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Some properties of angular integrals
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Abstract:

We find new representations for Itzykson-Zuber like angular integrals for arbitrary

β, in particular for the orthogonal group O(n), the unitary group U(n) and the sym-

plectic group Sp(2n). We rewrite the Haar measure integral, as a flat Lebesge measure

integral, and we deduce some recursion formula on n. The same methods gives also

the Shatashvili’s type moments. Finally we prove that, in agreement with Brezin and

Hikami’s observation, the angular integrals are linear combinations of exponentials

whose coefficients are polynomials in the reduced variables (xi − xj)(yi − yj).

1 Introduction

What we call angular integral [25] is an integral over a compact Lie group Gβ,n:

G1/2,n = O(n) , G1,n = U(n) , G2,n = Sp(2n) (1-1)

of the form:

Iβ,n(X, Y ) =

∫

Gβ,n

dO eTr XOY O−1

(1-2)

where X and Y are two given matrices, and dO is the Haar invariant measure on the

group. We shall also extend Iβ,n to arbitrary β (Notice that our β is half the one most

commonly used in matrix models, for instance we have β = 1 in the unitary case).

In this paper we are going to consider the case where X and Y are diagonal matrices,

however, let us first recall the Harish-Chandra case.

1 E-mail: michel.bergere@cea.fr
2 E-mail: bertrand.eynard@cea.fr
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Harish-Chandra case

In the case where X and Y are in the Lie algebra of the group [22] (i.e. real anti-

symmetric in the O(n) case, anti-hermitian in the U(n) case, and quaternion-anti-self-

dual in the Sp(2n) case), the angular integral can be computed with Weyl-character

formula, and is given by the famous Harish-Chandra formula [10] (which is also a

special case of the Duistermaat-Heckman localization [8]):

(X, Y ) ∈ Lie algebra ⇒
∫

dO eTr XOY O−1

= C
∑

w∈Weyl

eTr XYw

∆β(X) ∆β(Yw)

(1-3)

where C is a normalization constant, w runs over elements of the Weyl group, and

the generalized Vandermonde determinant ∆β(X) is the product of scalar products of

positive roots with X (see [10, 29, 22] for details).

Diagonal case

However, for applications to many physics problems [9, 25], it would be more interesting

to have X and Y in other representations, and in particular X and Y diagonal

matrices.

Since a antihermitian matrix is, up to a multiplication by i, a hermitian matrix,

and since every hermitian matrix can be diagonalized with a unitary conjugation, for

the unitary group, the Harish-Chandra formula applies as well to the case where X

and Y are diagonal, this is known as Itzykson-Zuber formula [18]:

{

X = diag(x1, . . . , xn)
Y = diag(y1, . . . , yn)

⇒
∫

U(n)

dU eTr XUY U−1

= Cn
det exiyj

∆(X) ∆(Y )
(1-4)

where ∆(X) = ∆1(X) =
∏

i>j(xi − xj) is the usual Vandermonde determinant.

For the other groups, computing angular integrals has remained an important chal-

lenge in mathematical physics for a rather long time. Many progresses and formulae

have been found, however, a formula as compact and convenient as Harish-Chandra

is still missing. And in particular a formula which would allow to compute multiple

matrix integrals, generalizing the method of Mehta [26] is still missing.

Calogero Hamiltonian

It is known that, in the diagonal case, Iβ,n satisfies the Calogero–Moser equation [4],

i.e. is an eigenfunction of the Calogero hamiltonian:

HCalogero .Iβ,n = (
∑

i

y2
i ) Iβ,n (1-5)
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HCalogero =
∑

i

∂2

∂x2
i

+ β
∑

j 6=i

1

xi − xj
(

∂

∂xi
− ∂

∂xj
) (1-6)

Many approaches towards computing angular integrals have used that differential

equation. A basis of eigenfunctions of the Calogero hamiltonian is the Hi–Jack poly-

nomials [4, 2, 7, 24].

In particular remarkable progress in the computation of Iβ,n was achieved recently

by Brezin and Hikami [3]. By decomposing Iβ,n on the suitable basis of Zonal polyno-

mials, they were able to find a recursive algorithm to compute the terms in some power

series expansion of Iβ,n, and they obtained a remarkable structure. In particular they

observed that the power series reduces to a polynomial when β ∈ N.

Morozov and Shatashvili’s formulae

Another important question for physical applications, is not only to compute the an-

gular integral (the partition function in statistical physics language), but also all its

moments, for instance:

Mi,j =

∫

Gβ,n

dO eTr XOY O−1 ||Oi,j||2 (1-7)

and more generally for any indices i1, . . . , i2k, j1, . . . , j2k:

∫

Gβ,n

dO eTr XOY O−1

Oi1,i2 Oi3,i4 . . . Oi2k−1,i2k
O−1

j1,j2
O−1

j3,j4
. . . O−1

j2k−1,j2k
(1-8)

In the U(n) case β = 1, Morozov [28] found a beautiful formula for Mi,j , and

Shatashvili [30] found a more general formula for any moments of type 1-8 using the

action-angle variables of Gelfand-Tseytlin corresponding to the integrable structure of

this integral.

For β = 1/2, 1, 2, in the Harish-Chandra case where X and Y are in the Lie algebra,

a formula for all possible moments was also derived in [29], generalizing Morozov’s

[11, 13].

In this article we shall propose new formulae for Mi,j in the diagonal case for

arbitrary β, and our method can also be generalized to all moments.

Outline of the article

• Section 1 is an introduction, and we present a summary of the main results of

this article.

• In section ?? we setup the notations, and we review some known examples.
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• In section 4 we show how to transform the angular integral with a Haar measure

into a flat Lebesgue measure integral on a hyperplane. From it, we deduce a

recursion formula, as well as a duality formula (the angular integral is an eigen-

function of kernel which is the Cauchy determinant to the power β).

• In section 5, we discuss the moments of the angular integral. We show that

moments can be obtained also with Lebesgue measure integrals, and we show

that they satisfy linear Dunkl-like equations. This can be used as a way to

recover Calogero equation for the angular integral.

• In section 6, we rewrite the angular integral as a symmetric sum of exponentials

with polynomial prefactors. Those polynomials are called principal terms, and

can be computed recursively. In particular, we prove the conjecture of Brezin and

Hikami [3] that the principal terms are polynomials in some reduced variables

(xi − xj)(yi − yj).

• In section 6.2, we prove a formula for n = 3 in terms of Bessel polynomials, and

we propose a conjecture formula for arbitrary β and arbitrary n.

• In section 6.4, we focus on the symplectic case β = 2, for which we can improve

the recursion formula.

• Section 7 is the conclusion.

• Appendices contain useful lemmas, and proofs of the most technical theorems.

1.1 Summary of the main results presented in this article

• We rewrite the angular integral with the Haar measure on the Lie group Gβ,n,

as a flat Lebesgue measure integral on its Lie algebra (notations are explained in

section 4):

Iβ,n(X; Y ) =

∫

dO eTr XOY O−1

=

∫

dS
eTr S

∏n
k=1 det(S − ykX)β

(1-9)

as well as its moments:

Mi,j =
∫

dO ||Oi,j||2 eTr XOY O−1

= β
∫

dS eTr S
Qn

k=1 det(S−ykX)β ((S − yjX)−1)i,i

(1-10)
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• We show that the Mi,j ’s satisfy a linear functional equation (very similar to Dunkl

operators):

∀i, j,
∂Mi,j

∂xi
+ β

∑

k 6=i

Mi,j − Mk,j

xi − xk
= Mi,j yj (1-11)

which implies the Calogero equation for Iβ,n =
∑

i Mi,j =
∑

j Mi,j:

∑

i

∂2Iβ,n

∂x2
i

+ β
∑

j 6=i

1

xi − xj

(
∂Iβ,n

∂xi

− ∂Iβ,n

∂xj

) = (
∑

i

y2
i ) Iβ,n (1-12)

Moreover, the integral of eq. (1-10), is a solution of the linear functional equation

eq. (1-11) for any choice of integration domain (as long as there is no boundary

term when one integrates by parts). We thus have a large set of solutions of the

linear equation, and also of Calogero equation.

• We deduce a duality formula:

Iβ,n(X; Y ) = det(X)1−β

∫

dλ1 . . . dλn ∆(Λ)2β Iβ,n(X, Λ)
∏n

k=1

∏n
j=1(λj − yk)β

(1-13)

and a recursion formula:

Iβ,n(X; Y )

= exn
Pn

i=1 yi
Qn−1

i=1 (xi−xn)2β−1

∫

dλ1, . . . dλn−1
Iβ,n−1(Xn−1,Λ)∆(Λ)2β e−xn

P

i λi
Qn

k=1

Qn−1
i=1 (λi−yk)β

(1-14)

similar to that of [15, 16].

• For β ∈ N, the solution of the recursion can be written in terms of principal

terms:

Iβ,n(X, Y ) =
∑

σ

e
Pn

i=1 xiyσ(i)

∆(X)2β∆(Yσ)2β
Îβ,n(X, Yσ) (1-15)

where
∑

σ is the sum over all permutations.

The recursion relation eq. (1-14) can be rewritten as a recursion for the principal

terms Îβ,n(X, Y ):

Îβ,n(Xn; Yn) =
∆(Yn)2β

(β − 1)!n−1

n−1
∏

i=1

xi,n

(

∂

∂ai

)β−1 Îβ,n−1(Xn−1, a) e
P

i xi,n(ai−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − ai)β

∣

∣

∣

ai=yi

(1-16)
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• For general n and β integer, we prove the conjecture of Brezin and Hikami [3],

that the principal term Îβ,n(X, Y ) is a symmetric polynomial of degree β in the

τi,j variables,

τi,j = − (xi − xj)(yi − yj)

2
(1-17)

• In the case n = 3 we find this polynomial explicitly for any β (for β integer the

sum is finite):

Iβ,3 ∝
ex1y1+x2y2+x3y3

(∆(x)∆(y))β

∞
∑

k=0

Γ(β − k)

26k k! Γ(β + k)

∏

i<j

Y (k)
β−1(

1

τij

) + sym

(1-18)

where Ym is the mth Bessel polynomial, i.e. the modified Bessel function of the

second kind (see definition of Yβ−1 below in eq. (3-4)).

• In the case β = 2 (i.e. symplectic group Sp(2n)), the recursion relation for the

principal term can be written:

Î2,n =
∏n−1

i=1 (xi − xn) (yi − yn)
2

∏n−1
i=1

(

xi − xn −
∑n

k=1, 6=i
2

yi−yk
+ ∂

∂ai

)

Î2,n−1(Xn−1, a)
∣

∣

∣

ai=yi

= ∆(Xn)2∆(Yn)2
det

h

Xn−1−xn− 2
Yn−1−yn

+B+∂Y

i

det(Xn−xn)

Î2,n−1(Xn−1;Yn−1)

∆(Xn−1)2∆(Yn−1)2

(1-19)

and B is the antisymmetric matrix Bi,j =
√

2
yi−yj

, Bi,i = 0, and ∂Y =

diag(∂y1 , . . . , ∂yn−1). In section 6.4 we propose an operator formalism to com-

pute it, and we propose a conjecture formula in terms of decomposition into

triangles.

2 Definitions and examples

3 secdefex

3.1 Notations for angular integrals

Let X and Y be two diagonal matrices of size n:

X = diag(x1, . . . , xn) , Y = diag(y1, . . . , yn) (3-1)

We define the angular integral:

Iβ,n(x1, . . . , xn; y1, . . . , yn) =

∫

Gβ,n

dO eTr XOY O−1

(3-2)
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where Gβ,n denotes one of the Lie groups:

G1/2,n = O(n) , G1,n = U(n) , G2,n = Sp(2n) (3-3)

and dO is the invariant Haar measure on the corresponding compact Lie group.

We will later extend those notions to arbitrary values of β.

3.2 Bessel polynomials

For further use, we need to introduce some Bessel functions [1, 23, 31, 32, 5]. Those

special functions are going to play a major role throughough this article.

The Bessel polynomials (see [23, 32]) Ym(x) are defined by:

Ym(x) =

∞
∑

k=0

Γ(m + k + 1)

k! Γ(m − k + 1)
(x/2)k =

√

2

πx
e1/x Km+ 1

2
(1/x) (3-4)

where K is the modified Bessel function of the second kind [1, 31]. Ym is a polynomial

of degree m when m is an integer:

Y0 = 1 , Y1 = x + 1 , Y2 = 3x2 + 3x +1 , Y3 = 15x3 + 15x2 + 6x + 1 , etc . . . (3-5)

They satisfy:

x2Y ′′
m + (2x + 2)Y ′

m − m(m + 1)Ym = 0 (3-6)

We shall also need:

Qβ,j(x) =

∞
∑

k=0

Γ(β + j + k)

k! Γ(β − j − k)
2−k xβ−j−k (3-7)

which is a polynomial of degree β − j if β is an integer.

In particular Qβ,0 is the Carlitz polynomial [5, 32] and is closely related to Yβ−1:

Qβ,0(x) = xβ Yβ−1(
1

x
) =

√

2

π
ex xβ+ 1

2 Kβ− 1
2
(x) (3-8)

satisfying:

x2Q′′
β,0 − 2x(β + x)Q′

β,0 + 2β(x + 1)Qβ,0 = 0 (3-9)

The first fews are:

Q1,0 = x , Q2,0 = x2+x , Q3,0 = x3+3x2+3x , Q4,0 = x4+6x3+15x2+15x , etc . . .

(3-10)
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For higher j, the Qβ,j’s are derivatives of Bessel polynomials:

Qβ,j(1/x) = 2j xj−β dj

dxj
Yβ−1(x) = 2j xj−β Y (j)

β−1(x) (3-11)

They satisfy:

− xQβ,j =
1

4
Qβ,j+1 + jQβ,j + (j − β)(j + β − 1)Qβ,j−1 (3-12)

Qβ,j+1 = 2(β − j − x
d

dx
)Qβ,j (3-13)

The first fews are:

Q2,1 = 2x , Q3,1 = 6x2 + 12x , Q4,1 = 12x3 + 60x2 + 90x , (3-14)

Q3,2 = 24x , Q4,2 = 120x2 + 360x , Q4,3 = 720x , etc . . . (3-15)

3.3 Examples angular integrals with n = 1, 2, 3

• n = 1: The n = 1 case needs no computation, and gives:

Iβ,1(x; y) = exy (3-16)

• n = 2: The n = 2 case requires a little bit of easy computation, and it has been

known for some time, we have (this formula is rederived in this article):

Iβ,2(X, Y ) =
ex1y1+x2y2

τβ
Yβ−1(1/τ) +

ex1y2+x2y1

(−τ)β
Yβ−1(−1/τ)

=
ex1y1+x2y2

τ 2β
Qβ,0(τ) +

ex1y2+x2y1

(−τ)2β
Qβ,0(−τ) (3-17)

where

τ = −1

2
(x1 − x2)(y1 − y2) (3-18)

It can also be written in terms of the modified Bessel function I:

Iβ,2(X; Y ) =
e

1
2
(x1+x2)(y1+y2)

τ 2β−1
Iβ− 1

2
(τ) , (3-19)

where

Im(τ) = (τ/2)2m

∞
∑

k=0

(τ/2)2k

k!Γ(m + k + 1)
, Im = I ′′

m +
1 − 2m

τ
I ′

m (3-20)

• n = 3:
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we show in this article that (proof in appendix C):

Iβ,3 ∝
ex1y1+x2y2+x3y3

(∆(x)∆(y))β

∞
∑

k=0

Γ(β − k)

26k k! Γ(β + k)

∏

i<j

Y (k)
β−1(

1

τij

) + perm.

(3-21)

where

τi,j = − (xi − xj)(yi − yj)

2
(3-22)

and +perm. means that we have to symmetrize over all permutations of the yj ’s.

• n > 3: We show in this article that for arbitrary n and β, the angular integral is of

the form conjectured by Brezin and Hikami:

Iβ,n ∝ e
P

i xiyi

(∆(x)∆(y))2β
Îβ,n(τij) + perm. (3-23)

where Îβ,n(τij) is a polynomial in the τi,j’s, and for which we write a recursion relation.

4 Transformation of the angular integral

In this section, we transform the Haar measure group integral into a flat Lebesgue

measure integral.

4.1 Lagrange multipliers

For β = 1/2, 1, 2, an element O ∈ Gβ,n is an orthonormal basis, i.e. a collection of n

orthonormal vectors e1, . . . , en, whose coordinates Oi,j = (ei)j are of the form:

(ei)j = Oi,j =

2β−1
∑

α=0

(ei)
α
j ǫα (4-1)

where the ǫα’s form a basis of a Clifford algebra (indeed this reproduces the three

groups Gβ,n for β = 1/2, 1, 2):

ǫ0 = 1 , ǫ†0 = ǫ0 , ∀α > 0 : ǫ2
α = −1 , ǫ†α = −ǫα , ǫα.ǫα′ = −ǫα′ .ǫα

(4-2)

with structure constants (only for β = 2):

ǫαǫ†α′ =
∑

α′′

ηα,α′,α′′ ǫα′′ (4-3)

and where ηα,α′,α′′ has the property useful for our purpose, that for every pair (α, α′),

there is exactly only one α′′ such that ηα,α′,α′′ 6= 0. In particular ηα,α,α′′ = δα′′,0.
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The basis must be orthonormal, i.e.

ei.e
†
j = δi,j =

n
∑

k=1

(ei)k (ej)
†
k =

n
∑

k=1

2β−1
∑

α,α′=0

(ei)
α
k (ej)

α′

k ǫα ǫ†α′ (4-4)

We introduce Lagrange multipliers to enforce those orthonormality relations

δ(ei.e
†
i − 1) =

∫

dSi,i eSi,i(1−
P

k,α((ei)
α
k
)2 (4-5)

and if i < j:

δ(ei.e
†
j) =

∫

. . .

∫

dS0
i,j, . . . dS2β−1

i,j e−2
P

α,α′,α′′
P

k Sα
i,j((ei)α′

k
)((ej )α′′

k
)ηα′ ,α′′,α

=

∫

dSi,j e−2
P

k Si,j((ei)k)((ej )†
k
) (4-6)

where each integral is over the imaginary axis.

Since the scalar product is invariant under group transformations (i.e. change of

orthogonal basis), the following measure is invariant and thus must be proportional to

the Haar measure:

dO ∝
∏

i,j,α

d(ei)
α
j

∏

i

δ(ei.e
†
i − 1)

∏

i<j

δ(ei.e
†
j) (4-7)

i.e.

dO ∝
∏

i,j,α

d(ei)
α
j

∫

dS e
P

i Si,i e−
P

i

P

k Si,i|(ei)k |2 e−2
P

i<j

P

k Sα
i,j (ei)k (ej)

†
k (4-8)

where

dS =
∏

i

dSi,i

∏

i<j

dSi,j =
n
∏

i=1

dSi,i

∏

i<j

2β−1
∏

α=0

dSα
i,j (4-9)

is the Gβ,n invariant measure on the space Eβ,n:

iS ∈







E1/2,n = {n × n real symmetric matrices}
E1,n = {n × n hermitian matrices}
E2,n = {n × n quaternion self − dual matrices}

(4-10)

where we have completed S by self duality (S = S†):

S0
j,i = S0

i,j , and ∀α > 0 Sα
j,i = −Sα

i,j (4-11)

Therefore we have (up to a multiplicative constant):

Iβ,n(X; Y ) ∝
∫

dS

∫

de1 . . . den e
P

i Si,i e
P

i,k xiyk|(ei)k |2

10



e−
P

i

P

k Si,i|(ei)k|2 e−2
P

i<j

P

k

P

α,α′,α′′ Sα
i,j((ei)

α′

k
)((ej )†

α′′

k
) ηα′,α′′,α

(4 − 12)

The integral over the (ei)
α
k ’s is now gaussian and can be performed. The gaussian

integrals for each k are independent.

The quadratic form in the exponential is, for each k:

∑

α,α′,α′′

∑

i,j

(ei)
α
k (ej)

α′

k ηα,α′,α′′(δi,jxiykδα′′,0 − Sα′′

i,j ) (4-13)

If we define the vector vk = (v1,k, . . . , vn,k) where vi,k =
∑

α(ei)
α
k ǫ†α, we have to compute

the gaussian integral:
∫

dvk e−v†
k
(S−ykX)vk (4-14)

For the 3 values of β = 1/2, 1, 2, this integral is worth:

∫

dvk e−v†
k
(S−ykX)vk =

(2π)β

det(S − ykX)β
(4-15)

where det is the product of singular values (see [25]).

Thus we get the following theorem:

Theorem 4.1 The angular integral Iβ,n(X; Y ) is also equal to the following flat

Lebesgue measure integral:

Iβ,n(X; Y ) ∝
∫

dS
eTr S

∏n
k=1 det(S − ykX)β

= det(X)1−β

∫

dS
eTr SX

∏n
k=1 det(S − yk)β

(4-16)

In the last formula we have made the change of variable S → X1/2SX1/2. Also, the

integration domain for S, which was iEβ,n before exchanging the integrations over S

and e, is now shifted to the right, so that all singular values of (S − ykX) have positive

real part. The integration domain for S can be deformed such that the integral remains

convergent and the integration path goes to the right of all zeroes of the denominator. If

β is half-integer or integer, the denominator is not singular near ∞, and the integration

contour can be closed. This will be made more precise below.

Remark 1: For the moment, this formula holds only for β = 1/2, 1, 2. Later we

will extend it to other values of β.

Remark 2: Another remark, is that a similar formula can be obtained by exchang-

ing the roles of X and Y .
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4.2 Duality formula

Notice that the matrix S itself can be diagonalized with a Gβ,n conjugation:

S = OΛO−1 , Λ = diag(λ1, . . . , λn) , O ∈ Gβ,n (4-17)

and the measure dS is up to a constant [25]:

dS ∝ dO dΛ ∆(Λ)2β (4-18)

Therefore, the angular integral reappears in the RHS:

Iβ,n(X; Y ) ∝ det(X)1−β

∫

dS
eTr SX

∏n
k=1 det(S − yk)β

∝ det(X)1−β

∫

dΛ ∆(Λ)2β Iβ,n(X, Λ)
∏n

k=1

∏n
j=1(λj − yk)β

(4 − 19)

Here, if we assume that ∀i, xi ∈ R
+, the integration contours for the λi’s are of the

form r + iR where r > max(Re yk). If β is integer or half integer, the denominator in

the integrand is not singular near ∞, and the integration contour can be closed. Thus,

if 2β is an integer, the integration contours for the λi’s can be choosen as circles of

radius > max(|yk|).
This equation looks better if we rewrite it in term of the Cauchy determinant

Dn(X, Y ):

Dn(X, Y ) = det

(

1

xi − yj

)

=
∆(X)∆(Y )
∏

i,j(xi − yj)
(4-20)

and the rescaled function

Ǐβ,n(x1, . . . , xn; y1, . . . , yn) = (∆(X)∆(Y ))β Iβ,n(x1, . . . , xn; y1, . . . , yn) (4-21)

We then have:

Theorem 4.2 the rescaled function Ǐβ,n satisfies the duality formula:

Ǐβ,n(X; Y ) ∝ det(X)1−β

∫

dΛ Ǐβ,n(X, Λ) Dn(Λ, Y )β

(4-22)

i.e. Ǐβ,n(X; Y ) is an eigenfunction of the kernel Dβ
n.

Remark 1: The duality formula above was derived for β = 1/2, 1, 2, but it makes

sense for any β.
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Remark 2: It is easy to check that this relation is satisfied for the Itzykson-Zuber

case β = 1, indeed in that case we have Ǐ1,n(X; Y ) = det(exiyj) =
∑

ρ(−1)ρ
∏

i e
yixρ(i),

and:
∫

dΛ Ǐ1,n(X, Λ) Dn(Λ, Y )

∝
∑

σ,ρ

(−1)σ (−1)ρ

∫ n
∏

i=1

eλi xρ(i)

λi − yσ(i)

dλi

=
∑

σ,ρ

(−1)σ (−1)ρ

n
∏

i=1

eyσ(i) xρ(i)

= n! det(exiyj )

∝ Ǐ1,n(X, Y ) (4-23)

4.3 Recursion formula

First, let us notice that we can always assume that xn = 0, otherwise we perform a

shift X → X − xn:

Iβ,n(X, Y ) =

∫

Gβ,n

dO eTr XOY O−1

=

∫

Gβ,n

dO eTr (X−xn)OY O−1

exn Tr OY O−1

= exn Tr Y

∫

Gβ,n

dO eTr (X−xn)OY O−1

(4-24)

Thus we define:

Xn−1 = diag(x1, . . . , xn−1) , X̃ = Xn−1 − xn Idn−1 (4-25)

Then, we notice that the orthonormality of the basis ei:

ei.e
†
j = δi,j (4-26)

implies that if we already know e1, . . . , en−1, then en is completely fixed (up to an

irrelevant phase). In other words, it is sufficient to enforce only the orthonormality of

e1, . . . , en−1 with Lagrange multipliers, i.e. introduce a matrix S of size n − 1.

Also, because of our shift X → X − xn, we notice that en does not appear in the

integrand.

Then, we write as in eq.4-8:

dO ∝
n−1
∏

i=1

dei

n−1
∏

i=1

δ(ei.ei − 1)

n−1
∏

i<j=1

δ(ei.e
†
j)
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∝
n−1
∏

i=1

n
∏

j=1

2β−1
∏

α=0

d(ei)
α
j

∫

iEβ,n−1

dS e
P

i Si,i e−
P

i

P

k Si,i|(ei)k |2 e−2
P

i<j

P

k Si,j (ei)k (ej)
†
k

∝
n−1
∏

i=1

dei

∫

iEβ,n−1

dS eTr S e−
P

i,j Si,j ei.e
†
j (4-27)

which implies, after performing the gaussian integral over the e1, . . . , en−1:

Iβ,n(X; Y ) ∝ exn tr Y

∫

iEβ,n−1

dS
eTr S

∏n
k=1 det(S − ykX̃)β

∝ exn tr Y

∏n−1
i=1 (xi − xn)2β−1

∫

iEβ,n−1

dS
eTr SX̃

∏n
k=1 det(S − yk)β

(4 − 28)

Again, S can be diagonalized:

S = OΛO−1 , Λ = diag(λ1, . . . , λn−1) , O ∈ Gβ,n−1 (4-29)

i.e. the rank n angular integral Iβ,n is expressed in terms of the rank n − 1:

Iβ,n(X; Y ) ∝ exn tr Y

∏n−1
i=1 (xi − xn)2β−1

∫

dΛ
Iβ,n−1(X̃, Λ) ∆(Λ)2β

∏n
k=1

∏n−1
i=1 (λi − yk)β

∝ exn tr Y

∏n−1
i=1 (xi − xn)2β−1

∫

dΛ
Iβ,n−1(Xn−1, Λ) ∆(Λ)2β e−xn

P

i λi

∏n
k=1

∏n−1
i=1 (λi − yk)β

(4 − 30)

Which is our main recursion formula:

Theorem 4.3 The angular integrals Iβ,n(X; Y ) satisfy the recursion:

Iβ,n(X; Y )

∝ exn
Pn

i=1 yi
Qn−1

i=1 (xi−xn)2β−1

∫

dλ1, . . . dλn−1
Iβ,n−1(Xn−1,Λ)∆(Λ)2β e−xn

P

i λi
Qn

k=1

Qn−1
i=1 (λi−yk)β

(4-31)

Here again, the integration contours for the λi’s are such that the integral is convergent,

and such that they surround all the yk’s. For instance, if 2β is an integer, and if

∀i xi ∈ R
+, the integration contour for the λi’s can be choosen as circles of radius

> max(|yk|).

Remark 4.1 Now this recursion formula can be used to define Iβ,n for arbitrary β, so that
it coincides with the angular integral for β = 1/2, 1, 2.
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We have also the iterated form:

Iβ,n(X; Y ) ∝ exn
Pn

i=1 yi

∆(X)2β−1

∫ n−1
∏

i=1

i
∏

j=1

dλi,j

∏n−1
i=1

∏

1≤j<j′≤i(λi,j′ − λi,j)
2β
∏n−1

i=1 e(xi−xi+1)
P

j λi,j

∏n−1
i=1

∏i+1
j=1

∏i
j′=1(λi,j′ − λi+1,j)β

(4 − 32)

where we have defined λn,j = yj, and where the integration contours are circles such

that:

|λi,j| = ρi , ρ1 > ρ2 > . . . > ρn−1 > max|yj| (4-33)

Remark 4.2 A similar recursion relation was also found Kohler and Guhr [15, 16, 17],
but the authors found real integrals instead of contour integrals. The advantage of our
formulation, is that we can easily move integration contours and find new relations, as we
will see below.

5 Moments of angular integrals and Calogero

In this section, we compute moments of the angular integral, and we show that our

formula indeed satisfies Calogero equation.

5.1 Generalized Morozov’s formula

Define the quadratic moments (see [28] for β = 1):

Mi,j =

∫

Gβ,n

dO ||Oi,j||2 eTr XOY O−1

(5-1)

The same calculation as above yields:

Mi,j = β

∫

dS
eTr S

∏n
k=1 det(S − ykX)β

((S − yjX)−1)i,i

=
β

xi
det(X)1−β

∫

dS
eTr SX

∏n
k=1 det(S − yk)β

((S − yj)
−1)i,i

(5 − 2)

As a consistency check, and as a warmup exercise, let us show that this formula

satisfies:

Iβ,n =
∑

j

Mi,j (5-3)
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which comes from ∀O ∈ Gβ,n,
∑

j ||Oi,j||2 = 1.

We have:

∑

j

Mi,j =
∑

j

β

xi
det(X)1−β

∫

dS
eTr SX

∏n
k=1 det(S − yk)β

((S − yj)
−1)i,i

=
−1

xi
det(X)1−β

∫

dS eTr SX ∂

∂Si,i

1
∏n

k=1 det(S − yk)β

=
1

xi
det(X)1−β

∫

dS
1

∏n
k=1 det(S − yk)β

∂

∂Si,i
eTr SX

= det(X)1−β

∫

dS
1

∏n
k=1 det(S − yk)β

eTr SX

= Iβ,n (5-4)

Notice that this equality holds independently of the integration domain of S, provided

that one can integrate by parts without picking boundary terms.

Remark: Of course a similar equation can be found by exchanging the roles of X

and Y , and one gets symmetrically:

∑

i

Mi,j = Iβ,n (5-5)

5.2 Other moments

Since, after introducing the Lagrange multipliers, the integral becomes gaussian in the

Oi,j’s, any polynomial moment can be computed using Wick’s theorem. It is sufficient

to compute the propagator:

< Oi,k O†
j,l >= β δk,l

(

(S − yk X)−1
)

i,j
(5-6)

Then, the expectation value of any polynomial moment is obtained as the sum over all

pairings of the product of propagators.

For instance:
∫

dO eTr XOY O−1

Oi1,j1 Oi2,j2 O†
i3,j3

O†
i4,j4

=

∫

dS
eTr S

∏n
k=1 det(S − ykX)β

[

δj1,j3 δj2,j4

(

(S − yj1 X)−1
)

i1,i3

(

(S − yj2 X)−1
)

i2,i4

+δj1,j4 δj2,j3

(

(S − yj1 X)−1
)

i1,i4

(

(S − yj2 X)−1
)

i2,i3

]

(5 − 7)

In principle, one could compute with this method the generalization of all Shatashvili’s

moments [30].
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5.3 Linear equations

In this section we prove that the Mi,j’s satisfy the following linear functional relations,

which are very similar to Dunkl equations []:

∀i, j ,
∂Mi,j

∂yj
+ β

∑

l 6=j

Mi,l − Mi,j

yl − yj
= Mi,j xi

(5-8)

We are going to give 2 different proofs of eq. (5-8). The first one below is based on

integration by parts. It can be done for the 3 groups β = 1/2, 1, 2, however it is rather

tedious for β = 1/2 and β = 2, and we present the proof only for β = 1. Another proof

valid for all 3 values of β is presented in section 5.6 below.

Let us check that eq. (5-2) satisfies eq. (5-8) (for β = 1). We first rewrite:

1

yl − yj

(

1

S − yl

− 1

S − yj

)

i,i

= ((S − yl)
−1(S − yj)

−1)i,i

=
∑

m

((S − yl)
−1)i,m ((S − yj)

−1)m,i (5-9)

For β = 1, we may consider all variables Si,m to be independent variables, and we

integrate by parts:

∑

l 6=j

Mi,l − Mi,j

yl − yj

=
∑

l 6=j

∑

m

β

xi
det(X)1−β

∫

dS
eTr SX

∏n
k=1 det(S − yk)β

((S − yl)
−1)i,m((S − yj)

−1)m,i

= −
∑

m

1

xi
det(X)1−β

∫

dS
eTr SX

det(S − yj)β
((S − yj)

−1)m,i
∂

∂Si,m

1
∏

l 6=j det(S − yl)β

=
∑

m

1

xi

det(X)1−β

∫

dS
1

∏

l 6=j det(S − yl)β

∂

∂Si,m

eTr SX

det(S − yj)β
((S − yj)

−1)m,i

=
∑

m

1

xi
det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
((S − yj)

−1)m,i xiδi,m

−β
∑

m

1

xi
det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
((S − yj)

−1)i,m ((S − yj)
−1)m,i

−
∑

m

1

xi
det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
((S − yj)

−1)m,m((S − yj)
−1)i,i

= det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
((S − yj)

−1)i,i

− 1

xi
det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
((S − yj)

−2)i,i
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− β

xi
det(X)1−β

∫

dS
eTr SX

∏

k det(S − yk)β
Tr (S − yj)

−1((S − yj)
−1)i,i

=
1

β

(

xiMi,j −
∂Mi,j

∂yj

)

(5-10)

QED. The same computation can be repeated for β = 1/2 and β = 2, with additional

steps because the variables Si,m are no longer independent, and also because for β = 2,

det(S − yj) is defined as the product of singular values. Another proof is given in

section 5.6.

Remark: Of course a similar equation can be found by exchanging the roles of X

and Y , and one gets the symmetric linear equation:

∀i, j ,
∂Mi,j

∂xi
+ β

∑

l 6=i

Ml,j − Mi,j

xl − xi
= Mi,j yj (5-11)

Remark: again, this proves that eq. (5-2) is solution of the differential equation

eq. (5-8), for any choice of integration domain provided that we can integrate by parts.

In fact, by taking linear combinations of all possible integration contours, we get the

general solution of the linear equation eq. (5-8). However, a general solution of eq. (5-8)

is not necessarily symmetric in X and Y , and does not necessarily obey eq. (5-11).

5.4 Calogero equation

Here, we prove that Iβ,n satisfies the Calogero equation.

Start from the linear equation:

∂Mi,j

∂xi

+ β
∑

k 6=i

Mi,j − Mk,j

xi − xk

= Mi,j yj (5-12)

then sum over j, using eq. (5-3):

∂I

∂xi
=
∑

j

Mi,j yj (5-13)

Then apply ∂
∂xi

:

∂2I

∂x2
i

=
∑

j

yj
∂Mi,j

∂xi

=
∑

j

yj

(

Mi,j yj − β
∑

k 6=i

Mi,j − Mk,j

xi − xk

)

=
∑

j

y2
j Mi,j − β

∑

j

yj

∑

k 6=i

Mi,j − Mk,j

xi − xk
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=
∑

j

y2
j Mi,j − β

∑

k 6=i

∂I
∂xi

− ∂I
∂xk

xi − xk

(5 − 14)

If we take the sum over i, using eq. (5-5), we get:

∑

i

∂2I

∂x2
i

+ β
∑

i

∑

k 6=i

∂I
∂xi

− ∂I
∂xk

xi − xk

=
∑

j

y2
j I (5-15)

i.e. we recover the Calogero equation:

HCalogero.Iβ,n = (
∑

j

y2
j ) Iβ,n

(5-16)

5.5 Matrix form of the linear equations

The linear equations, are n2 linear equations of order 1, for n2 unknown functions Mi,j.

They can be summarized into a matricial equation:

M Y = K M (5-17)

where K is a matricial operator

Kii =
∂

∂xi

+ β
∑

k 6=i

1

(xi − xk)
, Kik = − β

(xi − xk)
i 6= k (5-18)

and more generally this implies:

M Y p = Kp M (5-19)

and therefore, for any polynomial P :

M.P (Y ) = P (K).M (5-20)

In particular if we choose the characteristic polynomial of Y :

0 =

n
∏

i=1

(yi − K) . M (5-21)

Let us introduce the vector

e = (1, 1, . . . , 1)t (5-22)
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It is such that M is a stochastic matrix, i.e.:

M.e = Iβ,n e , et.M = Iβ,n et (5-23)

We thus have, for any polynomial P :

et P (K) e . Iβ,n = Iβ,n Tr P (Y ) (5-24)

Notice that the Calogero equation is the case P (K) = K2.

If P is the characteristic polynomial of Y we get another differential equation for

Iβ,n:

∀ i ,
∑

j

(

n
∏

l=1

(yl − K)

)

i,j

. Iβ,n = 0

(5-25)

And if P (K) =
∏

l 6=j(yl − K), we get:

Mi,j =
∑

m

(

∏

l 6=j

yl − K

yl − yj

)

i,m

. Iβ,n

(5-26)

This last relation allows to reconstruct Mi,j if we know Iβ,n.

Finally, before leaving this section, we just mention that those operators Ki,j are

also related to the Laplacian over the set of matrices Eβ,n, as was noted recently by

Zuber [34].

5.6 Linear equation from loop equations

There is another way of deriving those Dunkl-like linear equations for the angular

integrals, using loop equations of an associated 2-matrix model.

Consider the following 2-matrix integral, where M1 and M2 are both in the Eβ,n

ensemble:

Z =

∫

dM1 dM2 e−Tr (V1(M1)+V2(M2)−M1M2) (5-27)

After diagonalization of M1 = O1XO−1
1 and M2 = O2Y O−1

2 , we have:

Z =

∫

dXdY dO1dO2 ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y )) eTr XO−1
1 O2Y O−1

2 O1 (5-28)

We redefine O2 = O1.O, and the integral over O1 gives 1, and the integral over O gives

the angular integral:

Z =

∫

dXdY ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y )) Iβ,n(X, Y ) (5-29)
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We can do a similar change of variable for moments:

< Tr
1

x − M1

1

y − M2
>

=
1

Z

∫

dM1 dM2 e−Tr (V1(M1)+V2(M2)−M1M2) Tr

(

1

x − M1

1

y − M2

)

=
1

Z

∫

dXdY dO1dO2 ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y ))

eTr XO−1
1 O2Y O−1

2 O1 Tr

(

1

x − X
O−1

1 O2
1

y − Y
O−1

2 O1

)

=
1

Z

∫

dXdY ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y ))

∑

i,j

Mi,j(X, Y )
1

x − xi

1

y − yj

(5 − 30)

where Mi,j(X, Y ) is the Morozov moment defined in eq.5-1.

Loop equations amount to say that an integral is invariant under a change of vari-

ables. Thus, we change M1 → M1+ǫ 1
x−M1

1
y−M2

+O(ǫ2) in Z, and to order 1 in ǫ we get

(the loop equations for β = 1/2, 1, 2 ensembles can be found in several references [], the

Jacobian is easily computed in eigenvalue representation, see appendix B, eq. (2-8)):

0 =

〈

Tr
1

x − M1

M2

y − M2

〉

−
〈

Tr
V ′

1(M1)

x − M1

1

y − M2

〉

+β

〈

Tr
1

x − M1

Tr
1

x − M1

1

y − M2

〉

+(β − 1)
∂

∂x

〈

Tr
1

x − M1

1

y − M2

〉

(5 − 31)

i.e., going to eigenvalues M1 = O1XO−1
1 and M2 = O2Y O−1

2 :

0 =
∑

i,j

〈

(yj − V ′
1(xi)) Mi,j(X, Y )

(x − xi)(y − yj)

〉

+β
∑

i6=l

∑

j

〈

Mi,j(X, Y )

(x − xl)(x − xi)(y − yj)

〉

+
∑

i,j

〈

Mi,j(X, Y )

(x − xi)2(y − yj)

〉

(5 − 32)

The last term can be integrated by parts:

∑

i,j

〈

Mi,j(X, Y )

(x − xi)2(y − yj)

〉
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=
∑

i,j

∫

dX dY ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y ))

Mi,j(X, Y )
∂

∂xi

1

(x − xi) (y − yj)

= −
∑

i,j

∫

dX dY
1

(x − xi) (y − yj)

∂

∂xi
Mi,j(X, Y ) ∆(X)2β∆(Y )2β e−Tr (V1(X)+V2(Y ))

=
∑

i,j

∫

dX dY
Mi,j(X, Y )

(x − xi) (y − yj)
∆(X)2β∆(Y )2β

e−Tr (V1(X)+V2(Y ))
(

V ′
1(xi) −

∑

l 6=i

2β

xi − xl

)

−
∑

i,j

∫

dX dY
1

(x − xi) (y − yj)
∆(X)2β∆(Y )2β

e−Tr (V1(X)+V2(Y )) ∂Mi,j(X, Y )

∂xi

=
∑

i,j

〈

V ′
1(xi)Mi,j(X, Y )

(x − xi)(y − yj)

〉

− 2β
∑

l 6=i

∑

j

〈

Mi,j(X, Y )

(xi − xl)(x − xi)(y − yj)

〉

−
∑

i,j

〈

1

(x − xi)(y − yj)

∂Mi,j(X, Y )

∂xi

〉

(5 − 33)

Therefore we have:
∑

i,j

〈

1

(x − xi)(y − yj)

∂Mi,j(X, Y )

∂xi

〉

=
∑

i,j

〈

yjMi,j(X, Y )

(x − xi)(y − yj)

〉

− 2β
∑

l 6=i

∑

j

〈

Mi,j(X, Y )

(xi − xl)(x − xi)(y − yj)

〉

+β
∑

i6=l

∑

j

〈

Mi,j(X, Y )

(x − xl)(x − xi)(y − yj)

〉

=
∑

i,j

〈

yjMi,j(X, Y )

(x − xi)(y − yj)

〉

− 2β
∑

l 6=i

∑

j

〈

Mi,j(X, Y )

(xi − xl)(x − xi)(y − yj)

〉

+β
∑

i6=l

∑

j

〈

Mi,j(X, Y )

(x − xl)(xl − xi)(y − yj)

〉

+β
∑

i6=l

∑

j

〈

Mi,j(X, Y )

(x − xi)(xi − xl)(y − yj)

〉

=
∑

i,j

〈

yjMi,j(X, Y )

(x − xi)(y − yj)

〉

−β
∑

l 6=i

∑

j

〈

1

(x − xi)(y − yj)

Mi,j(X, Y ) − Ml,j(X, Y )

(xi − xl)

〉

(5 − 34)
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Since this equation must hold for any V1 and V2, x, y, i.e. for any measure on X and

Y , it must hold term by term i.e. we recover the linear equation:

∂Mi,j(X, Y )

∂xi

= yj Mi,j(X, Y ) − β
∑

l 6=i

Mi,j(X, Y ) − Ml,j(X, Y )

(xi − xl)
(5-35)

Of course, the loop equation coming from the change of variable M2 → M2 +

ǫ 1
x−M1

1
y−M2

+ O(ǫ2) gives the symmetric linear equation:

∂Mi,j(X, Y )

∂yj
= xi Mi,j(X, Y ) − β

∑

l 6=j

Mi,j(X, Y ) − Mi,l(X, Y )

(yj − yl)
(5-36)

QED.

6 Principal terms and the τij variables

As we mentioned in the introduction, it was noticed in particular by Brezin and Hikami

[3], that the angular integral can be written as combinations of exponential terms,

and polynomials (for β integer, series otherwise), of some reduced variables τi,j =

−1
2
(xi − xj)(yi − yj). Here, we show how our recursion gives such a form.

We thus define:

Definition 6.1 We define the principal term Îβ,n(X; Y ) from the recursion:

Îβ,1 = 1

and

Îβ,n(Xn; Yn) = ∆(Yn)2β
n−1
∏

i=1

(xi − xn) Res
λi→yi

dλ1

(λ1 − y1)β
. . .

dλn−1

(λn−1 − yn−1)β

Îβ,n−1(Xn−1, Λ) e
P

i(xi−xn)(λi−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − λi)β

(6 − 1)

It is such that (the sum over permutations comes from the sum of residues at all poles

in recursion eq. (4-31) of theorem. 4.3):

Iβ,n(X, Y ) =
∑

σ

e
Pn

i=1 xiyσ(i)

∆(X)2β∆(Yσ)2β
Îβ,n(X, Yσ)

(6-2)

In [3], Brezin and Hikami observed and conjectured that when β is an integer,

Îβ,n(X, Y ) is a polynomial in the variables τi,j = −1
2
(xi − xj)(yi − yj).
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For instance, if β = 1, we have for arbitrary n:

Î1,n =
∏

i<j

τi,j (6-3)

And, if n = 2, we have for arbitrary β:

Îβ,2 = (x1 − x2) (y1 − y2)
2β Res

λ→0

dλ

λβ

e(x1−x2)λ

(y2 − y1 − λ)β

= (x1 − x2) (y1 − y2)
2β ∂β−1

∂λβ−1

(

e(x1−x2)λ

(y2 − y1 − λ)β

)

λ=0

= (x1 − x2) (y1 − y2)
2β

β−1
∑

k=0

(β − 1)!

k!(β − 1 − k)!
(x1 − x2)

β−1−k (y2 − y1)
−β−k (β − 1 + k)!

(β − 1)!

=

β−1
∑

k=0

(β − 1 + k)!

k!(β − 1 − k)!
((x1 − x2)(y2 − y1))

β−k

= 2β Qβ,0(τ1,2) (6-4)

i.e. we recover the well known result that Îβ,2 is the Bessel polynomial of degree β.

We are going to prove the conjecture of Brezin Hikami for all n and for all β ∈ N,

but first, let us prove some preliminary properties:

Lemma 6.1 Îβ,n is a polynomial in all variables xi and yj, and it is symmetric under

the exchange X ↔ Y , and under the permutation of pairs (xi, yi) ↔ (xj , yj), and under

translations X → X + cte.Id or Y → Y + cte.Id.

proof:

If β is an integer, the recursion relation eq. (6-1) leads to (we write xi,j = xi − xj ,

yi,j = yi − yj):

Îβ,n+1 =
n
∏

i=1

xi,n+1 yβ
n+1,i

(

∂

∂λi

)β−1
[

exi,n+1λi

∏

1≤j≤n+1,j 6=i

yβ
j,i

(yj,i − λi)β

]

Îβ,n(Xn, Yn + Λ)
∣

∣

∣

Λ=0

(6 − 5)

which shows by recursion, that Îβ,n+1 is a rational function of all xi’s and yj’s.

We know, from its very definition, that the angular integral

Iβ,n(X, Y ) =
∑

σ

e
Pn

i=1 xiyσ(i)

∆(X)2β∆(Yσ)2β
Îβ,n(X, Yσ) (6-6)
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is symmetric in all xi’s and yj’s, and in the exchange X ↔ Y . Since the exponentials are

linearly independent on the ring of rational functions, each term must be symmetric in

permutations of pairs (xi, yi)’s, i.e. Îβ,n(x1, . . . , xn; y1, . . . , yn) is a symmetric function

of the pairs (xi, yi)’s, and also symmetric under X ↔ Y .

Moreover, Îβ,n+1 is clearly a polynomial in the variables xn+1 and yn+1, and because

of the symmetry, it must also be a polynomial in all variables. Translation invariance

is also clear from the recursion formula.

�

Theorem 6.1 (Conjecture of Brezin-Hikami):

Îβ,n is a symmetric polynomial of degree β in the τi,j’s.

proof:

Using lemma 6.1, it is easy to see that Îβ,n fulfills the hypothesis of lemma A.3 in

the appendix A, and this proves the theorem. �

I.e. we have proved the conjecture of Brezin and Hikami [3]. In fact, we notice that

the property of being a polynomial in the τ ’s, is not specific to angular integrals, but

comes only from the global symmetries.

6.1 Recursion without residues for β integer

For β ∈ N, the residues in recursion eq. (6-1) can be performed, and they compute

derivatives of the integrand. Thus eq. (6-1) can be rewritten:

Îβ,n(Xn; Yn)

= ∆(Yn)2β
n−1
∏

i=1

(xi − xn) Res
λi→ai

dλ1

(λ1 − a1)β
. . .

dλn−1

(λn−1 − an−1)β

Îβ,n−1(Xn−1, Λ) e
P

i(xi−xn)(λi−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − λi)β

∣

∣

∣

ai=yi

=
∆(Yn)2β

(β − 1)!n−1

n−1
∏

i=1

(xi − xn)
∏

i

(

∂

∂ai

)β−1

Res
λi→ai

dλ1

(λ1 − a1)
. . .

dλn−1

(λn−1 − an−1)

Îβ,n−1(Xn−1, Λ) e
P

i(xi−xn)(λi−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − λi)β

∣

∣

∣

ai=yi

(6 − 7)

i.e. we can perform the residues:

Îβ,n(Xn; Yn) =
∆(Yn)2β

(β − 1)!n−1

n−1
∏

i=1

xi,n

(

∂

∂ai

)β−1 Îβ,n−1(Xn−1, a) e
P

i xi,n(ai−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − ai)β

∣

∣

∣

ai=yi

(6-8)
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More explicitly

Îβ,n(Xn; Yn)

=

n−1
∏

i=1

β−1
∑

γi,βi,k=0

(xi,nyn,i)
βi,n

Γ(β − γi −
∑

k βi,k) βi,n!

n−1
∏

k=1,k 6=i

Γ(β + βi,k)

βi,k! Γ(β)

1

(xi,nyk,i)βi,k

1

γi!

(

1

xi,n

∂

∂ai

)γi

Îβ,n−1(Xn−1, a)
∣

∣

∣

ai=yi

(6 − 9)

6.2 n = 3

For n = 3, and arbitrary β, we prove that:

Theorem 6.2

Îβ,3 =
∞
∑

k=0

Γ(β − k)

23k k! Γ(β + k)

∏

i<j

Qβ,k(τij)

(6-10)

In fact, for β integer, the sum over k is finite and reduces to k ≤ β − 1.

The proof, rather technical, is given in appendix C. We used the Calogero equation.

6.3 Conjecture for higher n

Applying the recursion relations of this article, we also computed the n = 4 case for

small values of β:

Î2,4 =
∏

i<j

Q2,0(τij)

+
1

16
Q2,0(τ1,2)Q2,0(τ1,3)Q2,0(τ1,4) Q2,1(τ2,3)Q2,1(τ2,4)Q2,1(τ3,4) + sym

+
1

128
Q2,0(τ1,2) Q2,1(τ1,3)Q2,1(τ1,4)Q2,1(τ2,3)Q2,1(τ2,4)Q2,1(τ3,4) + sym

(6 − 11)

and:

Î3,4 = 64
∏

i<j

Q3,0(τij)

+
4

3
Q3,0(τ1,2)Q3,0(τ1,3)Q3,0(τ1,4) Q3,1(τ2,3)Q3,1(τ2,4)Q3,1(τ3,4) + sym

+
1

48
Q3,0(τ1,2)Q3,0(τ1,3)Q3,0(τ1,4) Q3,2(τ2,3)Q3,2(τ2,4)Q3,2(τ3,4) + sym

+ . . . (6-12)

Those expressions lead us to conjecture a general form in terms of Bessel polynomials:
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Conjecture 6.1 We conjecture that for all n and β, Îβ,n is of the form:

Îβ,n =
∑

{l}
A{l}

∏

i<j

Qβ,l(i,j)(τi,j)

(6-13)

Unfortunately, we have not been able so far to determine the general form of the

coefficients A{l} for n > 3 (except n = 4 and β = 2).

6.4 Symplectic case β = 2

For β = 2, the recursion eq. (6-8), reduces to:

Î2,n = ∆(Yn)4
n−1
∏

i=1

xi,n

∏

i

∂

∂ai

Î2,n−1(Xn−1, a) e
P

i(xi−xn)(ai−yi)

∏n
k=1

∏n−1
i=1, 6=k(yk − ai)2

∣

∣

∣

ai=yi

=
n−1
∏

i=1

xi,n y2
i,n

(

xi − xn −
n
∑

k=1, 6=i

2

yi − yk
+

∂

∂ai

)

Î2,n−1(Xn−1, a)
∣

∣

∣

ai=yi

(6 − 14)

From a recursion hypothesis, we assume that Î2,n−1(Xn−1, a) is a polynomial in the τ ’s

of the form:

Î2,n−1(Xn−1, Yn−1) =
∑

{l}
A{l}

∏

i<j

Q2,li,j (τi,j) (6-15)

where for every pair (i, j) we have li,j ∈ {0, 1}. We recall that:

|0 >τ= Q2,0(τ) = τ 2 + τ , |1 >τ= Q1,0(τ) = 2τ (6-16)

Thus we may write:

∂

∂ai
= − 1

2

∑

k 6=i

xi,k
∂

∂ti,k
, ti,k = −1

2
(xi − xk)(ai − ak) (6-17)

and we define the operators Ci,k acting on functions of the variable τi,k such that:

Ci,k =
1

τi,k

− 1

2

∂

∂ti,k
(6-18)

and all derivatives must be eventually computed at ti,k = τi,k.

Since our operators act on expressions of the form eq. (6-15), we need to compute:

Ci,j|0 >= Ci,j.Q2,0(τi,j) = Ci,j.(τ
2
i,j + τi,j) =

1

2
(6-19)

Ci,j|1 >= Ci,j.Q2,1(τi,j) = Ci,j. 2τi,j = 1 (6-20)
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And we may also have terms of the form Ci,j.Cj,i, for which we have:

Ci,jCj,i |0 >= Ci,jCj,i .(τ
2
i,j + τi,j) = −1

2
, Ci,jCj,i |1 >= Ci,jCj,i .τi,j = 0 (6-21)

Finally we have:

Î2,n =

n−1
∏

i=1

τ 2
i,n

n−1
∏

i=1

(

1 +
1

τi,n
+

n−1
∑

k=1, 6=i

xi,k

xi,n
Ci,k

)

Î2,n−1

∣

∣

∣

ti,j=τi,j

(6-22)

It is more convenient to rewrite this in terms of a Hilbert space with basis |0 >= Q2,0

and |1 >= Q2,1, and thus:

Î2,n =

n−1
∏

i=1

(

τ 2
i,n + τi,n +

1

2
τi,n

n−1
∑

k=1, 6=i

yn,i

yk,i
Ai,k

)

Î2,n−1

(6 − 23)

where

Ai,k = 2τi,kCi,k (6-24)

We have:

A|0 >=
1

2
|1 > , A|1 >= |1 > (6-25)

and:

Ai,kAk,i = 2(Ai,k − 1) (6-26)

Unfortunately we have not been able to go further with this formulation.

6.4.1 Triangle conjecture

We have seen that there is an operator formalism for computing angular integrals, with

operators Ai,j associated to ”edges” (i, j). However, it can be seen for n = 3, 4, that

operator edges appear only in certain combinations, which involve triangles (i, j, k).

We thus introduce the triangles operators:

Ti,j,k = πi,jπj,kπk,i (6-27)

where πi,j = πj,i is the projector on state 1
2
|1 >i,j= τi,j :

πi,j.(τ
2
i,j + τi,j) = τi,j , πi,j .τi,j = τi,j , πi,j = πj,i , π2

i,j = πi,j

(6-28)

With this notation we have:

Î2,3 = (1 +
1

2
T1,2,3).

∏

1≤i<j≤3

|0 >i,j (6-29)
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where we recall that |0 >i,j= τ 2
i,j + τi,j .

And

Î2,4 =
(

1 +
1

2
(T1,2,3 + T1,2,4 + T1,3,4 + T2,3,4)

+
1

4
(T1,2,3T1,2,4 + T1,2,3T1,3,4 + T1,2,4T1,3,4

+T1,2,3T2,3,4 + T1,2,4T2,3,4 + T1,3,4T2,3,4)
)

.
∏

1≤i<j≤4

|0 >i,j (6-30)

We are naturally led to conjecture that:

Î2,n =
(

∑

triangulations T
CT

∏

T∈T

)

.
∏

i<j

|0 >i,j (6-31)

We have:

C∅ = 1 , C(i,j,k) =
1

2
, C(i,j,k),(i,j,l) =

1

4
, . . . (6-32)

We have not been able so far to prove this conjecture. It is to be noted from the

low values of n, that triangles seem to play a role for all β ∈ N.

6.4.2 Additional results: determinantal recursion

Just for completeness, we give another form of the recursion eq. (6-14), in terms of

determinants:

Î2,n+1(Xn+1; Yn+1) =
det
[

X − xn+1 − 2
Y −yn+1

+ B + ∂Y

]

det(X − xn+1)
Î2,n(Xn; Yn) (6-33)

where

Î2,n(X, Y ) =
1

∏

i<j τ 2
i,j

Î2,n(X, Y ) (6-34)

and where B is the antisymmetric matrix

Bij =

√
2

yi − yj

(6-35)

and ∂Y = diag(∂y1 , . . . , ∂yn
). This is proved by observing that the expansion of the de-

terminant eq. (6-33) can be interpreted like a Wick’s expansion equivalent to eq. (6-14).

7 Conclusion

In this article, we have found many new relations and new representations of angular

integrals.
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First, we have been able to rewrite angular integrals with a complicated Haar

measure, in terms of usual Lebesgue measure contour integrals. Then, we have deduced

duality and recursion formulae.

This allowed us to prove Brezin-Hikami’s conjecture, and to find some explicit form

for n = 3, and conjecture some explicit form in terms of Bessel polynomials for the

general case.

For β = 2, we have simplified our recursion (computed the residues). The same

method seems to be applicable for higher β, but we have not done it in this article.

We have obtained many new forms of angular integrals, but unfortunately, this does

not seem to be the end of the story. Our expressions are still not explicit enough to be

useful for computing matrix integrals. The form of our expressions, strongly suggest

that the kernel determinantal formulae [25] in the β = 1 case, could be replaced by

hyperdeterminantal formulae for higher β, but this is still to be understood. The best

thing, would be to get expressions with enough structure to generalize the method over

integration of matrix variables of Mehta [26].
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A Appendix: Polynomials of τ

Lemma A.1 Let

Pn(X, Y ) = x1x2 . . . xn−1xn yn+1yn+2 . . . y2n−1y2n+y1y2 . . . yn−1yn xn+1xn+2 . . . x2n−1x2n

(1-1)

We prove that Pn is a polynomial of degree n in the τ ’s, where τi,2n+1 = −1
2
xiyi and

τi,j = −1
2
(xi − xj)(yi − yj), with integer coefficients:

Pn ∈ Z[τ ] (1-2)

proof:
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It clearly holds for n = 0 and n = 1. Indeed the n = 1 case reads:

x1y2 + x2y1 = x1y1 + x2y2 − (x1 − x2)(y1 − y2) = 2(τ1,2 − τ1,3 − τ2,3) (1-3)

Assume that the lemma holds up to n−1, and let us prove it for n. In the following

A ≡ B means that A − B is a polynomial in the τ ’s.

Pn

= x1x2 . . . xn−1xn yn+1yn+2 . . . y2n−1y2n

+y1y2 . . . yn−1yn xn+1xn+2 . . . x2n−1x2n

= (x1yn+1 + xn+1y1)(x2 . . . xn−1xn yn+2 . . . y2n−1y2n

+y2 . . . yn−1yn xn+2 . . . x2n−1x2n)

−x2 . . . xn−1xnxn+1 yn+2 . . . y2n−1y2ny1

−y2 . . . yn−1ynyn+1 xn+2 . . . x2n−1x2nx1

≡ −x2 . . . xn−1xnxn+1 yn+2 . . . y2n−1y2ny1

−y2 . . . yn−1ynyn+1 xn+2 . . . x2n−1x2nx1

(1 − 4)

and then:

Pn

≡ −x2 . . . xn−1xnxn+1 yn+2 . . . y2n−1y2ny1

−y2 . . . yn−1ynyn+1 xn+2 . . . x2n−1x2nx1

≡ −(x2y1 + x1y2)(x3 . . . xn−1xnxn+1 yn+2 . . . y2n−1y2n

+y3 . . . yn−1ynyn+1 xn+2 . . . x2n−1x2n)

+xn+1x1x3 . . . xn−1xn y2yn+2 . . . y2n + yn+1y1y3 . . . yn x2xn+2 . . . x2n

(1 − 5)

Repeating the same operation recursively we obtain ∀k:

Pn ≡ xn+1 . . . xn+k x1 xk+2 . . . xn y2 . . . yk+1 yk+n+1 . . . y2n

+yn+1 . . . yn+k y1 yk+2 . . . yn x2 . . . xk+1 xk+n+1 . . . x2n

(1 − 6)

In particular for k = n − 2 we find:

Pn ≡ xn+1 . . . x2n−2 x1 xn y2 . . . yn−1 y2n−1y2n

+yn+1 . . . y2n−2 y1 yn x2 . . . xn−1 x2n−1x2n

≡ (x1y2n−1 + x2n−1y1)(xn+1 . . . x2n−2 xn y2 . . . yn−1 y2n

+yn+1 . . . y2n−2 yn x2 . . . xn−1 x2n)

−xn . . . x2n−1 y1y2 . . . yn−1 y2n − yn . . . y2n−1 x1x2 . . . xn−1 x2n)
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(1 − 7)

and we repeat the same operations:

Pn ≡ −xn . . . x2n−1 y1y2 . . . yn−1 y2n − yn . . . y2n−1 x1x2 . . . xn−1 x2n)

≡ −(xny1 + x1yn)(xn+1 . . . x2n−1 y2 . . . yn−1 y2n

+yn+1 . . . y2n−1 x2 . . . xn−1 x2n)

+x1xn+1 . . . x2n−1 y2 . . . yn y2n + y1yn+1 . . . y2n−1 x2 . . . xn x2n

(1 − 8)

and once more

Pn ≡ x1xn+1 . . . x2n−1 y2 . . . yn y2n + y1yn+1 . . . y2n−1 x2 . . . xn x2n

≡ (x1y2n + x2ny1)(xn+1 . . . x2n−1 y2 . . . yn + yn+1 . . . y2n−1 x2 . . . xn)

−xn+1 . . . x2n y1y2 . . . yn − yn+1 . . . y2n x1 . . . xn

(1 − 9)

Therefore Pn ≡ −Pn, i.e. Pn is a polynomial in the τ ’s.

�

Lemma A.2 Let

Pα,β(X, Y ) =
n
∏

i=1

xαi

i yβi

i +
n
∏

i=1

xβi

i yαi

i ,
∑

i

αi =
∑

i

βi = d (1-10)

We prove that Pα,β is a polynomial of degree d in the τ ’s, with integer coefficients:

Pn ∈ Z[τ ] (1-11)

proof:

We proceed by recursion on the total degree d =
∑

i αi =
∑

i βi. The lemma clearly

holds for d = 0 and d = 1.

Assume d ≥ 2 and that the lemma holds up to d − 1. We will prove it for d.

• if there exists i such that αiβi > 0, then Pα,β is the factor of τi,n+1 times Pα′,β′ of

smaller degree, and from the recursion hypothesis it holds.

• assume that ∀i, αiβi = 0. Since d ≥ 2, there must exist some i such that αi ≥ 1

and some j such that βj ≥ 1. Let us choose k and l such that:

αk = max
i

{αi} ≥ 1 , βl = max
i

{βi} ≥ 1 (1-12)

We have k 6= l.
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If αk = βl = 1, then we can apply lemmaA.1, and thus the lemma is proved for

that case.

• therefore, we now assume that αkβl ≥ 2, and with no loss of generality we may

assume that αk ≥ 2. We write:

Pn

= xα1
1 . . . xαn

n yβ1

1 . . . yβn

n + xβ1

1 . . . xβn

n yα1
1 . . . yαn

n

= (xkyl + xlyk)(x
α1
1 . . . xαk−1

k . . . xαn

n yβ1

1 . . . yβl−1
l . . . yβn

n

+yα1
1 . . . yαk−1

k . . . yαn

n xβ1
1 . . . xβl−1

l . . . xβn

n )

−xα1
1 . . . xαk−1

k xαl+1
l . . . xαn

n yβ1

1 . . . yβl−1
l yβk+1

k . . . yβn

n

−yα1
1 . . . yαk−1

k yαl+1
l . . . yαn

n xβ1
1 . . . xβl−1

l xβk+1
k . . . xβn

n

≡ −xkyk (xα1
1 . . . xαk−2

k xαl+1
l . . . xαn

n yβ1

1 . . . yβl−1
l yβk

k . . . yβn

n

+yα1
1 . . . yαk−2

k yαl+1
l . . . yαn

n xβ1
1 . . . xβl−1

l xβk

k . . . xβn

n )

(1 − 13)

From the recursion hypothesis, the RHS is a polynomial in the τ ’s, and thus we have

proved the lemma.

�

Lemma A.3 Let P be a polynomial of 2n+2 variables x1, . . . , xn, xn+1, y1, . . . , yn, yn+1,

with the following properties:

• P is invariant by translations ∀i, xi → xi + δx, yi → yi + δy,

• P is invariant under ∀i, xi → λxi, yi → 1
λ
yi ,

• P is symmetric in the exchange X ↔ Y ,

Then P is a polynomial of the τi,j’s.

proof:

Because of invariance by translation, we can always assume that xn+1 = yn+1 = 0.

Then, the other properties imply that P is a linear combination of monomials of the

type Pα,β(X, Y ) of Lemma.A.2.

�

B Appendix: Loop equations

Loop equations for matrix models have been studied for a long time [27]. Loop equa-

tions (sometimes called Ward identities or Schwinger-Dyson equations) for β ensembles

can be found for instance in [12, 33, 19, 20, 21, 6]. Here, we summarize the method.
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• 1-matrix model in eigenvalue representation, for arbitrary β:

Consider the integral:

Z =

∫

dλ1 . . . dλn e−
P

i V (λi)
∏

i<j

(λj − λi)
2β (2-1)

If we make an infinitesimal local change of variable λi → λi + ǫλk
i + O(ǫ2), we find:

Z = (1 + O(ǫ2))

∫

dλ1 . . . dλn

∏

i

(1 + ǫkλk−1
i ) e−

P

i V (λi)
∏

i

(1 − ǫλk
i V

′(λi))

∏

i<j

(λj − λi)
2β
∏

i<j

(1 + 2βǫ
λk

i − λk
j

λi − λj
)

(2 − 2)

i.e., by considering the term linear in ǫ:

0 =

〈

∑

i

kλk−1
i + β

k−1
∑

l=0

∑

i6=j

λl
iλ

k−1−l
j −

∑

i

λk
i V

′(λi)

〉

(2-3)

It can be written collectively by summing over k with 1/xk+1, this is equivalent to

consider a local change of variable λi → λi+
ǫ

x−λi
+O(ǫ2), and we write ω(x) =

∑

i
1

x−λi
:

0 =

〈

−ω′(x) + β(ω(x)2 + ω′(x)) −
∑

i

V ′(λi)

x − λi

〉

(2-4)

i.e.

0 = −
〈

Tr
V ′(M)

x − M

〉

+ β

〈

Tr
1

x − M
Tr

1

x − M

〉

+ (β − 1)
∂

∂x

〈

Tr
1

x − M

〉

(2-5)

• 2-matrix model for β = 1/2, 1, 2:

Similarly if we consider a 2-matrix model:

Z =

∫

dM1dM2 e−Tr (V1(M1)+V2(M2)−M1M2) (2-6)

again we make a local change of variable M1 → M1 + ǫ 1
x−M1

A+O(ǫ2). The Jacobian of

this change of variable is computed as a split rule (cf []), it can be computed for each

of the 3 ensembles β = 1/2, 1, 2 and is worth:

dM1 → dM1

(

1 + ǫβ Tr
1

x − M1

Tr A
1

x − M1

+ ǫ(β − 1)
∂

∂x
Tr A

1

x − M1

+ O(ǫ2)

)

(2-7)

Thus we find:

0 = −
〈

Tr (V ′
1(M1) − M2)

1

x − M1

〉

+ β

〈

Tr
1

x − M1

Tr A
1

x − M1

〉
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+(β − 1)
∂

∂x

〈

Tr A
1

x − M1

〉

(2-8)

• Without a definition of a 2-matrix integral for arbitrary β, it is not possible to

find the loop equation for any β. However, we see that equation eq. (2-8) is valid for

the 2-matrix model for β = 1/2, 1, 2, and is valid for the 1-matrix eigenvalue model

for any β. Therefore it is natural to take it as a definition of the 2-matrix model for

arbitrary β.

C Appendix: Proof n = 3

C.1 BESSEL ZOOLOGY

We define the functions

Qβ (x) =
∞
∑

l=0

(−)l Γ (β + l)

Γ (β − l)

2−l

l!
xβ−l (3-1)

We have

2x2 Q′
β (x) − 2β x Qβ (x) = −

∞
∑

l=1

(−)l Γ (β + l)

Γ (β − l)

2−l+1

(l − 1)
xβ−l+1

x2 Q”
β (x) − 2β x Q′

β (x) + 2β Qβ (x) = −
∞
∑

l=0

(−)l Γ (β + l + 1)

Γ (β − l − 1)

2−l

l!
xβ−l (3-2)

Changing l into l + 1 in 3-2 we obtain the differential equation

x2 Q”
β (x) − 2x (β − x) Q′

β (x) + 2β (1 − x) Qβ (x) = 0 (3-3)

We define the functions

Qβ,k (x) = (−2)k xβ−k

(

x2 d

dx

)k (
Qβ (x)

xβ

)

(3-4)

Qβ,0 (x) = Qβ (x) (3-5)

that is

Qβ,k (x) =

∞
∑

l=0

(−)l+k Γ (β + l + k)

Γ (β − l − k)

2−l

l!
xβ−l−k (3-6)

From 3-4 we obtain the recurrence

Qβ,k (x) = 2 (β − k + 1) Qβ,k−1 (x) − 2x Q′
β,k−1 (x) (3-7)

For instance

Qβ,1 (x) = 2β Qβ,0 (x) − 2x Q′
β,0 (x) (3-8)
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and

Qβ,2 (x) = 2 (β − 1) Qβ,1 (x) − 2x Q′
β,1 (x) (3-9)

Qβ,2 (x) = 4x2 Q”
β,0 (x) − 8x (β − 1) Q′

β,0 (x) + 4β (β − 1) Qβ,0 (x) (3-10)

Thus, we have, from 3-8 and 3-10, the expressions Q′
β,0 (x) and Q”

β,0 (x) in terms of

Qβ,1 (x) and Qβ,2 (x). Equation 3-3 becomes

Qβ,2 (x) + 4 (1 − x) Qβ,1 (x) − 4β (β − 1) Qβ,0 (x) = 0 (3-11)

From 3-11, by derivatives d
dx

and recurrence, it is easy to show that

Qβ,k+2 (x) + 4 (k + 1 − x) Qβ,k+1 (x) − 4 [β (β − 1) − k (k + 1)] Qβ,k (x) = 0 (3-12)

C.2 CALOGERO N=3

We consider the Calogero differential operator

HCalogero =

3
∑

i=1

d2

dx2
i

+ 2β
∑

i<j

1

xi − xj

(

d

dxi
− d

dxj

)

(3-13)

and we look for solutions

HCalogero Φ (xi, yi) =

(

∑

i

y2
i

)

Φ (xi, yi) (3-14)

where the solutions Φ (xi, yi)have a certain number of symmetry properties described

somewhere else. We write

Φ (xi, yi) = f (xi, yi) e
P3

i=1 xiyi (3-15)

so that the equations 3-13 and 3-14 become

D =
3
∑

i=1

d2

dx2
i

+ 2β
∑

i<j

1

xi − xj

(

d

dxi

− d

dxj

+ yi − yj

)

+ 2
3
∑

i=1

yi
d

dxi

(3-16)

and

D f (xi, yi) = 0 (3-17)
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Let us introduce the variables

a =
1

2
(x1 − x2) (y1 − y2) = (x1 − x2) Y12 (3-18)

b =
1

2
(x1 − x3) (y1 − y3) = (x1 − x3) Y13 (3-19)

c =
1

2
(x2 − x3) (y2 − y3) = (x2 − x3) Y23 (3-20)

where

Yij = −Yji (3-21)

and we look for solutions of the type f (a, b, c) . We have

df

dx1

= Y12 f ′
a + Y13f

′
b (3-22)

df

dx2

= Y21 f ′
a + Y23f

′
c (3-23)

df

dx3

= Y31 f ′
b + Y32f

′
c (3-24)

and

d2f

dx2
1

= Y 2
12f

”
a2 + 2Y12Y13f

”
ab + Y 2

13f
”
b2 (3-25)

d2f

dx2
2

= Y 2
21f

”
a2 + 2Y21Y23f

”
ac + Y 2

23f
”
c2 (3-26)

d2f

dx2
3

= Y 2
31f

”
b2 + 2Y31Y32f

”
bc + Y 2

32f
”
c2 (3-27)

The equations 3-16 and 3-17 become

D f (a, b, c) = D1 f (a, b, c) + D2 f (a, b, c) = 0 (3-28)

D1 f (a, b, c) = Y 2
12

[

2f ”
a2 + 4(

β

a
+ 1) f ′

a + 4
β

a
f

]

+ circ.perm. (3-29)

D2 f (a, b, c) = 2Y12Y13

[

f ”
ab +

β

a
f ′

b +
β

b
f ′

a

]

+ circ.perm. (3-30)

We now try the functions

f (a, b, c) =
Qβ,k (a)

a2β

Qβ,k (b)

b2β

Qβ,k (c)

c2β
=

{k, k, k}
(abc)2β

(3-31)

where Qβ,k (x) are defined in (3-4-3-5) and 3-6. We consider

f (a) =
Qβ,k (a)

a2β
(3-32)
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we have

2 f ′
a + 2

β

a
f =

2a Q′
β,k (a) − 2β Qβ,k (a)

a2β+1 = −2k Qβ,k (a) + Qβ,k+1 (a)

a2β+1 (3-33)

By derivation we obtain

2f ”
a2 + 2

β

a
f ′

a − 2
β

a2
f =

1

a2β+2

[

1
2
Qβ,k+2 (a) + (β + 2k + 2)Qβ,k+1 (a)

+2k (β + k + 1)Qβ,k (a)

]

(3-34)

so that

2f ”
a2 + 4

β

a
f ′

a +
2β (β − 1)

a2
f =

1

a2β+2

[

1
2
Qβ,k+2 (a) + 2 (k + 1) Qβ,k+1 (a)

+2k (k + 1) Qβ,k (a)

]

(3-35)

2f ”
a2 + 4

β

a
f ′

a =
1

a2β+2

[

1
2
Qβ,k+2 (a) + 2 (k + 1)Qβ,k+1 (a)

−2 [β (β − 1) − k (k + 1)]Qβ,k (a)

]

(3-36)

Finally we obtain

2f ”
a2 +4(

β

a
+1) f ′

a +4
β

a
f =

1

2a2β+2

[

Qβ,k+2 (a) + 4 (k + 1 − a) Qβ,k+1 (a)
−4 [β (β − 1) − k (k + 1 − 2a)] Qβ,k (a)

]

(3-37)

Now, we use the recurrence relation 3-12 and get the simple result

2f ”
a2 + 4(

β

a
+ 1) f ′

a + 4
β

a
f = − 4k

a2β+1 Qβ,k (a) (3-38)

We just proved that

D1
{k, k, k}
(abc)2β

= −4k

(

Y 2
12

a
+

Y 2
31

b
+

Y 2
23

c

) {k, k, k}
(abc)2β

(3-39)

We further transform the result 3-39. We have

Y 2
12

a
=

Y12

(x1 − x2)
=

Y12

∆ (x)
(x1 − x3) (x2 − x3) (3-40)

Y 2
12

a
=

Y12

∆ (x)

[

F − (x1 − x2)
2] (3-41)

where

∆ (x) = (x1 − x2) (x1 − x3) (x2 − x3) (3-42)

F = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3 (3-43)

By circular permutation we also have

Y 2
31

b
=

Y31

∆ (x)

[

F − (x3 − x1)
2] (3-44)

Y 2
23

c
=

Y23

∆ (x)

[

F − (x2 − x3)
2] (3-45)
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We note that in 3-39 the quantity F disappear since

Y12 + Y23 + Y31 = 0 (3-46)

We may write now

D1
{k, k, k}
(abc)2β

=
4k

∆ (x)
[(x1 − x2) a + circ.perm.]

{k, k, k}
(abc)2β

(3-47)

We now consider

D2
{k, k, k}
(abc)2β

(3-48)

Using

f(a, b, c) = f(a) f(b) f(c) (3-49)

we have

f ”
ab(a, b, c) +

β

a
f ′

b(a, b, c) +
β

b
f ′

a(a, b, c) =

[
(

f ′
a(a) + βf(a)

a

)(

f ′
b(b) + βf(b)

b

)

−β2f(a) f(b)
ab

]

f(c)

(3-50)

but in 3-30 the term β2

ab
f(a) f(b) f(c) disappears since

Y12Y13

ab
+ circ.perm. =

x2 − x3

∆ (x)
+ circ.perm. = 0 (3-51)

Then, from 3-33 we get

=

[

2Y12Y13
[k Qβ,k(a)+ 1

2
Qβ,k+1(a)]

a2β+1

[k Qβ,k(b)+ 1
2
Qβ,k+1(b)]

b2β+1

Qβ,k(c)

c2β

+circ.perm.

]

(3-52)

Again, the term containing Qβ,k (a) Qβ,k (b) Qβ,k (c) disappears by 3-51. We write

D2
{k, k, k}
(abc)2β

=
1

∆ (x)

1

(abc)2β

[

(x2 − x3)

[

1
2
{k + 1, k + 1, k}

+k {k + 1, k, k} + k {k, k + 1, k}

]

+circ.perm.
]

(3-53)

We note that

(x2 − x3) [{k + 1, k, k} + {k, k + 1, k} + {k, k, k + 1}] + circ.perm. = 0 (3-54)

so that

D2
{k, k, k}
(abc)2β

=
1

∆ (x)

1

(abc)2β

[

(x2 − x3)

[

1
2
{k + 1, k + 1, k}
−k {k, k, k + 1}

]

+ circ.perm.

]

(3-55)
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We now collect D1 and D2. From 3-28, 3-31, 3-47 and 3-55 we obtain

D
{k, k, k}
(abc)2β

=
1

∆ (x)

1

(abc)2β





(x2 − x3)

[

4kc {k, k, k} + 1
2
{k + 1, k + 1, k}

−k {k, k, k + 1}

]

+circ.perm.





(3-56)

Again,

(x2 − x3) {k, k, k} + circ.perm. = 0 (3-57)

so that

D
{k, k, k}
(abc)2β

=
1

∆ (x)

1

(abc)2β





(x2 − x3)

[

4k (c − k) {k, k, k}
+1

2
{k + 1, k + 1, k} − k {k, k, k + 1}

]

+circ.perm.





(3-58)

We now use equation (10) and write

D
{k, k, k}
(abc)2β

=
1

∆ (x)

1

(abc)2β





(x2 − x3) [1
2
{k + 1, k + 1, k}

−4k (β − k) (β + k − 1) {k, k, k − 1} ]
+circ.perm.



 (3-59)

Consequently, we obtain the remarquable result

D

[

Γ (β − k)

Γ (β + k)

1

8k k!

{k, k, k}
(abc)2β

]

=
1

2∆ (x)

1

(abc)2β







(x2 − x3)

[

Γ(β−k)
Γ(β+k)

1
8k k!

{k + 1, k + 1, k}
−Γ(β−k+1)

Γ(β+k−1)
1

8k−1 (k−1)!
{k, k, k − 1}

]

+circ.perm.






(3-60)

Clearly enough, we define for β not integer

f (abc) =
∞
∑

k=0

Γ (β − k)

Γ (β + k)

1

8k k!

{k, k, k}
(abc)2β

(3-61)

then,

D f (abc) = 0 + circ.perm. (3-62)

Now, if β is an integer

Qβ,k≥β (x) = 0 (3-63)

and we define

f (abc) =

β−1
∑

k=0

Γ (β − k)

Γ (β + k)

1

8k k!

{k, k, k}
(abc)2β

(3-64)

so that

D f (abc) = 0 + circ.perm. (3-65)
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We proved that a solution to 3-14 is

Φ (xi, yi) =

[∞ or β−1
∑

k=0

Γ (β − k)

Γ (β + k)

1

8k k!

{k, k, k}
(abc)2β

]

e
P3

i=1 xiyi (3-66)

HCalogeroΦ (xi, yi) = 0 (3-67)

where HCalogero is given in 3-13.
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