1	Université Joseph Fourier	1
2		2
3	Les Houches	3
4		4
5	Session LXXXVII	5
6	2007	6
7	2007	7
8		8
9		9
10		10
11		11
12		12
13		13
14		14
15	String Theory and the Real World:	15
16		16
17	From Particle Physics to Astrophysics	17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42

1	Lecturers who contributed to this volume	1
2		2
3		3
4	I. Antoniadis	4
5	J.L.F. Barbón	5
6	Marcus K. Benna	6
7	Thibault Damour	7
8	Frederik Denef	8
9	F. Gianotti	9
10	G.F. Giudice	10
11	Kenneth Intriligator	11
12	Elias Kiritsis	12
13	Igor R. Klebanov	13
14	Marc Lilley	14
15	Juan M. Maldacena	15
16	Eliezer Rabinovici	16
17	Nathan Seiberg	17
18	Angel M. Uranga	18
19	Pierre Vanhove	19
20	Fielle valiliove	20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42

1 2	École d'été de Physique des Houches	1 2
3 4	Session LXXXVII, 2 July–27 July 2007	3 4
5 6 7 8	École thématique du CNRS	5 6 7 8
9 10 11		9 10 11
12 13 14		12 13 14
15 16	STRING THEORY AND THE REAL WORLD:	15 16
17 18	FROM PARTICLE PHYSICS TO ASTROPHYSICS	17 18
19 20 21		19 20 21
22 23	Edited by C. Bachas, L. Baulieu, M. Douglas, E. Kiritsis, E. Rabinovici,	22 23
24 25	P. Vanhove, P. Windey and L.F. Cugliandolo	23 24 25
26 27		26 27
28 29 30		28 29 30
31 32		31 32
33 34		33 34
35 36		35 36
37 38 39	ELSEVIER	37 38 39
40 41	Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo	40 41
42		42

Elsevier	1
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands	2
Linacre House, Jordan Hill, Oxford OX2 8DP, UK	3
	4
First edition 2008	5
Copyright © 2008 Elsevier B.V. All rights reserved	6
	7
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any	8
form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher	9
	10
Permissions may be sought directly from Elsevier's Science & Technology Rights Department in	11
Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier. com. Alternatively you can submit your request online by visiting the Elsevier web site at http://	12 13
www.elsevier.com/locate/permissions, and selecting <i>Obtaining permission to use Elsevier material</i>	13
	14
Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as	16
a matter of products liability, negligence or otherwise, or from any use or operation of any methods,	17
products, instructions or ideas contained in the material herein. Because of rapid advances in the	18
medical sciences, in particular, independent verification of diagnoses and drug dosages should be made	19
made	20
Library of Congress Cataloging-in-Publication Data	21
A catalog record for this book is available from the Library of Congress	22
British Library Cataloguing in Publication Data	23
A catalogue record for this book is available from the British Library	24
ISBN: 978-0-0805-4813-5	25
ISBN: 978-0-0805-4815-5 ISSN: 0924-8099	26
	27
Den information on all Discoins and lighting	28
For information on all Elsevier publications visit our website at books.elsevier.com	29
	30
	31
Printed and bound in The Netherlands	32
	33
07 08 09 10 11 10 9 8 7 6 5 4 3 2 1	34
	35
Working together to grow libraries in developing countries	36
libraries in developing countries	37
	38
www.elsevier.com www.bookaid.org www.sabre.org	39
ELSEVIER BOOK AID Sabre Foundation	40 41
	41
	42

1	École de Physique des Houches	1
2		2
3		3
4		4
5	Service inter-universitaire commun	5
6	à l'Université Joseph Fourier de Grenoble	6
7	et à l'Institut National Polytechnique de Grenoble	7
8		8
9		9
10	Subventionné par le Ministère de l'Éducation Nationale,	10
11		11
12	de l'Enseignement Supérieur et de la Recherche,	12
13	le Centre National de la Recherche Scientifique,	13
14	le Commissariat à l'Énergie Atomique	14
15		15
16		16
17		17
18		18
19		19
20	Membres du conseil d'administration :	20
21		21
22	Farid Ouabdesselam (président), Paul Jacquet (vice-président), Jacques Deportes,	22
23	Cécile DeWitt, Thérèse Encrenaz, Bertrand Fourcade, Luc Frappat, Jean-François	23
24	Joanny, Michèle Leduc, Jean-Yves Marzin, Giorgio Parisi, Eva Pebay-Peyroula,	24
25	Michel Peyrard, Luc Poggioli, Jean-Paul Poirier, François Weiss, Jean Zinn-	25
26	Justin	26
27		27
28		28
29	Directeur :	29
30	Leticia Cugliandolo, Université Pierre et Marie Curie, Paris VI, France	30
31		31
32		32
33	Directeurs scientifiques de la session LXXXVI:	33
34	Costas Bachas, LPT-ENS, Paris, France	34
35	Laurent Baulieu, LPTHE, Paris, France,	35
36	Michael Douglas, Rutgers University, USA, and IHES, France	36
37	Elias Kiritsis, CPHT, Palaiseau, France	37
38	Eliezer Rabinovici, Racah Institute of Physics, Hebrew University, Jerusalem,	38
39	Israel	39
40	Pierre Vanhove, SPhT, Saclay, France	39 40
40	Paul Windey, LPTHE, Paris, France	40
41		41
+2		44

1			Previous sessions	1
2				2
3				3
4	Ι	1951	Quantum mechanics. Quantum field theory	4
	II	1952	Quantum mechanics. Statistical mechanics. Nuclear physics	
5	III	1953	Quantum mechanics. Solid state physics. Statistical mechanics.	5
6			Elementary particle physics	6
7	IV	1954	Quantum mechanics. Collision theory. Nucleon-nucleon interaction.	7
8			Quantum electrodynamics	8
9	V	1955	Quantum mechanics. Non equilibrium phenomena. Nuclear reactions.	9
			Interaction of a nucleus with atomic and molecular fields	
10	VI	1956	Quantum perturbation theory. Low temperature physics.	10
11			Quantum theory of solids. Ferromagnetism	11
12	VII	1957	Scattering theory. Recent developments in field theory.	12
13	3.7111	1050	Nuclear and strong interactions. Experiments in high energy physics	13
14	VIII	1958	The many body problem	14
15	IX X	1959 1960	The theory of neutral and ionized gases Elementary particles and dispersion relations	15
	XI	1960	Low temperature physics	
16	XII	1961	Geophysics; the earth's environment	16
17	XIII	1963	Relativity groups and topology	17
18	XIV	1964	Quantum optics and electronics	18
19	XV	1965	High energy physics	19
20	XVI	1966	High energy astrophysics	20
	XVII	1967	Many body physics	
21	XVIII	1968	Nuclear physics	21
22	XIX	1969	Physical problems in biological systems	22
23	XX	1970	Statistical mechanics and quantum field theory	23
24	XXI	1971	Particle physics	24
25	XXII	1972	Plasma physics	25
26	XXIII	1972	Black holes	26
	XXIV	1973	Fluids dynamics	
27	XXV	1973	Molecular fluids	27
28	XXVI	1974	Atomic and molecular physics and the interstellar matter	28
29	XXVII XXVIII	1975 1975	Frontiers in laser spectroscopy	29
30	XXIX	1975	Methods in field theory Weak and electromagnetic interactions at high energy	30
31	XXX	1970	Nuclear physics with heavy ions and mesons	31
	XXXI	1978	Ill condensed matter	
32	XXXII	1979	Membranes and intercellular communication	32
33	XXXIII	1979	Physical cosmology	33
34	XXXIV	1980	Laser plasma interaction	34
35	XXXV	1980	Physics of defects	35
36	XXXVI	1981	Chaotic behaviour of deterministic systems	36
37	XXXVII	1981	Gauge theories in high energy physics	37
	XXXVIII	1982	New trends in atomic physics	
38	XXXIX	1982	Recent advances in field theory and statistical mechanics	38
39	XL	1983	Relativity, groups and topology	39
40	XLI	1983	Birth and infancy of stars	40
41	XLII VI III	1984	Cellular and molecular aspects of developmental biology	41
42	XLIII	1984	Critical phenomena, random systems, gauge theories	42

1	XLIV	1985	Architecture of fundamental interactions at short distances	1
2	XLV	1985	Signal processing	2
	XLVI	1986	Chance and matter	
3	XLVII	1986	Astrophysical fluid dynamics	3
4	XLVIII	1988	Liquids at interfaces	4
5	XLIX	1988	Fields, strings and critical phenomena	5
6	L	1988	Oceanographic and geophysical tomography	6
7	LI	1989	Liquids, freezing and glass transition	7
	LII	1989	Chaos and quantum physics	
8	LIII	1990	Fundamental systems in quantum optics	8
9	LIV	1990	Supernovae	9
10	LV	1991	Particles in the nineties	10
11	LVI	1991	Strongly interacting fermions and high T_c superconductivity	11
	LVII	1992	Gravitation and quantizations	
12	LVIII	1992	Progress in picture processing	12
13	LIX	1993	Computational fluid dynamics	13
14	LX	1993	Cosmology and large scale structure	14
15	LXI	1994	Mesoscopic quantum physics	15
	LXII LXIII	1994 1995	Fluctuating geometries in statistical mechanics and quantum field theory Quantum fluctuations	16
16	LXIII	1995	Quantum symmetries	
17	LXIV	1995	From cell to brain	17
18	LXVI	1996	Trends in nuclear physics, 100 years later	18
19	LXVI	1997	Modeling the Earth's Climate and its Variability	19
20	LXVII	1997	Probing the Standard Model of Particle Interactions	20
	LXIX	1998	Topological aspects of low dimensional systems	
21	LXX	1998	Infrared space astronomy, today and tomorrow	21
22	LXXI	1999	The primordial universe	22
23	LXXII	1999	Coherent atomic matter waves	23
24	LXXIII	2000	Atomic clusters and nanoparticles	24
25	LXXIV	2000	New trends in turbulence	25
	LXXV	2001	Physics of bio-molecules and cells	
26	LXXVI	2001	Unity from duality: Gravity, gauge theory and strings	26
27	LXXVII	2002	Slow relaxations and nonequilibrium dynamics in condensed matter	27
28	LXXVIII	2002	Accretion discs, jets and high energy phenomena in astrophysics	28
29	LXXIX	2003	Quantum Entanglement and Information Processing	29
30	LXXX	2003	Methods and Models in Neurophysics	30
	LXXXI	2004	Nanophysics: Coherence and Transport	
31	LXXXII	2004	Multiple aspects of DNA and RNA	31
32	LXXXIII	2005	Mathematical Statistical Physics	32
33	LXXXIV	2005	Particle Physics beyond the Standard Model	33
34	LXXXV	2006	Complex Systems	34
35	LXXXVI	2006	Particle Physics and Cosmology: the Fabric of Spacetime	35
	Publishers:			
36	- Session VI	II: Duno	d, Wiley, Methuen	36
37			Herman, Wiley	37
38			n and Breach, Presses Universitaires	38
39			: Gordon and Breach	39
40			XVIII: North Holland	40
41			XVIII: EDP Sciences, Springer	41
	- Session L2	XXIX-L	XXXV: Elsevier	
42				42

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 17
17
18
19
20 21
21 22
23 24
24 25
25 26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1		1
2		2
3		3
4		4
5		5
6		6
7		7
8		8
9	Organizers	9
10	0	10
11		11
12	BACHAS Costas, LPT-ENS, Paris, France	12
13	BAULIEU Laurent, LPTHE, Paris, France	13
14	DOUGLAS Michael, Rutgers University, USA, and IHES, France	14
15	KIRITSIS Elias, CPHT, Palaiseau, France	15
16	RABINOVICI Eliezer, Racah Institute of Physics, Jerusalem, Israel	16
17	VANHOVE Pierre, SPhT, Saclay, France	17
18	WINDEY Paul, LPTHE, Paris, France	18
19	CUGLIANDOLO Leticia, Université Pierre et Marie Curie, Paris VI, France	19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38 20		38
39 40		39 40
41		41
42		42

ix

1	Lecturers	1
2		2
3		3
4	ANTONIADIS Ignatios, CERN, Switerland	4
5	ARKANI-HAMED Nima, IAS, Princeton, USA	5
6	BÁRBON, J., UAM/CSIC, Madrid, Spain	6
7	BAULIEU Laurent, LPTHE, Paris, France	7
8	DAMOUR Thibault, IHES, France	8
9	DENEF Frederik, Université de Louvain, Belgium	9
10	ELLIS John, CERN, Switzerland	10
11	GIANOTTI Fabiola, CERN, Switzerland	11
12	GIUDICE Gian-France, CERN, Switzerland	12
13	GLOVER Nigel, IPP, Durham, England	13
14	INTRILIGATOR Kenneth, University of San Diego, USA	14
15	KLEBANOV Igor, Princeton University, USA	15
16	KIRITSIS Elias, CPHT, Palaiseau, France	16
17	MALDACENA Juan, IAS, Princeton, USA	17
18	RABINOVICI Eliezer, Racah Institute of Physics, Jerusalem, Israel	18
19	SHENKER Steve, Stanford University, USA	19
20	URANGA Angel, CERN, Switerland	20
21	VANHOVE Pierre, SPhT, Saclay, France	21
22	WIEDEMANN Urs, CERN, Switzerland	22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42

Х

1	Participants	1
2	L.	2
3		3
4	ANGUELOVA Lilia, Queen Mary Univ. of London, UK	4
5	ANTONIADIS Ignatios, CERN, Switerland	5
6	AREAN Daniel, Universidade De Santiago, Spain	6
7	ARKANI-HAMED Nima, IAS, Princeton, USA	7
8	BACHAS Costas, LPT-ENS, France	8
9	BAO Ling, Chalmers Univ of Tech, Sweden	9
10	BAULIEU, Laurent, Université Pierre et Marie Curie, France	10
11	BEDOYA DELGADO Oscar, IFT-Unesp, Brazil	11
12	BENNA Marcus K., Princeton University, USA	12
13	BJORNSSON Jonas, Physics Department, Sweden	13
14	BOURJAILY Jacob, Princeton University, USA	14
15	CARDELLA Matteo, Hebrew University, Israel	15
16	CICOLI Michele, DAMTP, Cambridge, UK	16
17	CLOSSET Cyril, ULB, Belgium	17
18	CREMONESI Stefano, SISSA, Trieste, Italy	18
19	DAMOUR Thibault, IHES, France	19
20	DENEF Frederik, Université De Louvain, Belgium	20
21	DOMOKOS Sophia, University of Chicago, USA	21
22	DOUGLAS Michael, Rutgers University, USA and IHES, France	22
23	ELLIS John, CERN, Switerland	23
24	FAULKNER Thomas, MIT-CTP, USA	24
25	FERRO Livia, Torino University, Italy	25
26	FRANCIA Dario, Chalmers University, Sweden	26
27	GARCIA-ETXEBARRIA Inaki, IFT, Madrid, Spain	27
28	GIANOTTI Fabiola, CERN, Switerland	28
29	GLOVER Nigel, IPP, Durham, England	29
30	GORBONOS Dan, The Hebrew University, Israel	30
31	GUIDICE Gian-France, CERN, Switzerland	31
32	GWYN Rhiannon, Mcgill University, Canada	32
33	HAQUE Sheikh Shajidul, UW-Madison, USA	33
34	HAUPT Alexander, Imperial College London, UK	34
35	HOOVER Doug, Mcgill University, Canada	35
36	INTRILIGATOR Kenneth, University of San Diego, USA	36
37	JOHNSON Matthew, UC Santa Cruz, USA	37
38	KANITSCHEIDER Ingmar, ITF Amsterdam, Netherlands	38
39	KELLER Christoph, ETH Zurich, Switzerland	39
40	KIRITSIS Elias, CPHT, France	40
41	KLEBANOV Igor, Princeton University, USA	41
42		42

xi

1	KLEVTSOV Sam, Rutgers University, USA	1
2	KNAPP Johanna, CERN, Switzerland	2
3	KREFL Daniel, MPI and Lmu Munich, Germany	3
4	LARFORS Magdalena, Uppsala University, Sweden	4
5	LILLEY Marc, IAP, France	5
6	MALDACENA Juan, IAS, Princeton, USA	6
7	MANN Nelia, University of Chicago, USA	7
8	MARSANO Joseph, Caltech, USA	8
9	MARTIN Alexis, LPTHE, Paris Vi-Vii, France	9
10	MASON John, Uc Santa Cruz, USA	10
11	METHER Lotta, University of Helsinki, Finland	11
12	MONTEIRO Ricardo, DAMTP, Cambridge, UK	12
13	MOURA Cesar, LPTHE, France	13
14	MUKHOPADHYAY Ayan, HRI, India	14
15	NACIRI Mohamed, Mohamed V Univ. Morocco, Morocco	15
16	NIARCHOS Vasilis, CPHT, Ecole Polytechnique, France	16
17	PASSERINI Filippo, Perimeter Institute, Canada	17
18	PETERSSON Christoffer, Chalmers University, Sweden	18
19	PLAUSCHINN Erik, MPI For Physics, Munich, Germany	19
20	QUIGLEY Callum, University of Chicago, USA	20
21	RABINOVICI Eliezer, Racah Institute of Physics, Hebrew University, Israel	21
22	RICCO Giovanni, Universita Di Pisa, Italy	22
23	SAHOO Bindusar, HRI, India	23
24	SANTOS Jorge, DAMTP, Cambridge, UK	24
25	SEKINO Yasuhiro, Okayama Institute, Japan	25
26	SHENKER Steve, Stanford University, USA	26
27	SONNER Julian, DAMTP, UK	27
28	URANGA Angel, CERN, Switerland	28
29	VAN DEN BLEEKEN Dieter, ITF Kuleuven, Belgium	29
30	VANHOVE Pierre, Institut de Physique Théorique, CEA, France	30
31	VICEDO Benoit, DAMTP, Cambridge, UK	31
32	WINDEY Paul, Université Pierre et Marie Curie, France	32
33	YAMADA Daisuke, Hebrew University, Israel	33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42
	xii	

Foreword The summer of 2007 is a propitious moment in the history of physics. While the Standard Model, developed in the early 70's and largely confirmed by the end of the decade, remains the cornerstone of our understanding of particle physics, many believe its days are numbered. Experiments to begin in 2008 at CERN will probe energies almost an order of magnitude beyond what we can reach today. Not only can we expect to discover the Higgs boson of the original Standard Model, there are compelling theoretical reasons to believe that far more novel physics is there, connected with the large ratio between the energy scales of electroweak symmetry breaking, and those of more fundamental physics such as gravity. This connection gives us hope that new discoveries will bear directly on levels of structure associated with far higher energies than we can probe directly. Many, many speculations have been made about this new physics. Two of the best known are supersymmetry and large extra dimensions, and there are many others. These ideas now exist in a plethora of variations, giving rise to a rich subject of "Beyond the Standard Model" physics. But the moment of truth is approaching, when many of these speculations will be cut down to size. Fortunately, the lack in recent years of striking new discoveries from particle physics, has been more than made up for by a wealth of new data from observa-tional cosmology. Deep sky surveys, maps of the cosmic microwave background, and other developments have led to what many consider to be a "Standard Model of cosmology," the Λ CDM inflationary model. Inflation (and its competitors) gives us another window on physics at higher energies, and it is reasonable to hope that given new discoveries at LHC, some sort of grand synthesis between our two main (avenues of investigation) of fundamental physics will emerge. Many physicists feel that the best hope for such a synthesis lies within string theory, arguably the grandest speculation of all. For decades, the problem of reconciling quantum mechanics and general relativity was considered unsolvable, a rock on which even Einstein foundered. The solution of this problem by string theory, and the general failure of other approaches, has led to a widespread belief that string theory must contain essential clues about fundamental physics. We can even imagine that string theory is the complete theory from which all the rest of physics will someday be derived.

xiii

For a variety of reasons, it has been very difficult to propose decisive tests which would settle this claim. Most importantly, almost all specific predictions of string theory depend crucially on which particular solution we consider. Since З string theory is ten dimensional, modelling four dimensional physics requires choosing a six dimensional compactification manifold, as well as specific back-ground fields and other structures on that manifold, and the number of possibil-ities is vast. The development of M theory and duality in the 1990's, far from solving this problem, has only enlarged the set of possibilities, and increased our confidence that this analysis of the situation is valid. An apparent death blow to the hope of a unique preferred solution has been dealt by the compelling evidence of recent years that our universe contains dark energy, well modeled by a non-zero positive cosmological constant. At present there is only one generally accepted theoretical explanation for this, namely the anthropic argument of Weinberg, as realized in string theory by Bousso and Polchinski. This explanation depends crucially on having a vast number of vac-uum configurations, certainly more than 10^{60} . More precise estimates suggest that there are at least 10⁵⁰⁰ distinct solutions, and forming any picture of the range of their possible predictions to guide us in testing the theory is a formidable challenge. Nevertheless we must try. Might it happen that the upcoming experiments at LHC will cut the grand speculation of string theory down to size as well? Or might we discover evidence for strings, or other predictions of the theory? Or could indirect arguments, combining the evidence from particle physics, cosmol-ogy and elsewhere, somehow point to a particular class of solutions, which would then make predictions we could test in future experiments? Or might we be better off making contact between string theory and more accessible physics, such as that of QCD and nuclear physics? Of course, this was the original inspiration for string theory, and recently great strides have been made in this direction, in part fueled by theoretical developments such as string-inspired techniques for perturbative computation as well as the celebrated AdS/CFT correspondence, and in part by developments in heavy ion collider physics, which has revealed surprising new collective behaviors of matter with simple models in terms of the new theoretical ideas. While the relevance of this for fundamental physics remains unclear, the historical progress of string the-ory came from considering a wide variety of possible applications, and this will surely continue. This then, the contact between "String theory and the real world," was the theme of our school. Our general approach was "bottom-up", in that most of the lecturers tried to explain the known facts and prospects for discovery in some established area of particle or nuclear physics, or of astrophysics and cosmology,

xiv

and then move towards the question of how string theory might make contact with these developments. Let us begin with the lectures and seminars more closely related to particle and nuclear physics. The general topic of physics beyond the standard model was sur-veyed by John Ellis, who described both the capabilities of LHC and some of the more popular models for BSM physics. An in-depth description of LHC and its experiments was given by Fabiola Gianotti. Finally, Nigel Glover described the status of the perturbative QCD computations which will be necessary to interpret LHC data. This area has seen an influx of new ideas and techniques from string theory, and Glover's even-handed appraisal of the old and new techniques com-bined with his clear description of what was needed by experimentalists was of great value. Several lecturers covered ideas for beyond the standard model (BSM) physics in detail. Perhaps the most popular class of BSM models postulate low energy supersymmetry. Supersymmetric phenomenology was covered in depth by Gian Giudice, while the question of how supersymmetry breaking arises from the dy-namics of a theory was discussed by Ken Intriligator. Another popular class of models postulates observable consequences of the extra dimensions of string/M theory. This was capably surveyed by Ignatios Antoniadis. Any contact between these more phenomenological ideas, and string/M the-ory, will necessarily involve detailed string model building. This is a large sub-ject and rather than survey it all, we chose to provide in-depth lectures on a few of its better understood parts. Angel Uranga covered the subject of brane constructions of the Standard Model in type II superstring theory. Elias Kiritsis discussed similar issues using the very different techniques of CFT and Gepner models. Frederik Denef described flux compactification and moduli stabilization, and how its study has led to the current picture of the string landscape. Michael Douglas raised various general questions about the landscape whose better un-derstanding might lead to significant progress. Finally, the study of gauge/gravity duality, particularly, the AdS/CFT corre-spondence, has led to important technical developments in nonperturbative gauge theory, which may have important applications to QCD. Igor Klebanov intro-duced and reviewed this general subject, surveying most of the developments of recent years and covering his work on models of confinement in detail. Juan Maldacena added to this with a lecture on recent developments in finding an in-tegrable sector within N = 4 super Yang–Mills theory. A particularly interesting recent development is the suggestion that the collec-tive phenomena seen in heavy ion collisions at RHIC, and to be studied at LHC as well, can be modeled using AdS/CFT techniques. This area was described by Urs Wiedemann, starting with the original experimental discoveries, and explain-

XV

ing the arguments according to which these indicate novel collective phenomena, before going into the recent theoretical developments. We now turn to lectures primarily focusing on astrophysics and cosmology. З Juan Maldacena began his lectures with an introduction to inflationary cosmol-ogy, and a detailed explanation of how to compute the spectrum of fluctuations in the cosmic microwave background. He went on to explain nongaussianity, which led into a discussion of what a speculative "de Sitter/CFT" duality would look like. Finally he discussed how inflation might arise in string models. Steve Shenker's lectures covered inflation at a more conceptual level. The pri-mary goal was to explain the many confusing issues surrounding the notion of "eternal inflation," which is a central part of arguments for the string theory landscape. He concluded with a survey of proposals for the measure factor in cosmology. Nima Arkani-Hamed described anthropic considerations at length. He then explained recent work on the limits of effective field theory in cosmology. Eliezer Rabinovici described the possible role of broken scale invariance in solving the cosmological constant problem. Jose Barbón discussed topology change in space-time is related the Hagedorn regime in critical string theories using the string/ black hole correspondence principle. Pierre Vanhove described the recent pro-gresses in the analysis of the ultra-violet behaviour of maximally extended su-pergravities and reviewed the dualities arguments indicating that such quantum field theories of gravity could be perturbatively finite in four dimensions. Lau-rent Baulieu described new techniques for handling the off-shell properties of super-Yang-Mills theories. Finally, Thibault Damour began with a detailed explanation of the membrane description of black hole horizons, which has found recent application in AdS/CFT computations of collective phenomena. He then surveyed the present status of experimental tests of general relativity. He concluded by explaining how primordial cosmic strings might be detected at gravitational wave observatories, perhaps leading to direct evidence for fundamental string theory. Only time will tell which if any of these ideas will find experimental support. Perhaps, in a few years, many of the specific proposals we discussed at the school will seem irrelevant, or naive. If even one hits the mark squarely, we will have reason to celebrate. But whatever their fate, we suspect that the fundamental ideas behind them will retain their interest, and we hope these lectures will guide our students and readers to meet the coming challenges and contribute in their turn We would like to thank Giora Mikenberg as well as other members of the ATLAS collaboration for having allowed the students of this school to visit the ATLAS detector, which is an essential part of the experimental apparatus of the LHC campaign. We wish to address our warmest thanks to our main Sponsor,

xvi

1	the European Science Foundation, which has agreed to fund a series of summer	1
2	schools in theoretical physics linked to elementary particles, astroparticles and	2
3	cosmology. We also thank the Bureau de la formation permanente du CNRS	3
4	and the Les Houches summer school for their financial support. We are grateful	4
5	to Brigitte Rousset and Isabelle Lelièvre for their invaluable help with the local	5
6	organisation of the school.	6
7	č	7
8		8
9	Paris, 2008	9
10	Costas Bachas	10
11	Laurent Baulieu	11
12	Michael Douglas	12
13	Elias Kiritsis	13
14	Eliezer Rabinovici	14
15	Pierre Vanhove	15
16	Paul Windey	16
17	Leticia Cugliandolo	17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42

xvii