well as two functions G(zg, z)
and K (zg,z) with the following properties:

1. G(zg,z) is a rational function of x with poles at = s;, and a simple pole of residue
+1 at x = zp, and which behaves as O(1/z) at x — co.

2. G(xg,x) is a rational function of xy with (possibly multiple) poles at z¢p = s;, and a
simple pole at zp = x, and G(zo,x) behaves like O(1/zg) at g — oo.



3. B(zg,z) = —%%G(CUQ,CE) is symmetric: B(xg,x) = B(x,zg).

4. K and G are related by the following differential equation:

<252 - ! — V() - h(%) K (20,7) = G(wo, ). (2.2)
i=1 ¢

5. K(xg,z) is analytical when z — s; for all i =1,...,m.

We shall see below that those 5 conditions determine K, GG, and the s;’s. In fact
condition 5 is the most important one in this list, it amounts to a no-monodromy condition,
and we shall see below that it implies that the s;’s must obey the Bethe-ansatz equation.

Again, those definitions of s;, K, G may seem to come from nowhere, but we shall see
that they are exactly the conditions for the definitions of Wr(bg ) in section 3 to make sense.
Those definitions are inspired from matrix models, see section 6.

2.2 Analytical structure of the kernel G

The 4th and 5th conditions imply that G(zp,x) has at most simple poles at z = s;. Then
condition 3 implies that G(zg,x) has at most double poles at xy = s;.

The first 3 conditions imply that there exists a symmetric matrix A; ; such that G(zo, z)
can be written:

1 - Aij
G(zo,x) = +2 - ’ >
(20, 2) T — xg igz‘=:1 (x — 55)(z0 — 55)? =
and therefore:
. 11 i . 2.4
(w0, ) 2 (z— xo)2 + @']zz:l (x — Si)Q(ﬂUO - Sj)2 24

We will argue in section 5, that B can be viewed as a non-commutative deformation of the
algebraic geometry’s Bergman kernel.

2.3 Bethe ansatz and monodromies

First, we study the conditions under which the differential equation eq. (2.2) has no mon-
odromies around s;, in other words the condition under which K (xg,z) is analytical when
T — 8;, Vi

2 3
K(.%'o, S; + 6) = K(xo, Si) + GK,(.%'(), Si) + %K”(m'o, Si) + %K”/(xo, Si) + ... (2.5)

Equating the coefficient of ¢! in eq. (2.2), we get:

A
hK (z9,s;) = i 2.6
(@0) = 2 oo sy 20
Equating the coefficient of € in eq. (2.2), we get:
-1
FLK/(I'O, Si) = + V,(Si) 1‘0, 2712 .%'0, (.%'0, SJ) (2.7)
o — S; i — S5



And eventually equating the coefficient of ¢! in eq. (2.2), we get:

QEZ .%'0,82 th .%'0, V”(si)K(.%'o,Si)
S — 85
e i~ 5)

= V'(si)K' (ﬂ:o, 5;) — (5_7560 — 22 Z o P(ao =) (2.8)

Jj#i k

Notice from eq. (2.6), that K (xg,s;) has only double poles in x(, with no residue:

Res K(zg,s;) =0. (2.9)

To— Sk

Then, taking the residue at zy — si in eq. (2.7), we see that:

h Res K'(xg,8;) = —0;. (2.10)

To— Sk

Then, taking the residue when xg — s; in eq. (2.8), implies that the s;’s are Bethe roots,
i.e. they must obey the Bethe equation:

1
Vi=1,...,m, 2h § ' =V'(s;). (2.11)
Then eq. (2.8) becomes:

% = V"(s)K (20, 8;) + QHZ K(L’SSZ — QZ Z i o s])j;lj(ﬂ]; (2.12)

(si — o)

i.e. by comparing the coefficient of 1/(xg — s3)? on both sides:

Sip = V” o3 Aik ~ 2.13
i,k — A z lk+ ; ’L_Sj ( )

where A is the inverse of the Hessian matrix 7"

L1y, o1
A=T71, {T = a2 Gy (2.14)

o 2
Tij= (si—s5)°

1o
Tii = 3 Gt (;V(sk) - hk;ln (55 = 51)) - (2.15)

Therefore the Bethe ansatz equations eq. (2.11) (as well as eq. (2.13)) are the necessary
conditions for K (xg,x) to be analytical when x — s;. Those conditions are necessary, but
also sufficient conditions, as one can see by solving explicitely the linear ODE for K.

K (0, 2) = / 02 G g, ') oF V@)V T80 (2.16)

i

Remark 2.1 Notice that K (zp, ) is not analytical everywhere, it has a logarithmic singularity
at © = xg, and it has essential singularities at the poles of V.



Remark 2.2 Notice that if one solution of the ODE is analytical near all s;’s, then all solutions
have that property. Indeed, all the solutions differ by a solution of the homogeneous equation, i.e. by:

H(m — )2 e mV(®) (2.17)

i

which is clearly analytical near the s;’s.
So, for the moment, the requirements 1-5 determine G(zp,) uniquely, but K(zg,x) is not

unique. Let us choose one possible K (zg, z), and we prove below in theorem 3.4, that the objects
we are going to define, do not depend on the choice of K.

Remark 2.3 In what follows, it is useful to compute the Taylor expansion of K near a root s;.
We write:

K(xg,x Zsz x0) (T — s )]C (2.18)
The coefficients K; ,(xo) are themselves rational fractions of o, and are computed in appendix A.

2.4 Schroedinger equation

It is well known that the Bethe condition can be rewritten as a Schroedinger equation [1, 2].
We rederive it here for completeness.
Define the wave function:

W) = }:[l(m L) e mVE () = h; - ! - (2.19)
Y(z) = —_2#1/;((5)) — V() — 20(x) = V'(2) :th - ! - (2.20)
then compute: Z
U(z) = Y2 — 2hY"(z) = 4h? 12:1((5))
— V'(@)? — 20V"(2) + 4(w(2)? — V' (@)w(z) + b (2)). (2.21)

We have:

1 1
w(z)? + _EQZ (z — s; $_5j)_h2zm

)
= hQZ — Sz 1(1._(9‘) , (2.22)
Z#J J

which is a rational fraction with only simple poles at the s;’s. The residue at s; is
252 > ki ﬁ = hV’'(s;), and thus:

+ hw' =h 2.2
w(z ) E ) (2.23)
which implies:

w(x)? = V'(z)w(z) + — —hz % , (2.24)



and thus:
—V'(s;)

Si

U(z) = V'(x)? — 20V (x 4hz Vi — (2.25)

Therefore U(z) is a rational fraction with poles at the poles of V' (of degree at most those
of V'), in particular it has no poles at the s;’s. U is the potential for the Schroedinger
equation for ¢:

AR*" = U (2.26)
As announced in the introduction, this equation can be encoded in a D-module element:

0

1
g(x,y) = y2 - ZU(x) s y= h% 5 [y,x] =h, (227)

i.e.

E(x,y).=0. (2.28)

Notice that the Schroedinger equation is equivalent to a Ricatti equation for Y = —2hy’ /1:
YZ-2nY' =U. (2.29)

2.5 Classical limit

We shall come back in more detail to the classical limit A — 0 in section 4. However, let
us already make a few comments.

In the classical limit, the Ricatti equation becomes an algebraic equation (hyperellip-
tical), which we call the (classical) spectral curve:

Y2 ="U(z). (2.30)

The function Yy (x) = \/U(x) is therefore a multivalued function of x, and it should be
seen as a meromorphic function on a branched Riemann surface (branching points are the
zeroes of U(z)). We shall see below that in the limit 7z — 0, the kernel B(z,z) tends
towards the Bergman kernel of that Riemann surface.

In other words the classical limit is expressed in terms of algebraic geometry.

In fact, in this article we are going to define non-commutative deformations of certain
algebraic geometric objects in section 5.

3 Definition of correlators and free energies

In this section, we define the quantum deformations of the symplectic invariants introduced
in [10, 13]. The following definitions are inspired from (not hermitian) matrix models. The
special case of their application to matrix models will be discussed in section 6.



3.1 Definition of correlators

Definition 3.1 We define the following functions ,gg)(xl, ..oy xy) (called n-point corre-
lation function of “genus™ g) by the recursion:

m

1
W% (@) = wiz) = DIFmt Wy (1, 22) = Blar,a). (3.1)
- (5-1) ShY
(g h —h
Wi (w0, ) = Res K (xo,) (W:H (@2, )43 S W@ WP (a, J/I)) ,
=1 h=01CJ
(3.2)
where J is a collective notation for the variables J = {x1,...,x,}, and where > > means
that we exclude the terms (h =0,1 =0) and (h = g,I = J), and where:
— 9,20 1
Wibg)(xl, ) =W (. wy) — 200 (3.3)

2 (1‘1 — .%'2)2 '

Remark 3.1 This is exactly the same recursion as in [13], the only difference is that the kernel K
is not algebraic, but it is solution of the differential equation eq. (2.2). We shall show in section 4,
that in the limit & — 0, it indeed reduces to the definition of [13].

Remark 3.2 We say that W,Sg ) is the correlation function of genus g with n marked points, and
sometimes we say that it has characteristics:

X=2-2g—n. (3.4)

By analogy with algebraic geometry, we say that Wr(lg ) is stable if x < 0 and unstable if y > 0.
We see that all the stable W,(ﬂ )’s have a common recursive definition def. 3.1, whereas the unstable
ones appear as exceptions.

Remark 3.3 In order for the definition to make sense, we must make sure that the behaviour of
each term in the vicinity of z — s; is indeed locally meromorphic so that we can compute residues,
i.e. there must be no log-singularity near s;. In particular, the requirement of section 2.3 for the
kernel K is necessary. In other words, a necessary condition for definition eq. (3.2) to make sense,
is the Bethe ansatz!

3.2 Properties of correlators

The main reason of definition 3.1, is because the W,gg)’s have many beautiful properties,

which generalize those of [13].
We shall prove the following properties:

Theorem 3.1 Fach Wy(Lg) s a rational function of all its arguments. It has poles only at
the s;’s (except WQ(O), which also has a pole at x1 = x2). In particular it has no poles at
the a;’s. Moreover, it vanishes as O(1/x;) when x; — oo.

Proof. In appendix B [J

lhere g is any given integer, it has nothing to do with the genus of the spectral curve.



Theorem 3.2 The W,gg) ’s satisfy the loop equation, i.e. Virasoro-like constraints. This
means that the quantity:

PO\ (a1 ) = Y (a >W£ll<x w1 w) F W (e )
+ZW\1\+1 (a, 21) W |1r|)+1(5C J/T) + gzg+21)($,$,t])
IcJ
(9)
+Zam] (W (@, J/{J(};_%) (%J/{J})> (3.5)

is a rational fraction of x (possibly a polynomial), with no pole at x = s;. The only possible
poles of 7(1_31 (x;21...,20) are at the poles of V'(z), with degree less than the degree of V.

Proof. In appendix C [J
Theorem 3.3 FEach WT(LQ) is a symmetric function of all its arguments.
Proof. In appendix D, with the special case of W?EO) in appendix F. [J

Theorem 3.4 The correlation functions W,&g) are independent of the choice of kernel K,
provided that K is solution of the equation eq. (2.2).

Proof. In appendix E [J

Theorem 3.5 The 3 point function Wéo) can also be written:

B B B
Wéo)(x1’x27x3) =4 Z Res (,I,,Il) (33,332) (33,33‘3)

_ Res Y7ee) (3.6)

(In section 5, we interpret this equation as a non-commutative version of Rauch variational

formula).
Proof. In appendix F [J

Theorem 3.6 Under an infinitesimal variation of the potential V-— V + 0V, we have:

Yn>0,g>0, W9y, ...z, ZRes n+1xx1,...,xn)6V(x). (3.7)

Proof. In appendix G [
This theorem suggest the definition of the “loop operator”:

Definition 3.2 The loop operator &, computes the variation of W,(Lg) under a formal vari-
ation 6,V (z') = —:

r—x

J

Tn+1

W (1, 20) = WO (@1, Ty 1) (3.8)

The loop operator is a derivation: §,(uv) = ud,v + voyu, and we have Oy, 0z, = 03,0z, ,
0310y = OpyOsy -



Theorem 3.7 Forn > 1, W,gg) satify the equation:

n 9 B
Z a—xz W,Sg) (xla e ,$n) = — Zmnliei& V’(CCnJrl) WngJ)rl(xl’ vy Ty, CEn+1) s (39)

and

; (9(1@- X Wﬁlg) (X1, @) = — Zi:aneESi Tni1 V' (Tnt1) W,(ﬁl(xl, ey Ty Tpg1) -

(3.10)
Proof. In appendix H [J

Theorem 3.8 Forn > 1, W,gg) satify the equation:

0| — —
(2—-29g—n—h—) W;g)(xl,...,xn) = —Z Res V(zp41) Wibgll(xl,...,xn,xnﬂ).
— Tn4+1—7S;

(3.11)

Proof. We give a “long” proof in appendix I.
There is also a short cut: if one changes h — A, and V' — AV, the s;’s don’t change,

B and G don’t change, and K changes to %K, thus W,(Lg) changes by )\2*29*"W7(Lg). The

theorem is obtained by computing %)\29*2*"W,§9 ) = >k %W}f’ ), and computing the r.h.s.

with theorem 3.6, i.e. 6V =V. 0

3.3 Definition of free energies

So far, we have defined WT(LQ) with n > 1. Now, we define F'9) = Wég).
Theorem 3.6, and the symmetry theorem 3.3 imply that:

5, W (29) = WD (2, 29) = WS (29, 21) = 60, W D (21) . (3.12)
Thus, the symmetry of WQ(g ) implies that there exists a “free energy” F'(9) = Wég ) such that:
w9 (z) = 5,F) (3.13)

which is equivalent to saying that for any variation §V:

SF@ = =" Res W9 (2) 6V (). (3.14)
; T—8;
Therefore, we know that there must exists some F9) = Wég ) which satisfy theorem 3.6
for n = 0.
Now, let us give a definition of F(9) | inspired from theorem 3.8, and which will be
proved to satisfy theorem 3.6 for n = 0.

,10,



Definition 3.3 We define F(9) = Wo(g) by a solution of the differential equation in h:

9 (9)
Vg>2, (2—-29- hah) = —foig W (x) V(x), (3.15)

more precisely:

h
(9) — p2-29 w9 ‘
F9 =p /0 = Z&i Viz) W), . (3.16)
And the unstable cases 2 —2g > 0 are defined by:

FO=pY "In(s; —s5) —hY_ V(si), (3.17)

i
M _ 5 FO
F lndetA—l—ln(A( ) )—|—?, (3.18)
where A(s) = [;~;(si — s;) is the Vandermonde determinant of the s;’s

Properties of the F(9)’s:

The definition of the F9)’s, is made so that all the theorems for the Wy(Lg )’s, hold for
for n = 0 as well. Proofs are given in appendices J, K, L.

Explicit computations of the first few F(9)’s are given in section 7 and appendix M.

4 Classical limit and WKB expansion

In the A — 0 limit, all quantities can be expanded formally into powers of h: Write:

W (21, ) =Y KWOR @y, 2,), PO = HEOR, (4.1)
k

4.1 Classical limit

Here we consider the classical limit 7~ — 0. We noticed in section 2.5, that in that limit,
the Ricatti equation
Y2 -2hY' =U =V"? - 2nV" — 4P, (4.2)

where P(z) =h)_, Vi V (S ) , becomes an algebraic hyperelliptical equation:
Ya? =U(z) = V'(2)? — 4P(x), (4.3)

i.e.

Y (z) o w(z) =/ V'(2)2 — 4P(x). (4.4)

Ya(x) is a multivalued function of x, and it should be seen as a meromorphic function on
a 2-sheeted Riemann surface, i.e. there is a Riemann surface ¥ (of equation 0 = &y (z,y) =
y? — 4U(x), such that the solutions of £(x,y) = 0 are parametrized by two meromorphic
functions on X:

Calr,y) =0 < JzeX z=a(z) (4.5)
y=y(2)

— 11 —



The Riemann surface ¥ has a certain topology? characterized by its genus g. It has a
(non-unique) symplectic basis of 2g non-trivial cycles A; N B;j = d; ;.

The meromorphic forms on ¥ are classified as 1st kind (no pole), 3rd kind (only simple
poles), and 2nd kind (multiple poles without residues).

There exists a unique 2nd kind differential B¢ on 3, called the Bergman kernel, such
that: Beg(z1,22) has a double pole at z; — 29, and no other pole, without residue and
normalized (in any local coordinate z) as:

B(z1,22) ~ ————— +reg, Vi=1,...,7, Bg=0. (4.6)

We define a primitive:

Geal(z0,2) = =2 /Z Ba(z0,7), (4.7)

which is a 3rd kind differential in the variable zy, it is called dE,(2¢) in [13]. When % = 0,
the kernel K (zg, ) satisfies the equation:

Galz0,2) _ 9 [ Bai(zo,2')

Kd(ZO,Z) - = Y'Cl(z) }/;l(z) 7

(4.8)

which coincides with the definition of the recursion kernel in [13].

4.2 WKB expansion of the wave function

When # is small but non-zero, we can WKB expand v (x), i.e.:

e [T Yade L k
P(z) ~e AC) <1+§kjh wkm) : (4.9)

i.e.

[o.¢]
Y~ Ya+ Y Y. (4.10)
k=1

The expansion coefficients Yj can be easily obtained recursively from the Ricatti equation:

k—1
2V Yy =2V = Y Y Yi . (4.11)
j=1
For instance:
Yy Y/ Y2 Yy 3Yy?
y, = -4 Yo=-L 1 _~°d cl etc. (4.12)

Yo Yo 2¥a Yy® 2 Yy

2This genus g has nothing to do with the index g of F9) or W,(Lg).
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4.3 h expansion of correlators and energies

The kernel K(zg,x) can also be expanded:
K(zo,z) = Ka(zo, Zh K (2o, 2), (4.13)

where K () = K is the kernel of [13]:

dE, ,(x
Ka(wo,@) = —5275% (;)0) (4.14)
This implies that the correlators W,(Lg ) can also be expanded:
W9 (z1,... Z RE W9 (2, 2y, (4.15)
where the Wy(Lg k) are obtained by the recursion:
—(g—1,]
WT(LZZI;) .%'0, ZZI];{ESS Kk 1) .%'0, ) |:W1(1+2 )(I',[E,J)
h,l
+ZZZW|I|+1 (g |I|+1] (35"]/[)] ’ (4.16)
h=0 j=0ICJ
where J = {z1,...,z,}.

Therefore, we observe that to leading order in A, the limy_, Wy(Lg k) W,gg ) do coincide
with the W,gg ) computed with only K, and thus they coincide with the W,gg ) of [13]. And
also, the f expansion must coincide with the diagrammatic rules of [7].

5 Non-commutative algebraic geometry

We have seen that in the limit A — 0 the correlation functions and the various functions
we are considering, are fundamental objects of algebraic geometry. For instance B is the
Bergman kernel and K is the recursion kernel of [13], which generates the symplectic
invariants Fy and the correlators W,(Lg ) attached to the spectral curve Y (z).

In this paper, when A # 0, we have defined deformations of those objects, which have
almost the same properties as the classical ones, except that they are no longer algebraic
functions.

For instance we have:

e Spectral curve

The algebraic equation of the classical spectral curve is replaced by a linear differential
equation:

z,Y) = ZEM gyl — 0= E(x, hd)p Z&jx (ho)’ (5.1)
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In other words the polynomial £(z,vy) is replaced by a non-commutative polynomial
with y = ho,, i.e. [y,z] = h.

Here, our non-commutative spectral curve is:
Elx,y) =9> —U(z) , y = hoy . (5.2)
Notice that it can be factorized as:
E,y)=W—5)y+5), (5-3)
where Y (z) is solution of Y2 — 2Y’ = U.

Bergman Kernel B(zy,x2)
The non-commutative Bergman kernel B(z1,x2) is closely related to the Inverse of
the Hessian T, i.e. to A =T"1:
1 Az j
+ : .
2(z1 — @) ZZJ: (21 — 1) (w2 — 55)?

B(.%'l,.%'z) = (5.4)

A property of the classical Bergman kernel B (x1, x2) is that it computes derivatives,

i.e. for any meromorphic function f(z) defined on the spectral curve we have:

df(r) =—  Res  Bgl(z,z2) f(z2). (5.5)
ro—polesof f
Here, this property is replaced by: for any function f(z) defined on the non-commuta-
tive spectral curve (i.e. with poles only at the s;’s), we have:

f'(x) ==2)" Res Blx,2s) f(x2) dua. (5.6)
p To2—S;

The factor of 2, comes from the fact that the interpretation of x, and thus of deriva-
tives with respect to x, is slightly different. In the classical case the differentials are
computed in terms of local variables, and x is not a local variable near branch-points.
A good local variable near a branchpoint a, is v/ — a. In the non-commutative
case the role of branchpoints seems to be played by the s;’s, and = is a good local
variable near s;.

Rauch variational formula

In classical algebraic geometry, on an algebraic curve of equation &(z,y) =
Zi, ; Ei,jxiyj = 0, the Bergman kernel depends only on the location of branchpoints
a;. The branchpoints are the points where the tangent is vertical, i.e. dz(a;) = 0.
Their location is z; = x(a;). The Bergman kernel is only function of the z;’s and the
classical variational Rauch formula reads:

9 Ba(z1,22) Res Ba(z,21) Ba(z, 22)
Ox; z—a; dx(z)

(5.7)
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Equivalently, we can parametrize the spectral curve as z(y) instead of y(z) and con-
sider the branchpoints of y, i.e. dy(b;) = 0, whose location is y; = y(b;), and we have:

0 B(21,22) Ba(z, 21) Ba(z, 22)
—_— Y = ReS

Ay; 2—b; dy(z) (58)

Here, in the non-commutative version, theorem 3.5 and theorem 3.6 implies that
under a variation of the spectral curve, we have:

1 B B
6B(1,w2) = =5 > Res (“”1/) (z,25) Y (2). (5.9)

Y'(x)

Consider the branchpoints b; such that Y/(b;) = 0, and define their location as
Y; = Y (b;), by moving the integration contours we have:

1 B(z,z1)B(x,z2)

0B(x1,x9) = 5 : E?Ii Y'(@) 0Y (x) dx
1 B(z,z1)B(z,x2)
= — (S}/Z S d 5 1
> Z A TP ’ (5.10)
0B(ryz) 1. Ble,) Bl,w)
X1, X2 ZT,Tq T, T2
= - R d 5.11
aY; 2 2ty Y'(z) v (5:11)

which is thus the quantum version of the Rauch variational formula eq. (5.8).

Those properties can be seen as the beginning of a dictionary giving the deformations
of classical algebraic geometry into non-commutative algebraic geometry.

Conjecture about the symplectic invariants. The Fj’s of [13] are the symplectic
invariants of the classical spectral curve, which means that they are invariant under any
cannonical change of the spectral curve which conserves the symplectic form dx A dy. For
instance they are invariant under r — y,y — —x.

Here, we conjecture that we may define some non-commutative F9)’s which are invari-
ant under any cannonical transformation which conserves the commutator [y, x] = A. This
duality should also correspond to the expected duality 8 — 1/ in matrix models, cf [6, 17].

However, to check the validity of this conjecture, one needs to extend our work to
differential operators of any order in y, and not only order 2. We plan to do this in a
forthcoming work.

6 Application: non-hermitian matrix models

The initial motivation for the work of [13], as well as this present work, was initially random
matrix models. The classical case corresponds to hermitian matrix models, and here, we
show that i # 0 corresponds in some sense to non-hermitian matrix models [5, 6, 9].

In this section, we show that non-hermitian matrix models satisfy the loop equation
eq. (3.5) of theorem 3.2.
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We define the matrix integral over E,, o3 =set of m x m matrices of Wigner-type 23
(Em,1 = real symmetric matrices, E,, 2 = hermitean matrices, E,, 4 = real quaternion

self-dual matrices, see [16]):

Z = / dM ¢ NVB TV (6.1)
Em,Qﬁ

where N is some arbitrary constant, not necessarily related to the matrix size m.

It is more convenient to rewrite it in terms of eigenvalues of M (see [16]):
Z:/ .. ddm [Ty = 20)% [[e VPV, (6.2)
" i>j i

This last expression is well defined for any (3, and not only 1/2,1,2, and for any contour
of integration C on which the integral is convergent. We also define the correlators:

— 1 1
Walxy,... zn) = < Tr o _—nM 8 TTW >,
- (N\/E) e e e (6.3)
i.e. in terms of eigenvalues:
Wn(ml,...,xn):<z%x---z%x >e (6.4)
= Ay — Tn = Ay

In order to match with the notations of section 3, we prefer to shift W by a second order
pole, and we define:

=7 611,2
Wn(xl,...,.fn)—Wn(.’El,...,.In)—Fm. (65)

We are interested in a case where Z has a large N expansion of the form:
o
mZ~Y N*%F,, (6.6)
g=0

and for the correlation functions we assume:
1 o0
Wa(z1, ... 20) = G ZN%QQ*"WT(LQ)(QH, Cey Tn) (6.7)
g=0

6.1 Loop equations

The loop equations can be obtained by integration by parts, or equivalently, they follow
from the invariance of an integral under a change of variable. By considering the infinites-

imal change of variable:

1 2
)‘Z — )‘Z —|— E(E——)\i —|— O(E ) s (68)
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we obtain:

N\/B(V’(Sﬂ) Wn+1(_x>x1’ s 71’@_ Pn+1(x; Ly, ... 73311))
=p Z W1+|J\($> J) W1+n—|J\(x>L/J)

JcL
+ﬁwn+2(.%'a T1,... ,xn)
—(1-p) %Wnﬂ(x,xl, ceeyTp)
+i 0 Wz, L/{z;}) —Wn(xj,L/{xj}), (6.9)
— Ox;j T —x;
7j=1
where P41 (z;21,...,2,)) is a polynomial in its first variable x, of degree 6,1+ deg V' — 2.
If we expand this equation into powers of N using eq. (6.7), we have Vn, g:
V(x )Wﬁf’jl(x 1) — PO (2520, 1))
wir9—9")
= Z ZWHM v, J) WY g, L))
q’ OJCL
+6Wn+2 )(x> Ty X1y 73711)
9 (9)
—i-h%Wni(x),xl, , T .
30 0 W /i) = T o L) 610
— Oz T —x;
7j=1
where )
= vE- Vi 6.11
Those loop equations coincide with the loop equations eq. (3.5) of theorem 3.2. Moreover
we have: :
7 (9
o) _ Wy
W, = 6.12
9= T, (612)
and near r — oo:
m - (29 —2)! 1-2
1% ~ —|[Nh— —1)Y9———= (Nh)"™* 6.13
VB Wa(e) ~ SN = 312 (613)

W@ ~ —+00/), W)~ —m?h o % O(1/a%).  (6.14)

One should notice that the loop equations are independent of the contour C of integra-
tion of eigenvalues. The contour C is in fact encoded in the polynomial P, 11 (z;x1,...,2y).
6.2 Solution of loop equations
To order g = 0,n = 1 we have:

V@) W @) ~ PO @) = WO (@) + h S Wi (a) (6.15)
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which is the same as the Ricatti equation eq. (2.21).
(0)(

As we said above, the contour C is in fact encoded in the polynomial P’ (x). From
now on, we choose a contour C, i.e. a polynomial Pl(o) (z) such that the solution of the

Ricatti equation is rational:

AN
0 z) = hz — (6.16)

It also has the correct behaviour at oo: W(O)( ) ~ m7h This corresponds to a certain
contour C which we do not determine here.

Since Wl(o) (r) = w(x) satisfies the Ricatti equation, i.e. the Bethe ansatz, the kernel
K exists, and we can define the functions K (zg, ), G(zg, ) and B(zg,x).

Then, from eq. (6.12), we see that every W,(lg is going to be a rational fraction of x,
with poles only at the s;’s. In particular, Cauchy theorem implies:

W;gll(xo, Z1,...,2n) = Res G(zg,x) W;g_)ﬂ(x, Tlyeney Tp), (6.17)
T—T0
and since both G(z¢, ) and Wﬁw)rl(:c Z1,...,Ty) are rational fractions, which vanish suf-

ficientely at oo, we may change the integration contour to the other poles of the inte-
grand, namely:

WgH)»l(x07 TlyeeoyTp) = — Z f;ei G(zp,x) W,(Tgll(x, Tly.enyTp) (6.18)

_ Z Res W (21, ) (2w(@) — V(@) — hd,) K (20, )
=— Z Res K (zo,2) (2w(z) — V'(z) + h@a;)nggJ)rl(x,xl, cey Tp) -

Now, we insert loop equation eq. (6.10) in the right hand side, and we notice that the
term PY, and Wy (@;,L/{z})
n+1 Z T—T;
We thus get:

W;gll(xo,xl,...,xn) = ZmesS.K(xO’x) (W;H)(x,x,xl,...,xn)

do not have poles at the s;’s, so they don’t contribute.

+ Z Z 1+|J\ (z, J Wl(:qkng (@, L/J)> (6.19)

g'=0JCL

i.e. we find the correlators of def 3.1.
Special care is needed for W2(0). We have:
Wgo) (o, @1,y Tp) = — Z Res K (20, ) (2w(z) — V'(z) + h@x)Wgo) (x,21)

::E:EE&}(@@#@ G;é%%p

Adj
R CEr e (6:20)

which also agrees with def 3.1.
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7 Application: Gaudin model

The Gaudin model’s Bethe ansatz is obtained for the potential:
S;

Viiaudin (T) = 7.1
Gaudln(x) x+ ; T — o ’ ( )
i.e. it corresponds to a Gaussian matrix model with sources:
Z = / AM o~ T [T det(c: — ar)=N5:v5 (7.2)
Em,QB i
with h = M The partition function can also be written in eigenvalues:
NVB 2
[[ e >N 2
Z:/d)\l...d)\m = (N — 2% (7.3)
T T (= M)V VESs g
7.1 Example
Consider:
52 z?
Viz) =2 ——, V(z) = 5~ s*lnx. (7.4)
T
With only 1 root m =1, the solution of the Bethe equation V'(2)=0is z=s. Thus we have:
h
_ 7.5
wlw) = =, (75)
1
B 7.6
(@1, 22) 2(x1 —w2)?2  2(xy — 8)%(wg — 5)2 (7.6)
We find:
h 1 1 1 1
w0 — — 7.7
3 (w1,22,23) 2(x1—8)%(x9—5)2(x3—35)2 <x1—s+x2—s+x3—s+23> > (77)
1 1 1
wil(z) = . 7.8
1 (@) h(z — s) + 4s(z — )2 * 2(z — )3 (7.8)
For the free energies we have:
A 2
FO = TS (Ins*—1), (7.9)
1. (n\ FO
FO = ZIn( )+ = 7.10
sin (2) ik (7.10)
1 FO
F@ - __- - 7.11
12hs2 h* (7.11)
1 27 ©)
® = 7.12
12h3s2 * R 7 (7.12)
and . .
7= oS VRO _ onivey L (oL 1
e e VT 02N T ; (7.13)
which is indeed the beginning of the saddle point expansion of:
7 = / do e NV V(@) (7.14)
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8 Conclusion

In this article, we have defined a special case of non-commutative deformation of the
symplectic invariants of [13]. Many of the fundamental properties of [13] are conserved or
only slightly modified.

The main difference is that the recursion kernel, instead of beeing an algebraic function,

is given by the solution of a differential equation, otherwise the recursion is the same.

The main drawback of our definition is that it concerns only a very restrictive sub-
set of possible non-commutative spectral curves. Namely, we considered here only non
commutative polynomials £(z,y) = Zi,j & j o'y with y = hd,, of degree 2 in y, and
such that the differential equation £(x,7d).7» = 0 has a “polynomial” solution of the form
U(x) = [T (x — si) eV

It should be possible to extend our definitions to other “non-polynomial” solutions
¥ (with an infinite number of zeroes m = oo for instance), and/or to higher degrees in
y. In other words what we have so far is only a glimpse on more general structure yet
to be discovered.

For example, it is not yet clear how our definitions are related to matrix integrals. We
have said that the integration contour for the eigenvalues should be chosen so that the
solution of the Schroedinger equation is polynomial of degree m, however, it is not known
how to find explicitly such integration contours. Conversely, the usual matrix integrals
with eigenvalues on the real axis do probably not correspond to polynomial solutions of
the Schroedinger equation. Similarly, it is not clear what the relationship between our
definitions and the number of unoriented ribbon graphs is, for the same reason. The
solution of the Schroedinger equation for ribbon graphs should be chosen such that all the
Wy(Lg k)5 are power series in ¢, and it is not known which integration contour it corresponds

to, and which solution of the Schroedinger equation it corresponds to.

Therefore it seems necessary to extend our definitions to arbitrary solutions, i.e. to
arbitrary integration contours for the matrix integrals. A possibility could be to obtain

non-polynomial solutions as limits of polynomial ones.

The extension to higher degree in ¥, can be obtained from multi-matrix integrals, and

extension seems rather easy for polynomial solutions again.

Also, it is not clear at all, why non hermiticity of matrices should be related to non-
commutativity of the spectral curve. We see how that arises technically by solving loop
equations (the loop equation for Wl(o) is a Ricatti equation), but a conceptual understanding
is missing.

Finally, like the symplectic invariants of [13], we expect those “to be defined” non-
commutative symplectic invariants to play a role in several applications to enumerative
geometry, and to topological string theory like in [3]. In other words, we expect our F' ©)g
to be generating functions for intersection numbers in some non-commutative moduli spaces

of unoriented Riemann surfaces, whatever it means. ..
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A Expansion of K

Since we have to compute residues at the s;’s, we need to compute the Taylor expansion

of K(zg,x) when z — s;:

K(xo,2) =Y (z — )" Kip(ao) . (A1)
k
For instance we find:
1
Kig= =~ A2
0 h ZJ: (xo — 8] ( )
hK;(zo) = m - QZZ xo PR (A-3)
a#i J
hKi,g = —h 22 V”( ) Ki,l
a;éz
1 V/l/( )
—h 22 5 Kio
a;éz
+ -+ 2 Z > Aaj . (A.4)
(zo — 85) T (8q — si)3 (xo — 55)?

Thanks to property eq. (E.4), we may assume (but it is not necessary) that:

Ki>»=0. (A.5)
Then, we have the recursion for k > 0:
k v+ (
Ki k-1 1
A0 =Bt - QZZ G )

a#i 1= O 1=0
— _9 a.J A.6
(xo—s (20 — s;)*+1 ;ZJ:S—S k+1 (zg — 55)%° (A.6)

This proves that each K (xo) is a rational fraction of zg, with poles at the s;’s
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A.1 Rational fraction of xg

Thus we write:

1
2, ( 0) ; (1.0 _ Sj)k; ,R5], ( )
For instance we have:
A
Kiojk = 7;] Or 25 (A.8)
hEK; 155k = —0k10i,; — 20 2 %: m : (A.9)
a=-+1

For higher k£ we have the recursion:

by (s
Kip—11 1 V!
ﬁ((l—k) mmk/—?ZZ (54 _5]z+1 _gz Zk—l?ﬂ?’“’)
a#i =1 =1
Agj
(51] 519’ k41— 2519’ 2 Z ﬁ (AlO)
aFi

In particular, it shows that if &’ > 2, then K; 1.; »» is proportional to d; ;.

A.2 Generating functions

We introduce generating functions:

Rijp (@ ZK@ ki (2 — 80)F (A.11)
We have:
h <2Zi((xm)) — 833) Ri;j,k/(m) = 6 (3: — S —|— 26[4:/ )2 Z — sa (A12)
i.e.
e Rir(@)y _ 5
1 (x) ax< ) ) = 6 (2 — 8)F L+ S 1cj + 2002 Z L (A13)
In particular with &' = 1 we find:
i j
Rﬁjﬂ(%‘) - 7’] w(m)(b(m) s (A.14)
where
roda! , ,
o) =) [ o P@e) — @) = 1. (A.15)
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B Proof of theorem 3.1

Theorem 3.1 Fach W,gg) is a rational function of all its arguments. If 2g +n — 2 > 0,
1t has poles only at the s;’s. In particular it has no poles at the «;’s, and it vanishes as
O(1/x;) when z; — oo.

Proof. It is easy to check that Wl(o), WQ(O) satisfy the theorem. We will now make a

recursion over —y = 2g — 2 + n to prove the result for every (n,g). We write:

W,(Li)l(xoﬂh ceyTp) = Zgies K(xg,x) Ur(fgl(x,xl, cey ), (B.1)
where J = {z1,...,2,}, and
U9 (2,0) =W, J) w (@, W (@ a1 B.2
n—l—l(m ) n+2 .%' xz, +ZZ \I\Jrl .YJ ‘I‘Jrl(x? / ) ( . )
h=01CJ
First, the recursion hypothesis clearly implies that U,S +)1(x7 Z1,...,Zy) is a rational fraction

in all its variables x, x1, ... x,. Then we Taylor expand K (zg,x) as in eq. (A.1) or eq. (A.7)
W,(ngl(xo’xl’ B I chfies K(xg,x) Ur(ﬂr)l(x,xl, ceyTp)

= ZZKZk(xo) gi?g(x i)k Urgﬁzl(x,xl,...,xn). (B.3)

Since Uéﬁl(az,xl, ...,Ty) is a rational fraction of z, the sum over k is finite, and there-
fore, W,g_:l(xo,xl,...,xn) is a finite sum of rational fractions of xg, with poles at the
sj’s, therefore it is a rational fraction of xy with poles at the s;’s. It is also clear that
Wéﬁ?l(:ﬂo, Z1,...,Ty) is a rational fraction of the other variables z1,...,z,. The poles in
those variables are necessarily at the s;’s, because as long as the residues can be computed,
Wéi)l(xo,xl, ...,xy) is finite. The residue cannot be computed everytime an integration
contour gets pinched, and since the integration contours are small circles around the s;’s,
the only singularities may occur at the s;’s. It remains to prove that each W,(Lg) behaves
like O(1/z;) at oo. The proof follows the same line: each K j(x¢) behaves like O(1/x),
and by an easy recursion the result holds for all other variables. [J

C Proof of theorem 3.2

In this subsection we prove theorem 3.2, that all Wy(Lg Vg satisfy the loop equation.
Theorem 3.2 The WT(LQ) s satisfy the loop equation, i.e. the following quan-
tity P,Ei)l (x;21 ..., 2p)

%%@@LW%JZ—W@WﬂNwm,W >+miﬁ%@xl,%»
+ZW\I\+1 x xI)W(g |I|+1(35 J/I) +W£Lg+2)(m,x,J)
IcJ

(9) 9, . .
+Z@«W(”m? »(%Wwv7 1)

J
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is a rational fraction of x (possibly a polynomial), with no pole at x = s;. The only possible
poles of P (+)1 (x;21...,2,) are at the poles of V' (x), and their degree is less than the degree
of V'.

Proof. First, from theorem 3.1, we easily see that P,gi)l (x;21...,2,) is indeed a rational
function of x. Moreover it clearly has no pole at coinciding points = x;. Then we write

Cauchy’s theorem for Wr(L +)1

W,gi)l(xo, ceyTp) = mPiexso pra— W,gi)l(x,xl, ceyTp)
= Res G(zg,x) Wrgﬁl(x,xl,...,xn), (C.2)
T—xQ

and using again theorem 3.1, i.e. that W,Ei)l has poles only at the s;’s, and that both W,Ei)l
and G(xg,x) behave as O(1/x) for large z, we may move the integration contours:

W,gi)l(xo, B ZZP{EEZ G(zp,x) Wygi)l(x Tlyeoo,Tp). (C.3)

Then we use the definition of K, and integrate by parts:

W9 (zo,...,2,) = Zml{jgi(Y(x)K(xo,x) + hK (20, 2)) W9, (2,21, ., 2)

= ZRGSK (xo, x)( (x )Wygi)l(x,a:l,...,xn)

- ha W,gjl(x,xl,...,xn)) . (C.4)
From the definition we have also
W,gi)l(xo, cey Tp) (C.5)
h)
- Z&QK(%’ (ZZ |I|+1 W |1|+1(l“ JID+WIL (@, J))
) h=0I1CJ

then we shift WT(LQ) to W(g) in the r.h.s., i.e

(h) ( h) 1)
W'r(zi)l(x()v'--vxn) = Zfoss (zo, (Z ZW\I\H z, )W \I\+1(z J/I) +Wn+2 (z, 2, J)

i h=01CJ
n
W, (z,J/{j})
+
; ( — ;)2 )
(h) ( (9-1)
- ZZR—?S (w0, @ (ZZW\I\JA z,I) Wg \I\+1($ J/I)+an+2 (2,2, J)
i ’ h=01CJ
sy (W@ )
L T —xj
Jj=1
=3 Res K(x (ZZW (@, HW ) (@, /1) + WO (@2, )
= Z_}sl 0, m+1 n—|I+1 n+2
B h=0ICJ
o (W@ I =W (s TG o
+Zl i T —xj )’ (C.6)
‘7:
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in the last line we have added for free, the term Wig) (xj,J/{j}) because it has no pole at
x = s;. Therefore we have:

0= Z Res K(wo,x)< Y(x )Wygi)l(x,a:l,...,xn) + ho, W,gi)l(x,xl,...,xn)

r—S;

1
+ZZW\I\+1 z, HW ( \1\+1($ J/) + £Lg+2)('r’x"])
h=01CJ

+Z<’?‘m< (. 1/45) - Wig’<xj,J/{j}>>)

x—xj

= meifg K(zg,x )PT(H_)1(3U'3U1,---7$n)

_ZZKZ’“ xo) mfifg(x—s) T(LJr)l(x Tlyeoo,Tp). (C.7)

Notice that this equation holds for any x¢. Since K; (o) is a rational fraction with a pole
of degree k + 1 in x¢g = s;, the K;(x¢) are linearly independent functions, and thus we

must have:
Yk, 0= Res (z — ;)" Pygi)l(x;xl, cey X)), (C.8)
T—8;
this means that Pr(zi)1 has no pole at = s;. One easily sees that P,gi)l (x;21,...,2,) IS &

rational fraction of x, and its poles are at most those of Y (z), i.e. at the poles of V'(z). O

D Proof of theorem 3.3

Theorem 3.3 Fach Wr(bg) is a symmetric function of all its arguments.

Proof. The special case of Wéo) is proved in appendix F above. It is obvious from the
definition that Wr(f_?l (xo,x1,...,2y) is symmetric in x1, 9, ..., T,, and therefore we need
to show that (for n > 1):

W9 (o, 1, J) = WD (21,20,J) = 0, (D.1)

where J = {x9,...,z,}. We prove it by recursion on —x = 2g — 2+ n. Assume that every
W,gh) with 2h + k£ — 2 < 2g 4+ n is symmetric. We have:

W,Ei)l(xo,xl,J) = ZQE(?EK(:UO,:U) <WT(L+21)(33 x,x1,J) + 2 B(m,xl)W,(Lg)(ﬂ:,J)

+2ZZ 0w, W M @, J/I)) (D.2)

h=01IeJ

where >~ means that we exclude the terms (I =@, h = 0) and (I = J,h = g). Notice also
that Wgﬂ_;) = VVT(LJr2 ) because n > 1. Then, using the recursion hypothesis, we have:

W, (w0, 1, J) = 22 Res K (xo, ) B(z,21)W (2, )

T—S;

+Z Res Res K(xo, 1)K (21,2") <Wr(bng)(x,x,x',x',J)

r—S; ! —S;
4,J
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—1—-h
+2§ § @, W N D @, )T
(h —1—-h
+2§ j§ W3+)|I| x ,m,x,I)Wflgﬂ (', J/T)

(h—1
+2ZZ W @, /D) (Wi @l )

W 1e]
(#) (h—')
+2) Z W2+|1/ x 796,I’)W1+|1|7\1/|(9C'7I/I/)] ) :
woIcH

(9)

(D.3)

Now, if we compute W _H(xl,xo, J), we get the same expression, with the order of inte-

grations exchanged, i.e. we have to integrate 2’ before integrating x. Notice, by moving

the integration contours, that:

Res Res — Res Res = —4;; Res Res . (D.4)
T—38; x! —S; ! —855 T—8i T—S; ! —x
Moreover, the only terms which have a pole at x = 2z’ are those containing B(z,z').
Therefore:
Wr(zgr)l(x(]’ Z1, J) - Wr(zgr)l(xl’ o, J)
= 22 Res K(zo,2) B(x,21) — K(x1,2) B(x,z0)) W9 (x,J)
—22 Res Res K (z, z)K (z1,2") B(z,2') (
oW V(! 2, ) +2ZZ W (w, /1) 1+|I|(x’,1)). (D.5)

h IeJd
The residue Res,_,, can be computed:
W,(Li)l(ﬂco,wl, J)— W,(Li)l(m,xo’ J)
= 22 Res K(xz0,z) B(z,z1) — K(x1,2) B(z,z0)) W9 (z,J)

—Zg&?z K(mo,m)%@((m,x’) <

1 h)
oW V(! x, T) +QZZ WD Wi, n) )
hoIed
= 22 Res (K(zo,z) B(w,21) — K(x1,7) B(r,%0)) W9 (z, )

S Ko

1) h
oW (2,2, J) +2ZZ Wi @ 1w (e )
h IeJ

- Z Res K(xo,x)K(xl,x)%<

1 h)
oW (!, ) +2ZZ W@, w1 )
h IeJ

z'=x

,26,



= 22 Res (K(zo,z) B(7,21) — K(21,7) B(,0)) W9 (z, )
—Z Res K (zo,2)K'(21,2) (

1
2w 9 (2, 2, ) +2ZZ w9, a/1) 1+m(gc,z'))
h IeJ

-5 Zme? K(zo, )K(ﬂfl,ﬂf)a%<

h
oW (2,2, J) +2ZZ Wi @ 1w e 1) ).
h IeJ

The last term can be integrated by parts, and we get:

Wyl (wo, 1, 7) - Wéi%(ml, 70,.J)
= 22 Res K(zo,2) B(x,21) — K(x1,2) B(x,z0)) W9 (x,J)

+= Z:mliessZ (K TQ, T )K(ml,x)—K(mo,x)K'(:cl,x)) <

h)
oW D (2,2, J) +2ZZ Wi @ 1w e 1)
h IeJ

Then we use theorem 3.2:

(iEO,iEl,J) Wy(Lz_)l(xlaan‘])
= 22 Res K(zg,2) B(x,x1) — K(x1,2) B(x,z0)) W9 (x,J)

il

23_,62 (K X0, X )K(ml,x)—K(mo,x)K'(xl,x)> <P7(Lg)(x,!])

Wé%(xj,J/{xj}))) |

1‘—.%']'

+(Y(2) — h, )W (2, J) + Zawf (
J

Since P (z,J) and W,Eg_)l(xj, J/{x;}) have no poles at the s;’s, we have:

W9 (zo,21,J) — WY >1(x1,x0, J)

= 22 Res (K(zo,z) B(w,21) — K(21,7) B(x,%0)) W9 (z,J)
+ Z Res (K (w0, 2)K (21,2) — K (w0, 2)K'(21,7))
) =

(Y (x hanW(g (z.J).

Notice that:

1
—— (GoK1 — KoGh),

K(K) — KoK = —

,27,
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and B = —3 L @, therefore:
W9\ (w0, 1, J) =W (21,20, 7) = =Y Res (KoG) — K1Gy) W9 (@, J) (D.11)

1
—+ > Res (G0K1 —KoGl) (Y (2) — ho) W9 (z, J)

we integrate the first line by parts:

Wi\ (w0, 21, 7) = Wi (w1,0,7) = > Res (KjG1 — K{Go) Wi (, ) (D.12)

+> Res (KoG1 — K1Go) W9 (x, g

_% D Bes (GOKl—KoGl) (Y () = hoa)W,9) (x, ])

Notice that:

Y
K(Gy — GoK;{ = -5 (KoGy — GoK1) . (D.13)
So we find
W,gi)l(xo,xl,J)—Wr(bi)l(ml,mo,J) =0. (D.14)
]

E Proof of theorem 3.4

Theorem E.1 The correlation functions W,(Lg) are independent of the choice of kernel K,
provided that K is solution of the equation eq. (2.2).

Proof.  Any two solutions of eq. (2.2), differ by a homogeneous solution, i.e. by 1?(z).
Therefore, what we have to prove is that the following quantity vanishes:

> Res v(a) W4, (@2, 7) +ZZ @ W @) @)

h ICJ
Using theorem 3.2, we have:

h) h)
Res 0%(x) W5 (@, 2,) +ZZ Wil (e WS, e, a/ )|

o noIC)
= Res ¢%() (Y(m)W,(ﬂ) (2, J) — WO, WD (z, J) + P9 (x; J)) . (E.2)
Then we notice that Py(Lg ) gives no residue, and then we use Y = —2ht)’ /1), and we integrate

by parts:

/
= —i Res ¢*(z) <2 % W9 4 8;,3W,§g>)

r—S;

=~ fies o (v* W)

= 0. (E.3)

This means that adding to K (xg, ) a constant times 1?(z) doesnot change the Wi9s. In
fact we may chose a different constant near each s;, or in other words, we may assume that

K@Q(.%’()) =0. (E4)
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F  Proof of theorem 3.5

Theorem 3.1 The 3 point function Wéo) is symmetric and we have:

(0) _ X
W )4 3 gy ZEB

Proof.
The definition of W?EO) is:

r—S;

Wéo)(xo,xl,xg) = 22 Res K (xg,z)B(z,z1)B(x,x2)

r—S;

1 /
= §ZRes Ko G, G

1
= 5 Res Ko ((hK{ + YK} +Y'K1)(hK} + Y K + Y'K>))
i 1

B(,21)B(w, v2) B(x, 73)

(F.1)

1
= 527 Res Ko (RK{KS + hY (K{ K3 + K{K3) + hY'(K{ Ko + K§ K1)

(2
HY2K K+ YY' (K Ky + K| Ky) + YK Ky ),

(F.2)

where we have written for short K; = K(x;,z), G; = G(x;, ), and derivative are w.r.t. z.

Since K (z;,x) has no pole when x — s;, the first term vanishes. Using the Ricatti equation
Y?2 = 2hY’ 4+ U (where U has no pole at s;), we may replace Y2 by 2AY’ and Y'Y’ by hY"”

without changing the residues, i.e.:

Wg(o) (l“o, Ty, 332)

1
= 5 > Res Ko (WY (K KY + K{K3) + hY'(K{ K> + K§ K))
fL' K

12hY' KK + Y (K1 K + K| K») + Y’ K1 K>)

1
=3 Z Res Ko (hY (K} Kb) + hY' (K1 Ks)" + hY" (K1 Ky) + Y2 K1 Ky)
i T

1
=5 > Res Y KoK 1Ky + h(Y"Ko(K 1 K2) — (Y Ko) K{Kj — (Y'Ko) (K1 K2)')
’i 1

1
=3 > Res VKoK Ky — h((Y Ko) K| K) + Y'K{(K1 K>)')
i

T—S;

Tr—3S8;

(F.3)

1
= 5> Res V2K K\ Ky — hY K)K| K — b (KoK, K} + KK Ky + K)K|K>) .
i

This expression is clearly symmetric in xg, 1, 2 as claimed in theorem 3.3.

Let us give an alternative expression, in the form of the Verlinde or Krichever for-

mula [15]:

(0) _ B
W3 (.%'17.%'2,1'3) - 4;13;?5?2 Y/(x)

Proof. In order to prove formula F.4, compute:
1 1 1
Bz, ;) = —gGl(ﬂf,ﬂ?z‘) = —gGQ =3

,29,

(x,21)B(z,z2)B(z, x3) .

(hK! + YK +Y'K;),

(F.4)



1 1
= § 2 Res g (WG + VI + Y Ko (WK + VI +Y'Ky)
(hK + YKg + Y’Kz)
= —Z;@; s {4 1P (KGR KY + Ky KRS + KYKYE)

+h2(K0K;’K + KK K + K()’K;’Kz)

Y2
hY, (KKK} + K)K{ K} + K K{ KY)
+hY (KoK K + KoK Ky + K{K KL + KOK 'Ky + K K1 K + KK K>3)

Y3
hY’(K KKy + KQK K2 + KoKlK ) V7 KOK1K2
+Y4( KoK Ky + K(K Ky + K)K|K>)
—|—YYI(K6K1K2 + K()KiKQ + KoKlKé) + YI2K0K1K2 . (F6)

Notice that K; has no pole at the s;’s, and 1/Y” has no pole, Y/Y” has no pole, Y2/Y” has
no pole, thus:

(z,21)B(z,x2)B(z, x3)
Zia V()

=2 Z}{gs WY (KoK Kl + KoKV K} + K) K1 KY + K)K! Ky + KI K1 K

Y3

+K6IK1K2) + hY (K(/]IKlKQ + K()K KQ + KoKlK ) v

+Y? (KoK Ky + KK Ky + K)K K>)
—|—YY,(K6K1K2 +KOK{K2 —|—KOK1Ké) —|—Y’2K0K1K2. (F?)

7 KKK

Notice that Y2 = 2aY’ 4+ U, thus we may replace Y3/Y” by 2AY, and Y2 by 2AY” and Y'Y’
by hY”, thus:

Z Res (z,z1) (Clﬂ,xz)B(Cﬂ,xg)
z—si Y'(z)

o fos WY (KoK, Kl + KoKV Kb + K)K 1KY + K)K!' Ko + KUK, K}

i
VKUK KS) + RY (KUK Ko + KoK Ko + Kol KY) + 20Y K K K,
+2hY’(KOK{K§ + K(/]KlKé + K(/]K{KQ) + FLY”(KéKlKQ + KOK{KQ + KQKlKé)
+Y"? KoK 1 Ko
1

=3 > Res hY (Ko(K1K)" + K (KpK3)' + Ka(KoKq))

7
—1|-2hYK6KiKé + Y/2K0K1K2 + FL(Y’(KéKlKQ + KOK{KQ + KoKlKé))/
=3 > Res 1Y (Ko(K1Ky)" + Ki(KpK3)' + Ka(KoKq))

(2
+2hY K)K Ky + Y? KoK Ko

,30,



== Z Res 3hY K)K|K) + hY'(KoK| K} + K) K1 K} + K) K| K5)

T—S;

—2hYKOK1K2 —Y"?KyK K>

1
= ZWB(O) (xo, I, 562) .

F.1 Direct computation

We write

(F.8)
W?EO)(Zl,ZQ,Zg = 22;{538 K(z1,2)B(22,2)B(z3, 2)
= Z Z 5 Res K(z1,2) ! + sym.
Z9 — s] z—s; Tz = 8i)% (23 — 2)?
2 s K T—
" ;;]Zk Z2_5] Z3—5k)2 Reg Kl 2) (z—5:i)%(z—s¢)? v
1
2 Res K  —
+ ZZ Z2—S Zg—Sk-)Q stsl (21’2)(2—81')4
i(z1) 2Ki,0(21))
ZZ ZQ—SJ ( (23 — 8 )2 + (23 — ;)3 +sym.
K;1(z1) 2K 0(21)
* ZZZ (22 — s5)?(23 — sk) (sir — si)? i (sir — si)3 +eym

1 i'#i gk

2 ’J K;
* ZZ (22 — 55)%(23 — Sk)2 ala1)

i,1(21) 2Kz,0(21)) ‘
ZZ (29 — sj ( (23 — 81)2 * (23 — si)3 + sym.

K@ z QKZ‘, z
2 Z Z Z (22 — s5)%(z3 — sk) ((si/ 1—( 332 * (sir —O(s:))3> +sym.

AN

_222 2—81 3—5k)

V" (s4) 1
_QZZ (22 — 55) z;;—sk) ( 2h +2Z m)f(i,o(zl)

i i/ #£i
Ai A g

h;z (22 — s5) z;;—sk) (21 — 87)3
A; A pAi
hZZZZ TP

i £ 1 gk 72 =5 Z3 o Sk) (Sz’ - 5@')3(21 — 81)2

Tii Kia(z1)

A A A ZA k
+ -]7 ]7
h % (z1 — 8i)3(22 — )% (23 — s)? (21 — 83)%(22 — 55)3(23 — sp)?
Ak i A j

(21— Si)2(22 — 55)%(23 — sx)?

z 1 Zl)
+ 2 (2 —5,)% (25 — )2 <Aj,k5i,j + Ajpdie — Aiy Z T Ai
3T K3

,31,



szEz’Az’ )
2K;0(21) .
+2ZZZ (20 — 85)%(23 — sk) (sir — si)3 + sym.

i i'#i gk
A; ‘Az‘k V’" Sz
-2 I +2 io(z
;;m—s)(@,—sm %3 e
A; Az kA
hzz:gé:zzl:]zk: 2—8 3_5k)( /—81)3(21—81)2
_ Z 1 Z( i1 A ,]Azk 5i,in,lAz‘,k
hl kzl—sl (22 — 55)(23 — sk)? (21 — si) (ZQ—SZ‘)
52 kAzlAij
il
( z3 — ;)
ZZZ AR A+ A Ay Ay + Ag Ay A — Ai A KA
hjk ey (21 = 51)* (22 — 55)*(23 — k) (507 — )
A kA V" (s4)
. F.9
52;23 o= 07(en — 5,720 — 0T o

Thus we have:
0i1Ai Ak | 0iA 1Ak 01 Ai 1 Ai 5

(0) _ g (21—54) (z2—s;) (z3—s4)
Wy (21,22, 23) = 3 Z (21 — 50)%(22 — 5;)2(23 — s1)?

z, 7.kl
Z Z Z igh kA it Aig Av g Aig + Aig A Aig — AijAi e Ai
h Lg.k @ i'#i Zl B Sl) (Z2 - 8]) (Z3 - Sk) (Sz’ - 5@')3
A kA V" (s4)
. F.10
EQ;; (21— s1) 22—3)(23—Sk)2 (F.10)

G Proof of theorem 3.6

Theorem 3.6 Under an infinitesimal variation of the potential V- — V 4§V, we have:

Yn>0,g>0, W9(x,... 2, ZRes W,Eil (x,z1,...,2,) 0V (2). (G.1)

G.1 Variation of w

We have: 1
=h 2
o) =h Y (©:2)
and 1
V'(s;) = 2h — (G.3)
g#i
Thus taking a variation we have:
08; — 48
1o R AP i J
SV’ (si) + 0s;V" (1) = QE; G5 (G.4)
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ie.
=—hy Ti;ds;,
J
which implies:

1
% D AoV (s;),
j

and therefore:

Gula) = - Y AV (s)

—_c.)2
i (x —s4)
which can also be written:

Ai,j J;
dw(z) = = ZxR—?EkZ (x —s;)? (2! — s5) V(')

A -
= — R ) SV (2
ijgkz (x —s;)? (2/ — s5)? @)

= —Z Res B(x ') SV (2').

' —sp

And finally we obtain the case n = 1,g = 0 of the theorem:

ow(x Z Res B(wz,2') 6V (2)).

! — Sk

G.2 Variation of B

Consider:

_(0) 1 1 1,7
Wy (5'3’5”/):3(5”’5'3/)_§m:Z(x—s])Q(]’ N2

Due to eq. (2.6) we have:
—(0 hK (x,s;
W; )(;c,;,;’) = Z 7(:6/ (_ Sl)g
— _wlz)
= Zl:zliessl K(z,z2) G_2)

w(z) — w(@)

0
- o7 Zi:zliesbiK(x’Z) z—x

On the other hand, since Wéo) (x,2') has poles only at the s;’s we have:

W(O)( 7') = ResG(z, 2) Wgo)(z,x')

Z—T

= — Z Res G(z, 2) W;O)(z,x')

z—8;

= =37 Res (20(2) = V/(2) + h0.) K (. 2) W4 (,a)

= =3 Res K(a.2) ((2(2) = V'(2) = h0,) W (2.2))

,33,
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This implies that Va:

— 0 w(z) —w(x)
= — K 2 — / — h - (0) / -~ 7 @@ 7 1
0=~ 3 Res Kw2) ((200) = V1) — ) W) 4 222 ) (g
and therefore, W;O) (x,2') satisfies the loop equation:
_ /
(u(e) - V'(2) — hy) WO (a,a!) + LD =) __pO 0y (Guia)

ox' [

where PZ(O) (x,2') has no pole at z — s;’s.
Then we take the variation:

Qu(z) — V(z) — hd,) oW (@, 2") = —(20w(zx) — 6V (z)) W (z, 2')
~ 0 dw(x) — dw(x')

ox’ z—a

— 5P (z,2"). (G.15)

5W§0) (x,2') is a rational fraction of x, with poles only at the s;’s, and 5P2(0) (z,2') has no
pole at x — s;’s. We thus write:

5W2(0) (z,2') = 5Wéo) (z,2")
= Res G(z, 2) 5Wéo)(z,x/)

=~ Res Gla,2) Wy (=)

== Z Res ((2w(2) = V'(2) + ho:) K (=, 2)) W (z,2')
= - Z Res K(z, 2) ((2w(z) —V'(2) - hd,) SWE(z, f))
= Z}{fgiK(x,z) ((20w(2) = 0V'(=)) WY (2,2")

0 840w | o )

oz’ 2
- ZRESK(% 2) ((@0w(z) - 6V'(2) Wy (200') + %)
=2 Res K(2,2) (200(2) - 0V'(2)) B(z2). (G.16)

Then, we use eq. (G.9), and we get:
5W2(0)(x,x/) = —22 Res Res K(x,z) B(z,2")6V (2") B(z,2)
i "k

z'' — sy,

- Z Res K(z,2) 6V'(z) B(z,2')

= —Z Res Res K(x,2) G(z,2")6V'(2") B(z,2")
i "k

z!'— sy,

- Res Res K(z,z2) G(z,2")6V'(2") B(z,2")

= — Res Z Res K (x,2) G(z,2")éV'(2") B(z,2")
r—sgp 1 z2—5;

= -2 Res Z Res K (z,2) B(z,2")0V (z") B(z,2").  (G.17)

! — sy
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We thus obtain the case n = 2,9 = 0 of the theorem:

5W2(0 (z,2) Z Res VV3 x, 2 2") SV (a").

" — sy,

G.3 Variation of other higher correlators

We prove by recursion on 2¢g + n, that:

W (e, L) = =37 Res 0V(") Wo(z, L a"),
where L = {z1,...,2,}.
We write:
h) h)
U9 (2,L) =W (2,2, L) +ZZW§+‘J| (2. WL (2, L))
noJCL

By definition we have:

Wilha(o, L) = 3 Res K(,2) Ul (=, L),

From the recursion hypothesis, we have:

(G.18)

(G.19)

(G.20)

(G.21)

U (= L) = =37 Res oV(a") (W37 (e, L")
(h) (9=h)
23 ST W e R WL o)
h JCL
= =" Res V(") (UTQ?QQ(Z,L,M) - zB(z,m")ng)l(z,L)) (G.22)
Thus:
5W,§“1)1( Zzlie; K (z, 2) U,§+)1 (2,L) Zzlie;K x,z) mﬁgik SV (z")
(Ua(z L,a") = 2B, x”)wg (2 1))
= ZZR—(?Q 0K (z,z) U,Sjgl(z,L) - x}/%gik ZZR—(?Q K(z,z) 6V (2")

(U2 L, 2") = 2Bz, 2" YW, (2, L))
= Zszs 0K (z,2) U,Si)l(z,L)

+2 Res Z Res K(z, 2) SV (2" B(z,x")WT(LJr)l(z L)

ZB”HSk

- Res Z Res K (x,2) 6V (2") UT(LEQQ(Z,L,JZH)

' —sp 1 z—s;
= Z Res 5K(:U z) U,(le(z L)

—|—22Z11(3§ Res K(x,z) 6V (2") B(z,x'/)WT(LJr)l(z L)

x!—s),
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+2 Res Res K(z,2) SV (2") B(z,x )Wr(fgl( L)

z—si ol —z
7

- Res oV (x") Wr(bi)Q(z,L,x"). (G.23)
" — sy

k

We use the loop equation of theorem 3.2, which says that Ur(ﬂ)l( L)+ 2w(z) = V'(2) +
ho, )W,gi)l(z L) has no pole at z — s;, and thus:

SWih (e, L) = = 37 Res 0K (2,2) (20(2) = V'(2) + B0 W) (2. L)

—|—22Z11(3§ Res K(x,z) 6V (2") B(z,x'/)WT(LJr)l(z L)

! — sy,

+2 37 Res Res K(z,2) 0V (a") B(za")W, /) (= L)

- Res 0V (z " Wéi)z(z,L,x")

! Hsk

_ —ZZR_?E W9, (2, L) (2w(z) — V'(2) — h.)0K (z, )

—1—225{52 Res K(z,z) SV (2" B(z,x")WT(LJr)l(z L)

" — sy

+2 Res Res K(z,2) 6V (2") B(z,x )W,(Li)l(z L)

— z2—8; 1/ —z
7

~>" Res oV (") W9y (2, L,a"), (G.24)
and we have:
(2w(z) = V'(2) — hO,)0K (z,2) = 6G(z, 2) — (20w(z) — 6V'(2))K (z, 2), (G.25)

5W,§“1)1( L) = Zzliess W,Eil L) 6G(z,2)

+ Z Res W% (2, L) (26w(2) = 0V'(2)) K (2, 2)
+2Z Res Res K(z,z) 6V (2") B(z,x”)wfli)l(z L)
. 7 T —S

+3 Res K (z,2) 6V/(2) w9 (z,L)

-2 Res SV (") W9y (2, L,a"). (G.26)
We have:
ZZPLGSS W,Eil L) 6G(z,z) =0, (G.27)

because the integrand is a ratlonal fraction, and we have taken the sum of residues at all
poles. Using eq. (G.9), we are thus left with:

5W7(L+)1( L)=—- Res 6V (z") Wéi)Q(z,L,x”), (G.28)

! —sp

which proves the recursion hypothesis for 2g +n + 1. QED.
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H Proof of theorem 3.7

Theorem 3.7
For k£ =0,1, W,gg) satify the equation:

( sz oz, ) xl, C X)) = anlflei& xﬁﬂ V'(an) Wééjr)l(xl,...,xn,xmrl).

(H.1)
Proof. Since Wr(f_?l has poles only at the s;’s we have (with as usual J = {z1,...,2,}):
3" Res @*V/(2) W (J,2) = 3 Res o V(x) W (J2). (H.2)
Then using theorem 3.2, we have:
Z Res 2* V' (x) Wygi)l(J x)
= Z Res 2* Y (z) WT(LJr)l(J x)
(9) (9) (%) o W)
= 3" Res o [0, W%, (J.2) + U2, . ) = P (s D) = Y 0, S
, pae
— (9) (9)
> Res o (00, W, 9, (J,x) + U2, (,])| . (H.3)

Notice that if n > 1, Wygi)l(J r) behaves like O(1/2?) at © — oo, and thus, if & < 1,
z* 0, WT(LJF)I(J, x) behaves like O(1/22). Since we take the residues at all poles, the sum of

residues vanish and thus:

meifg * V' (x) Wr(fgl(J,x) = meifg zk U,Si)l(x, J). (H.4)
Notice that U,SJZI(QJ, J) (defined in eq. (G.20)), behaves at most like O(1/z3) for large z,
and thus, if & < 1, the product z* U,Si)l(x, J) is a rational fraction, which behaves like

O(1/2?) for large z. Its only poles can be at = s; or at # = z;. Therefore the sum of
residues at s;’s, can be replaced by the sum of residues at x;’s:

> Res V() W, (J leiez U9 (2,7). (H.5)

9)

The only terms in U,S 1

B(z,xj), i.e.

(x,J) which have poles at © = x;, are the terms containing a

_22 Res = B(x CE])Wg (z, J/{z;})

Z‘—>$J

> Res 2*V'(2) W, (J,2)

= - Z Res o % W9 (x, J/{x;})

= xr —xj)?
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= _Za% <x§ W,(Lg)(:m,---,ﬂ?n)) . (H.6)
j

j=1
[l
I Proof of theorem 3.8

Theorem 3.8:
Forn>1, W,&g) satify the equation:

0 —
(2_2g_n_hah) W(g)(x17"'7 = _Z$n§Fi81 V(xn-i-l) Wibg-i)-l(x17"'7xn7xn+1)'
(L1)

I.1 & derivatives for w(z)

We have:

'(s; _25281—8]

Taking the derivative with respect to h gives:

Opst — Ops;

" . L _ 2 J
hV" (5;)0rs; = V'(s;) — 2h E 752 )2

J#
and so

Opst — Ops;

" J

V'(si) = h | V"(s;)0ns; + 2h E s 5)?

JF#i

We recognize the general term of the matrix 7" and find:

V,(SZ') == h2 Z ’I%J@]@Sj .

J
Multiplying by the matrix A gives:
526581' == Z AZ'J'V,(S]') . (12)
We can use this result to compute:
Opsi
h = Ry ——
Opw(z) = w(z) + Z CEE

)+ Z A iV (s5)

(x — s;)?
Ai,jV’(az’)
ZmR—(??k Z (x — s;)?(a' — s5)
A; V()
R b
)+ Zm _ejk Z (x — si)?(a! — s5)?
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+Z Res Wg)(:v )V (x)

z’ — Sk

+Z Res WQ( )(x YV (x'). (1.3)

' — sy
Thus we have proved the case n = 1,¢g = 0 of the theorem:

hopw(z) = +Z Res Wi (z,2/)V(2'). (1.4)

! — Sk

1.2 % derivatives for W2(0)(z)
We have seen in appendix G, eq. (G.14), that Wgo) (x,2") satisfies the loop equation:

(2w(z) — V() + ho,) W(O)( ')+ %W = —PQ(O) (x,2"), (L.5)

where P2(0) (x,2') has no pole at x — s;’s. Then we take the derivation hdj of this equation:

(2w(z) — V'(x) + 1) hpW s (w,z') + i, WS (w, 2') + 2h0pw(x) W (z,2)

_ 0 hopw(z) — hopw(a) ©0) (0
- or v —a ~ honBy (@ @) (L6)

h@th]) (x,2') is a rational fraction of x, with poles only at the s;’s, and h@th(O) (z,2') has
no pole at x — s;’s. We thus write:

hopWi (z,2') = oW (2, )
= ResG(z, 2) hBRW;O)(z,x')

Z—T

— " Res 6o 2) T ()
- ZZPLGSSZ ((2"‘)(2) B V/(Z) - haz)K(ﬂU, Z)) haﬁW;O)(z,x')
= =2 Res K(z,2) ((2w(2) = V'(2) + ) noWTY” (2,2"))

= Z;{—?g K(z,z) <(2h8hw(z)) W;O)(z,x')

0 hopw(z) + hopw(2')

ox’ z—al

= Z Res K(z, 2) <2W§O)(z,x') hopw(z) +

+ 1P (2, 2") + b, WL (2, ))
hopw(z)
(z —a')?

=" Res K(2,2) <2W2(0)(z,x') hopw(z) + hazwg(”(z,x')) . (L.7)

WY (2,2 ))

Then, we use eq. (I.4), and we get:

h@hWQ(O) (,2) = Z Res K(z,2) <2W2(0)(z,x')w(z) + h@sz(O)(z,x'))
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+2 » Res Res K(z, z)WQ( )(z,x')WQ(O)(z,x”)V(:U”)
z—8; ! — sy,

ik

_ Z Res W% (z,') (20(2) — ho. ) K (z,2)

+Z Res Res K(z z)WQ(O)(z,x')G(z,x")V’(x")

z—8; x!'— sy,

= ZRjS Wi (z,2') (G(x,2) + V' (2)K (x, 2))

Res Res K(z, Z)W2(O)(Z,CU/)G(Z,CE”)V,(xﬂ)
z—8; x!’ — Sk

Z,k
— Z Res WQ( )(z,x/) G(z, 2)
+ Res Res K(z, z)WéO)(z,x')G(z,:U'/)V/(x”)

z—8; ! — sy
i,k

+ > Res Res K(z, z)WQ( )( )Gz, 2" )V (2"

— Z Res‘ WQ( )(z,x/) G(z, 2)

+ Res Res K(z, z)WQ( )( 2)G(z, 2"V (2"

ik ' —sp 2—S;
— Z Res WQ( )(z,x') G(z, 2)

+2 Res Res K(z, z)WQ(O)(z,x')B(z,x")V(x")
z'—sp 28

ik
= Z Res B(z,2') G(x, z)

Z Res VV3 x, o' 2"V (2").

! Hsk

(1.8)

We now use the fact that G(z,z) and B(z, ') are rational fractions whose only poles are

s;’s, as well as z = x and 2z = 7/, and we write:

Z%QB(z,x/) G(z,2) = —Res B(z,2") G(z,2) — Res Bz, ') G(z,2)

zZ—T z—x'
= —Res B(z,2') ! L Res G(z,2)
25w ’ zZ— 2 z—a! (Z — 1")2 ’
= —Res B(z,2') + Res - B(x, 2)
=T zZ—x 2o’ 2 — T
= —B(z,2') + B(x,2")

=0.
So that eventually we have proved the case n = 2, g = 0 of the theorem:

h@hWZ Z Res I/V3 z, o' 2") V().

! *?Sk

1.3 Recursion for higher correlators

We proceed by recursion on 2g + n.
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From theorem 3.2, we have that:
(Y () — hd)hopW'9 (2, L) = hopU?, (w3 L) + o, W9, (2, L) —= W9, (2, L) hopY (x)
—hop ( (@ L)+ Y a‘; Vz(g);)) : (111)
z;€L
where the term on the last line has no pole at x = s;. This implies that:
> Res K{(x0,2) ((Y(x) — 10, oW, (x, L))

= Z 1116382 K (xp,x) (h@hUr(Li)l(x; L)+ h@mWéi)l(x, L)

W}L 9 (z,L) h@hY(x)> . (1.12)
We have:
> Res K(xo,2) (¥ (x) = ho)honW, 2, (@, L))
Z = Z Res haﬁW( 9 1(z, L) (Y (z) + hoy) K (0, x)

r—8;

= _ Z Res hf‘)ﬁW( 9) 1(z, L) G(xg, )

_ mlﬁago hosW'%, (x, L) G(o, z)

= BRWY), (w0, L), (1.13)
and therefore:
hopW, %), (o, L) (L.14)

= 3" Res K(xg, ) (hahU,(;‘le(x;L) + h, W9, (@, L) — W9, (2, L) hahy@;)) .
From the recursion hypothesis we have:

k)
hopUY), (2 L) = hopW, 95D (w2, L) + Z Z Wi
k=0JCL

(9—k) ()
+Z Z Wil L oW 5 (, )
k=0JCL
= 2=29-1) = (n+2)W\%," (@,, L) +Z Res W, 75" (2,2, L,2') V()

{L'HS

(, DORWL ), 5 (L))

g /
3N @29 —k) = A+ n— I W @ WS, (2, 1))

k=0JCL
g
N @2k -+ )W, >|J‘(x L)J) 1+>U|(x,J)
k=0JCL
k
+Zij§V ZZ Wi (e 2 YW (e, L))

k=0JCL
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ZRGSV ZZ 1+|J\ 2(+n M(m L/J,x")

{L'*?S

k=0JCL
= 222 - U (a1)
—i—Z Res V(z n+)2(x 2/ L) — B(x,x/)Wr(lJr)l(x L)). (I.15)

Thus we have:

HOY o £) = (2= 29 =) 3 Res K ) U2 o5 )

T—58;

—i—Z Res K (zg,x Z Res V(z n+)2(m 2, L)—2B(x,x )W,Ei)l(x L))

T84 ' —s;

+Z Res K (o, @ )(ha W (2, L) = WD, (a, L) h@hY(x))

=(2-2g9— n)Wy(H)l(xo,L)
+Z Res ZRes K (20, 2)V () (U9 (z; 2/, L)=2B(z, "YW, (2, L))

+Zggess,f<'<mo,x> (noe W2y @, L) = W% (w, L) hOnY (2))

=(2—2g —n)W,Eil (o, L Z Res V(z W,ESQQ(QJO,QJ L)

{L'*?S

—22 Res Z Res K (zo,z)V (2') B(z, 2’ )WT(LJr)l(x L)

x! —S8; Tr—38;

+Z Res K (0, ) (ha W (2, L) - W9, (x, L) h@hY(x))

— T—5;

=(2—2g9— n)W,Eil (o, L) + Z Res V(z W,ESQQ(QJO,QJ L)

{L'*)S

—22 Res Z Res K(zg,x V( "YB(z,2' )WT(LJr)l(x L)

r—3S8; x’ —Sj

—22 Res Res K (zo,2)V (z ')B(w,x')WT(LJr)l(x L)

T—S; ¥/ >z

+Z Res K (z0, ) (ha w9 (@, L) - W', (2, L) hahy@;)) . (L16)

— T35
Notice that:

hoRY () + 22 Res B(z,2")V(2') +-2 Res B(x,2")V(2') =Y (z), (I.17)

£B*>S ' —x

therefore:

h@hW(Jr)l(mo,L) =(2-29—n)W n+1 (o, L +Z Res V(x n+)2($0,$ L)

:1:~>s

+° Res K (ao, >(ﬁaw,£?1< L) =Y @)W, (. 1))

— TS,
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=(2-29—n)W, n+1 (xo, L +Z Res V(z 75422(550’5'3 L)

ZBHS

—Zﬁfs (L) (¥ <>+ham> (20, 7)

= (2—29—n) n+1 (xo, L +Z Res V(z 75422(550’5'3 L)

+Zggess W, L) Glao, ”
=(2—-29g—n)W,% (20, L +ZxR£§V T(LJr)Q(xo,x L)
—xlze;ow,&i%( L) G(wo,v)

=(2-29—n)W, n+1 (20, L +Z Res V(z (JF)Q(JUO,JU L)

Z‘—’S

_Wr(zgr)l(xo’l’)
= (2—Qg—n—1)W(+)1(x0, +Z Res V(z )Wr(li)Q(xo,x',L), (I.18)

n
$—>S

i.e. we have proved the theorem for 2g +n + 1.

J Free energies

Here we consider g > 2. The free energies defined in eq. (3.16), automatically satisfy
theorem 3.8, and thus are homogeneous:

FO AV, R) = \2729 FO(V, 1), (J.1)

Here we show that they satisfy theorem 3.6. We start from the definition:

h
Fo =g [T ZE‘?E Vi) @) (1.2)

and we compute the loop operator applied to F'9):

nos
by, FU9) = p2=29 / Ndh E Res < V(z) Wég)(x,xl) + 9z, V() Wl(g)(x)>
0 — T—S;

h3—29 I3
2-2 " dh (9) Wl(g)(l")
=h 9 ﬁ372g Z ReS. V(m) W2 (CE,CEl) + Txl
0 P Tr—S; —_— ﬁ
"o dh
_ 22 /0 e | (X Res vie) Wl o) ) - w0 @)
i h
h 729—1 117(9)
— K22 / Ndh 7229 d(h Wﬁ (z1)) _ Wl(g)(xl)
o h3- dh ;
hofq dh
- 9/ <Zd (P~ W (1)) == W) ] (J.3)
0 i
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We integrate by parts, and since 2g — 2 > 0, there is no boundary term coming from the
bound at 0, and thus:

h
Gay O = W9 (21) + 122 / (A= Wi (1) = 22972 Wi (1)) dh
0
= W9 (ay). (J.4)

Therefore we have proved that the loop operator acting on F) is indeed Wl(g ), i.e. we have
proved theorem 3.6.

K FO
We have defined F(©) as:

FO = hZV si)+ 1Y In(si —s)) (K.1)
i#]

e Proof of theorem 3.6 for F(9);

Consider a variation dV:

SFO) — —hz SV (s hz V7 (s:)0s; + 2R Z . 55;
17 9]

= —thV

= — Zﬁiw(m) oV (x). (K.2)

e Proof of theorem 3.8 for F'(9);

hopF© = —hZV si) + 207 ) "In(s; — ;)
i#]

h2zas@< (s: _zhzs S)
i 5j
:—hZV Si +2h221n 5; — Sj)

i#£]

=2r© 4 Z Res w(z) V(x). (K.3)
Therefore:
(2—hdp)Fo = = Res V(z)w(x). (K.4)
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L F®

We have defined F(1) as:

1 F(0)
FO = 5 In(det A) + — +1n (A(s)?)
1 1
:iln(detA) ——ZV(si)—l—Zln(si—s] Zln 5i — Sj)
) i#£] i#£]
= 5 In(det A) Zv +221n(s,~—sj). (L.1)
i#]
e Proof of theorem 3.6 for F(1):
Let us start from Wl(l)
I/Vl(1 Z Res K(z, 2) Wa(z,2)

A;
= 5" Res K(x, [ 2 iy ]
;Z_?Ssz (z,7) (z — s4) T Z (z—5)%(z — s5)?

A J#i
= Z;%_)e‘; K(xwz) (Z _Z:;)4

Aij
+2ZZK'ms —SJ)Q

i j#

_4ZZK x,s;) fs])?’ . (L.2)

i j#

We have:
Aiﬂ' 1 / Ai,i
Zi:zliessiK(:ﬂ,z) 7(2 — ) = gzl:zliegK (z,2) (2 — 5,)3
1 2 1_, A
=52 el P2 VK

1 A
_— _ i L.
h ZZ: zj?{fszsl Gla,2) (z —si)3 (L3)

Therefore:
A; A
Ei ;{ng(waz)(zT E ZstS (2w; (2 )—ﬁV( 2)) K (95,2)(77

z—s;)3
Azz
[ E ReS’GCU,Z)m

2wi(z) — +V'(2) A
- Z zfie& [ zZ— 5 K(z, Z)} (z — 51)?
A
2h Z ResG'(w2) o2
1
_ ZA“ [2(411 — ;ZV/(Z) K(:U,z)] ;:Si
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— Z Res B(zx, z) ———
z—s; (z — i)
= —Z 20! (s) V"/(s,)) (x,8i) A
— ZK (x,si) AiiT;

1 Ai,i
+ﬁ Z Res B(z,z) —— . (L.4)

; Z—58; (z — Si)2

Notice that:

w z—si (x—s;)t 2

1 Amcﬂ/(x)
Res K(z,5:)0V(2) = & ;x_eg @ —5,)?
1
=2 D AijoV'(s))
J
= 582‘, (L.5)
1 s,
Res K'(w,5,)8V (@) = = 61,0V (5,) =2 — jfs‘ , (L.6)
j gt
B
Res Res Blz,z) 0V (x) = Res Res Blz,2) oV (x)
T8 2—8; (Z _ Si) Z—8; T—5 (Z — Si)2
B
ey Res 70 0V ()
Ay
= Res R L %
z—(?ssz x—eg (1‘ — 81)2(2 — Sj)Q(Z — Si)Q (CU)
1
~ Res 5
+ z:"[lesi :ng (xl_( 2)2(z — ;)2 V(z)
= h Res Res (2, 5,) oV (x)
Zi*’si z—s (Zl_ $5)%(z — 8;)?
*3 zR—?sSz (z —84)? V()
05 1
=—-h R / — V" (s;
25 (z —55)%(z — si)? T3 (s:)
05 1
i Sj
That gives:
K As s 1 1 1
Res Res (z,2) 4, SV (r) = —= (2w (s;) — ﬁV”'(si))ési A+ — 25@]‘5‘/(83‘)14@',@'7};1‘
J

+2Z 58] Az ZE K + 2h573 Azz + 1 5V”(Si) Azz
— 5 (si — s5) T2 ’
) J# 5
= 26(TZ Z) zz"‘h 251]6‘/ 8]) Al ZTZ l+2z ] jJS'Ai,iTZ',Z',
J#i 5 J

(L.8)
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and thus:

Res W (2)6V (z) =

r—S

- Z 5 'll Zl+h Zzél‘]év S_] AZZEZ—"_zZSZéj]s] ZZ 'll
i 5V
_QZZ h Zl N/ . Sl ,J 4222 —Sl SZ—S])Q Am’

i jFi ) l;éz

+4ZZ .

i jF#i J

_ Z‘ 5(T.) mﬁ Zzz%ax/(sj)m,m,ﬁzz sfjJs]A T
Yo,
—4222 (si —s1)(si — s A’]+4ZZ Sz_ssj "

1§ l;éz e
08,
:—TA(ST — 5; 0 T +2 J
A dT zzz Ve AT 23
58[
+4ZZ -8, s, —81)? -4 Z —s1)(8;i — 85)? Aij
) prery i) 5 z;ﬁg;ﬁl !
s; — 08
= -Tr A ST + -~ DY N |
STrAS —i—hZéV(s]) > o,
1 1 . ]#Z ) 0
_ S; — Sj
_§5lndetT+—Z(5 _] hZV 5_] 6SJ ;ﬁ
VE)
1 0s; 0s; — 0s;
ziélndetT—{— Z(S 5_] _2223]—31_27%
) J 275]5 JFi 5 5
5. . Si — 85
= 2451 T+ = 085 — 9% _ v 77
25 ndetT + 25 ZZ — Z —
) J Z#g JF#i
B dsj —dsi
_§6lndetT+hZ(5 (s;) —2272 — (L.9)
i#]
That implies:
F1:——1ndetT——ZVsj )+2) In(s; (L.10)
i
lndetA——ZV 55) + 2 Zln i —8j). (L.11)
i#j
M Example m =1
We choose s = 0, and V'(s) = vos + v35% + > vp415%. We have
h
= = M.1
wlw) =, (ML)
h
A = — M.2
. (M.2)
Kk(xl) xka (M 3)
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w

Wy

Wi

= ., K Ky =0 M.4
1)2.%'% ! 2 ( )
1 V3
- M.5
hx? huox ( )
1 A
+ ’ M.6
2(r1 —2)? | a2} (M.6)
2h 1 1 1 2hvs
T 22222 42 <x_+_+_>_ 32,22 (M.7)
2 L1 L3 T3 T2 I3 Up X7 X5 X3
~ 6h LR NS
T RRRA\E R R &
8h 1 1 1 1 1 1
— - - - - -
1)2 .%'1 .%'2 1‘3 X129 Xr1x3 14 o3 Ty T3X4
12hvs 1 1 1 1 12hv3 6h vy
4222( +—+—+—)+ 52,2 .2 4,22 2" (MS)
Ve XT3 X5 X1 To T3 T4 Vs X X5 X5 Vs T] T T3
1 1 V3
_ = _ M.9
hax + voad w32’ (M.9)
- 3 ( 1 1 LA 2 1 4ug 1 1
N v% x%x% ﬂ:% 562 3x179 hvg ﬂ:% ﬂ:% vg’ x%x% T 9
402 3v
r o ;2’ (M.10)
Vg T1X ”2 )
R S N
BT A A
12 ( 1 n 1 1 1 1 1 )
vg’ x%x%x% ﬂj%ﬂfQ x%xg x%xl xlx% CEQCE% 56356%
n 8 2 ( 1 n 1 n 1 )
v adrded  hwiatadad tx oz g
243 L L1 Lo, 1 203
Coda2e202 0?2 T 2 mms | wows | wawy’  hwdaZalal
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32v3 1 1 30v3 1 1 451)3 1 1
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we _ 2 3503 5vs 5003 5v3
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60v3 5v3 60v3 6003 240, 3uy
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R2ogat  h3odx?  R2odad h2o§a?  R2eda? h2odad
501)32}6 151)7
h2 v 22 B2 vy a2’ (M.14)
The free energies are:
1
F1 = §ln(v2/h), (M15)
5v2 3v4
= _—-23 — M.16
2 6h vg 4h v% ( )
Py = 5v§ - 5v§ - 3y 251)%1)4 B 3@2 B Tvgvs H5vg (M.17)
6R3v3  h2o§  4R3e?  2hZo]  hZoi  hZv  2h203 '
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