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1. Introduction: partitions

Partitions are extremely useful in many areas of physics and mathematics. A partition
with at most N rows is an ordered sequence of N non-negative integers:

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0). (1.1)

|λ| =
∑

i λi is called the weight of the partition λ. The length of the partition n(λ) is the
number of strictly positive rows n(λ) = #{λi > 0}.

It is also convenient to represent the partition rotated by π/4, i.e. we define

hi = λi − i + N, h1 > h2 > · · · > hN ≥ 0. (1.2)

The hi’s are in 1–1 correspondence with the lower right edges of the rotated Ferrer diagram.
Then, for various applications, ranging from statistical physics of growing/melting

crystals [51], through TASEP [38, 15], to algebraic geometry [46], one would like to measure
partitions with the Plancherel measure P(λ) (described below), and compute partition
functions of the form

ZN(q; tk) =
∑

n(λ)≤N

P(λ) q|λ| e−
√

q
∑

k (tk q−k/2)/k Ck(λ), (1.3)

where the Ck(λ)’s are the Casimirs of the partition λ (see section 1.2).
Here in this paper, we find all the coefficients in the large q expansion of Z:

ln (ZN(q; tk)) =

∞∑

g=0

q1−g Fg(tk) + exponentially small. (1.4)

F0 and F1 have been known for some time [47], and here we prove that all the other order
Fg’s with g ≥ 2 are the symplectic invariants defined in [20].

Beyond computing the partition function, one may also be interested in finding the
large size asymptotic shape of those random partitions. The shape of the typical partition
has been known for some time [56, 55, 39], [34]–[36], [46, 47]; it is related to the Tracy–
Widom law [58]. Here in this paper, we recover the shape of the typical partition, and
we compute corrections to all orders. We also compute all order expansions of density
correlation functions.

We are also interested in a q-deformed version of the Plancherel measure Pq(λ),
which has applications to algebraic geometry/topological string theory, in particular in
computing the Gromov–Witten invariants of some Calabi–Yau threefolds Xp described
in section 4.4.2 below (see [12, 41]). Here in this paper, we prove, as conjectured by
Mariño [41], that the Gromov–Witten invariants of Xp are given by a matrix model, and
more precisely by the symplectic invariants of [20] computed for a spectral curve of the
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form H(ex, ey) = 0. This is typically the form of a mirror spectral curve in the type B
topological string theory. Moreover, using the recent result of [17], this also proves that
this model is equivalent to the Kodaira–Spencer field theory.
Outline of the paper:

• Section 1 is an introduction, where we recall the definition of the Plancherel measure,
the Casimirs.

• In section 2, we rewrite the partition function Z of the Plancherel measure, as a
normal matrix integral. As an immediate consequence, we find that the topological
expansion of lnZ is given by the symplectic invariants of [20], associated with a
spectral curve which we compute explicitly. This also gives all order corrections to
density correlation functions.

• In section 3, we repeat the same derivation as in section 2, but for the q-deformed
Plancherel measure partition function. We also rewrite it as a matrix integral, and as
a consequence we find that its topological expansion is again given by the symplectic
invariants of [20]. In particular, we study the consequences for the Gromov–Witten
invariants of the Calabi–Yau toric threefolds Xp. We prove the conjecture of [41]
that the Gromov–Witten invariants are the symplectic invariants of a mirror spectral
curve.

• In section 4, we explain the main applications: crystal growth, TASEP, length of the
increasing subsequences of a random permutation, and algebraic geometry Gromov–
Witten invariants.

• Section 5 is the conclusion.

1.1. Plancherel measure

The Plancherel measure is

P(λ) =

(
dim λ

|λ|!

)2

=

∏
1≤i<j≤N (hi − hj)

2

∏N
i=1 (hi!)2

, (1.5)

where dim λ is the dimension of the representation of the symmetric group Σ(|λ|), indexed
by the partition λ. The Plancherel measure depends only on the partition λ and it does
not depend on N ≥ n(λ).

Its q-deformed version is

Pq(λ) =

∏
i<j[hi − hj ]

2

∏
i([hi]!)2

, (1.6)

where [h] is the q-number:

[h] = q−h/2 − qh/2, (1.7)

i.e.,

Pq(λ) =

∏
i<j(q

hi − qhj)2

∏N
i=1 q(N−1)hi q−(1/2)hi(hi−1)

∏N
i=1

∏hi

j=1(1 − qj)2
. (1.8)

The Plancherel measure appears in many physical and mathematical problems. It is
the natural measure on partitions.

doi:10.1088/1742-5468/2008/07/P07023 4
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Among famous physical problems related to the Plancherel measure are the 2D
growing/melting crystal [47, 33], the length of the longest increasing subsequence [53],
and the totally asymmetric exclusion process (TASEP) [38, 15]. The Plancherel measure
also plays an important role in string theory and algebraic geometry, in the computation
of Gromov–Witten invariants [44, 46, 47, 41].

We develop those examples in section 4.

1.2. Expectation values and Casimirs

In most applications, one would like to compute expectation values of the following form
(as well as the q-deformed version of this):

ZN(gk) =
∑

n(λ)≤N

P(λ)
∏

i

e−
∑

k gkCk(λ), (1.9)

where Ck(λ) is the kth Casimir, which can be defined as the kth term in the small z
expansion:

∑

k

1

k!
zkCk(λ) =

N∑

i=1

ez(hi−N+1/2) +
e−(N−1/2)z

ez − 1
− 1

z
. (1.10)

The Casimirs depend only on λ; they do not depend on N .
We may write

Ck(λ) =
N∑

i=1

(hi − (N − 1
2
))k + Ck,0(N). (1.11)

For instance,

C1(λ) =
∑

i

hi −
N(N − 1)

2
− 1

24
= |λ| − 1

24
, (1.12)

C2(λ) =
∑

i

h2
i − (2N − 1)

∑

i

hi + 2
3
N(N − 1

2
)(N − 1) =

∑

i

λi(λi − 2i + 1). (1.13)

In general
∑

k gkCk(λ) can be written as

∑

k

gkCk(λ) =
∑

k

t̃k
∑

i

hk
i =

∑

i

A(hi), (1.14)

and it is important to notice that the coefficients t̃k may depend on N .
Finally, what one would like to compute is a sum of the form

ZN ∝
∑

n(λ)≤N

P(λ)

N∏

i=1

e−A(hi), A(h) =

d+1∑

k=0

t̃kh
k. (1.15)
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2. Plancherel measure

In this section, we rewrite the sum

ZN(q, tk) =
∑

n(λ)≤N

P(λ) q|λ| exp

(

−
d+1∑

k=2

tk q(1−k)/2

k
Ck(λ)

)

(2.1)

as a matrix integral, and as a consequence, we obtain its topological large q expansion:

ln ZN(q, tk) ∼
∞∑

n=0

q1−n Fn(tk). (2.2)

2.1. Transformation into a matrix integral

Consider the contour C which goes above the positive real axis in the negative direction
and below the positive real axis in the positive direction, i.e. it encloses all non-negative
integers.

The function

f(ξ) = −ξ Γ(−ξ)Γ(ξ) e−iπξ =
π e−iπξ

sin (πξ)
(2.3)

has simple poles with residue 1 at all integers (ξ ∈ Z).
Therefore we have

∮

CN

dξ1 . . .dξN

∏

i<j

(ξi − ξj)
2

∏

i

f(ξi)
e−A(ξi)

Γ(ξi + 1)2
=

∞∑

h1,...,hN=0

∏

i<j

(hi − hj)
2

∏

i

e−A(hi)

hi!2

= N !
∑

h1>···>hN≥0

∏
i<j(hi − hj)

2

hi!2

∏

i

e−A(hi)

= N !
∑

n(λ)≤N

P(λ)
∏

i

e−A(hi). (2.4)

In other words, the Plancherel measure partition function is a normal1 matrix integral:

∑

h1>···>hN≥0

∏
i<j(hi − hj)

2

hi!2

∏

i

e−A(hi) =
qN2/2

N !

∫

HN (C)

dM e−
√

q Tr V (M), (2.5)

with the potential
√

q V (x) = ln Γ(
√

q x) − ln Γ(−√
q x) + iπ

√
q x + ln (

√
q x) + A(

√
q x). (2.6)

1 The ensemble HN(C) is the set of normal matrices whose eigenvalues belong to C; for instance HN(R) = HN

is the set of Hermitian matrices. In general HN(C) = {M = UΛU†, U ∈ U(N), Λ = diag(λ1, . . . , λN), λi ∈ C}.
This ensemble is equipped with the measure dM = dU

∏
i dλi

∏
i<j(λi −λj)

2, where dU is the Haar measure on
U(N), and dλ is the curvilinear measure on C.

doi:10.1088/1742-5468/2008/07/P07023 6
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And we write

A(
√

q x) =
√

q

[

− x ln q +

d+1∑

k=2

tk
k

(

x − N − 1/2
√

q

)k

+ A0

]

=
√

q U(x). (2.7)

Therefore, the derivative of the potential can be written (using Stirling’s formula) as

V ′(x) = ψ(
√

qx) + ψ(−√
qx) + iπ +

1
√

qx
+ U ′(x)

= 2 ln (
√

qx) + U ′(x) +
1

√
qx

−
∞∑

n=1

B2n

n(
√

qx)2n

= 2 ln x +

d∑

k=1

tk+1

(

x − N − 1/2
√

q

)k

+
1

√
qx

−
∞∑

n=1

B2n

n(
√

qx)2n
, (2.8)

where Bn are the Bernoulli numbers, and ψ = Γ′/Γ.

2.2. The rescaling factor and topological expansion

We have introduced a rescaling factor
√

q such that hi =
√

q xi; because typical hi’s are
not of order 1, they are large, and with this rescaling, we expect the typical xi’s to be of
order 1.

Another reason for introducing a rescaling factor
√

q is that it will serve as an
expansion parameter.

If the matrix model integral has a so-called ‘topological’ large q expansion [54, 10],
i.e. an expansion in powers of q−1 here (and this must be the case by definition for
formal series), then the coefficients are given by the solution of loop equations first found
in [18, 13], and are given by the symplectic invariants [20]. It was found in [20] that the
whole 1/q expansion can be written in terms of the spectral curve, i.e. the ‘large q density’:

ln ZN ∼
∞∑

g=0

q1−g Fg, (2.9)

where the Fg’s are the symplectic invariants of the spectral curve. Here, we shall see that
the Fg’s do not depend on N and on q.

Therefore in what follows we aim at determining the spectral curve corresponding to
the potential V (x) and to the integration contour C.

doi:10.1088/1742-5468/2008/07/P07023 7
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2.3. The spectral curve

Heuristically, the spectral curve is more or less the large q density of the hi’s. It is related
to the ‘large q limit’ of the resolvent W (x) (see [20]):

W (x) = ‘lim’
1
√

q

〈

Tr
1

x − M

〉

= ‘lim’

〈
∑

i

1
√

qx − hi

〉

. (2.10)

Let us make this definition more precise. It is based on the solution of loop equations
(Schwinger–Dyson equations for matrix integrals), found in [18].

The method of [18] consisted in finding all the corrections to the expectation value
of the resolvent, as an expansion in powers of the parameter in front of TrV (M) in
the matrix model weight, i.e. in our case e−

√
q Tr V (M), i.e. a power expansion in

√
q. The

corrections were found in [18], by solving recursively the set of Schwinger–Dyson equations
of the matrix model, also called loop equations. The general method for finding the whole
power series in

√
q was then formalized into the notion of symplectic invariants in [20].

Thus, the definition of the spectral curve needed is the one which allows us to follow
the solution of [18, 13, 20], i.e. the solution of the leading order loop equation2, as follows:

Definition. Given an integer s ≥ 1, and a set of positive real numbers εi, i = 1, . . . , s,
with

∑
i εi = N/

√
q called ‘filling fractions’, we look for a set of cuts [ai, bi] in the complex

plane, and we look for a function W (x) analytical outside the cuts, which behaves like
N/

√
q x at ∞, and such that on each cut,

W (x + i0) + W (x − i0) = V ′(x), ∀x ∈ [ai, bi] (2.11)

and

− 1

2iπ

∮

[ai,bi]

W (x) dx = εi. (2.12)

The function W (x) is called the spectral curve.

Once the filling fractions are given, the solution is more or less unique. Therefore, we
have to specify filling fractions.

In fact, since the Schwinger–Dyson equations3 are independent of the integration
path for the N eigenvalues, there are as many solutions of loop equations of matrix
models (i.e. as many possible spectral curves corresponding to a given potential V (M))
as there are independent integration contours where the integral can be defined. A choice
of integration contour is equivalent to a choice of filling fractions.

Here we want the integration contour for the N eigenvalues ξi in equation (2.4) to be
CN , and we have to find which filling fractions it corresponds to.

The spectral curve is the ‘large q’ resolvent, i.e. it gives the asymptotic shape of a
typical large partition. For this problem, the typical shape of large partitions has been
determined for a long time [55, 46, 47, 42], and has a very special property called the ‘arctic
circle’. We describe it below. This property will allow us to find the filling fractions, i.e. the
spectral curve which corresponds to our problem.

2 The true definition of the leading order loop equation has nothing to do with a large q limit; it is obtained by
dropping the connected two-point function from the loop equation—see [20]. But for one-matrix models, this turns
out to be equivalent to solving the saddle-point equations for the eigenvalues (i.e. the hi’s), and this simplifies to
give the definition presented here.
3 Schwinger–Dyson equations are just obtained by integration by parts of the eigenvalue integral.

doi:10.1088/1742-5468/2008/07/P07023 8
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2.3.1. Arctic circle. Our partition function ZN =
∑

n(λ)≤N P(λ) e−A(λ) depends on N

through the summation bound. What was observed [32] is that typical partitions have
a typical length 〈n(λ)〉 = n(q, tk), and if we choose N > n, the hi’s with N ≥ i > n
(i.e. hi < N − n) of a typical large partition are ‘frozen’, i.e. hi = N − i, i.e. λi = 0.

n is sometimes called the arctic circle, because everything above the arctic circle
is frozen [32]. This means that asymptotically ZN ∼ Zn, up to exponentially small
corrections, i.e. the Fg’s should not depend on N , and the N dependence should be only
in the exponentially small corrections:

ln ZN ∼
∞∑

g=0

q1−gFg + O(e−
√

q C(N)). (2.13)

This also means that, order by order in a 1/q expansion,

ln Z∞ ∼ ln ZN ∼ ln Zn ∼
∑

g

q1−gFg. (2.14)

In other words, if the arctic circle property holds, we may determine the Fg’s by choosing
N = n for instance, or by choosing our favored value for N . We can also try to find a
spectral curve for any N , and then check that the Fg’s are indeed independent of N , and
this is what we do below.

2.3.2. Chiral ansatz. We try to guess the form of the spectral curve, and then we have to
check the consistency of our hypothesis.

The fact that all the hi’s beyond n are frozen means that the large q resolvent (i.e. the
spectral curve) can be written as

W (x) =
1
√

q

N∑

i=n+1

1

x − (N − i)/
√

q
+ W̃ (x − b), b =

N − n
√

q
, (2.15)

where W̃ (x) has a cut [0, a] with an edge at 0.
In general, W̃ may have several cuts, depending on the tk’s. Here we assume that the

tk’s are such that W̃ has only one cut. We discuss this assumption below in section 2.7.
Thus, W (x) corresponds to a multicut solution, with N − n + 1 cuts; one of them is

[b, b+ a] with filling fraction n/
√

q, and the others are degenerate cuts [(N − i)/
√

q, (N −
i)/

√
q] with filling fraction 1/

√
q. This form of the spectral curve is also called the chiral

ansatz in the literature, after the solution of [14, 37]; see [12].
W̃ (x) is thus a one-cut solution and behaves for large x as

W̃ (x) ∼ n
√

q

1

x
, (2.16)

and is such that

W̃ (x + i0) + W̃ (x − i0) = V ′(x + b) − 2
√

q

N∑

i=n+1

1

x + b − (N − i)/
√

q
, ∀x ∈ [0, a].

(2.17)
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In other words, we have to solve the same problem as for W , but with a new condition
that the cut is of the form [0, a].

Notice that

2
√

q

N∑

i=n+1

1

x + b − (N − i)/
√

q
= 2 ln

x + b

x
− 1

√
qx

+
1

√
q(x + b)

+

∞∑

m=1

B2m

m qm

(
1

x2m
− 1

(x + b)2m

)

, (2.18)

where Bm are the Bernoulli numbers, and therefore the RHS of equation (2.17) is

V ′(x + b) − 2
√

q

N∑

i=n+1

1

x + b − (N − i)/
√

q

= 2 lnx +
d∑

k=1

tk+1

(

x − n − 1/2
√

q

)k

+
1

√
qx

−
∞∑

m=1

B2m

m qm x2m
. (2.19)

Notice that it is independent of N .

2.3.3. Edge at zero. We want to determine W̃ (x), which has only one cut [0, a].
One-cut solutions are better written in the Zhukovski parametrization:

x(z) = γ

(

z + 2 +
1

z

)

, a = 4γ. (2.20)

Notice that each value of x corresponds to two values of z, namely z and 1/z. We call the
domain |z| > 1 the physical sheet, and |z| < 1 the second sheet.

Then we write

d∑

k=1

tk+1

(

x − n − 1/2
√

q

)k

=
d∑

k=0

uk(z
k + z−k), (2.21)

where the coefficients uk are functions of γ. We determine γ by the condition

γ = e−u0 . (2.22)

The one-cut resolvent W̃ (x) is then

ω(z) = W̃ (x(z)) =

d∑

k=1

ukz
−k + 2 ln (1 + 1/z) +

1

2
√

qx(z)
−

∞∑

n=1

B2n

2n(
√

qx(z))2n
, (2.23)

and it does indeed satisfy equation (2.11):

ω(z) + ω(1/z) = 2 lnx +
d∑

k=1

tk+1

(

x − n − 1/2
√

q

)k

+
1

√
qx

−
∞∑

m=1

B2m

m qm x2m
, (2.24)
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and it has (order by order in 1/
√

q) no singularity in the physical sheet |z| > 1, and it
behaves like O(1/z) for large z:

ω(z) ∼ n
√

qx(z)
∼

(

(u1 + 2)γ +
1

2
√

q

)
1

x(z)
+ O(1/z2), (2.25)

i.e. we find n:

n − 1
2

= (u1 + 2)γ
√

q. (2.26)

The uk’s are then found from equation (2.21):

d∑

k=0

uk(z
k + z−k) =

d∑

k=1

tk+1 e−ku0

(

z +
1

z
− u1

)k

. (2.27)

In particular, the coefficients of z0 and z1 are

2u0 =

d∑

k=1

(−1)k tk+1 e−ku0

[k/2]∑

j=0

k! uk−2j
1

j!j!(k − 2j)!
,

u1 = −
d∑

k=1

(−1)ktk+1 e−ku0

[(k−1)/2]∑

j=0

k! uk−2j−1
1

j!(j + 1)!(k − 2j − 1)!
,

(2.28)

which means that (after eliminating u1) u0 satisfies a transcendental equation of the form

Polynomial(u0, e
−u0) = 0. (2.29)

It is important to notice that this equation is independent of N and q, and thus, u0, u1,
and all the uk’s depend only on the tk’s; they do not depend on N and q.

The resolvent W (x) is thus given by equation (2.15):

W (x(z)) =
1
√

q

N∑

i=n+1

1

x − (N − i)/
√

q
+ ω(z), x(z) = b + γ

(

z + 2 +
1

z

)

. (2.30)

The spectral curve4 is the density y = 1
2
(W (x− i0)−W (x+i0)), i.e. the discontinuity

of W along the cut, i.e. y(z) = 1
2
(ω(1/z) − ω(z)); therefore our spectral curve is

E(tk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(z) =
N − 1/2

√
q

+ e−u0

(

z +
1

z
− u1

)

y(z) = ln (z) + 1
2

d∑

k=1

uk(z
k − z−k).

(2.31)

The same spectral curve was obtained by Marshakov and Nekrasov in [42]; it was derived
from finding the optimal profile function which maximizes the free energy F0. It is well
known that the extremization equation gives also equation (2.11).

4 All the construction of [18, 20] is unchanged if we add to the spectral curve an arbitrary rational function of x;
this is why the spectral curve can be sometimes chosen to be W (x), and sometimes y(x). From now on, we will
call y(x) the spectral curve.
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2.3.4. Consistency of the chiral ansatz. We have to check that the Fg’s are independent of
N . The resolvent W (x) is parametrically given by the spectral curve:

x(z) =
N − 1/2

√
q

+ e−u0

(

z +
1

z
− u1

)

,

W (x(z)) =

N∑

i=n+1

1
√

qx(z) − N + i
+

d∑

k=1

ukz
−k + 2 ln (1 + 1/z) +

1

2
√

qx(z)

−
∞∑

n=1

B2n

2n(
√

qx(z))2n
.

(2.32)

It was proved in [20, 21], that the Fg’s are invariant under transformations of the spectral
curve which preserve the symplectic form dx ∧ dy (this is why they are called symplectic
invariants). In particular they are invariant if we add a constant to the function x(z),
and if we add to W (x(z)) any rational function of x(z). Therefore, the previous spectral
curve is symplectically equivalent to

x(z) = e−u0

(

z +
1

z
− u1

)

,

y(z) = ln (z) + 1
2

d∑

k=1

uk(z
k − z−k),

(2.33)

and this last spectral curve is clearly independent of N and q.
Therefore the Fg’s are indeed independent of N , which proves that the chiral ansatz

(i.e. the arctic circle property) was consistent.
As a bonus, we also find that the Fg’s are independent of q.

2.4. Summary: asymptotic expansion

Using the known properties of matrix models, the logarithm of the following partition
function:

ZN(q, tk) =
∑

n(λ)≤N

P(λ) q|λ| exp

(

−
∑

k≥2

tk q(1−k)/2

k
Ck(λ)

)

(2.34)

can be written as a large q expansion:

ln ZN(q, tk) ∼
∞∑

n=0

q1−n Fn(E(tk)), (2.35)

where the Fn’s are the symplectic invariants of [20] computed for the spectral curve E(tk)
of equation (2.31). The spectral curve, which depends only on the tk’s, is found by solving
the transcendental equations of equation (2.28).

Some explicit examples are treated below in section 2.6.
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2.5. Asymptotic shape of large partitions

2.5.1. Leading order shape of large partitions. If we write z = eiφ we have the equilibrium
density in trigonometric form:

ρeq(x) = ‘ lim
q→∞

’
1
√

q

∑

i

〈

δ

(

x − hi√
q

)〉

=
y

iπ
=

1

π

(

φ +

d∑

k=1

uk sin (kφ)

)

,

x = b + 2γ (1 + cos φ),

(2.36)

and the integrated density I =
√

q
∫ b+4γ

x
ρeq dx is

I =

√
qγ

π

(

2(sin φ − φ cos φ) + u1(φ − sin φ cos φ)

−
d∑

k=2

uk

(
sin (k + 1)φ

k + 1
− sin (k − 1)φ

k − 1

) )

, (2.37)

so I(φ = 0) = 0 and I(φ = π) = n − 1
2
.

I(x) is the integral of the density, i.e. the number of hi’s between x and b + 4γ.
Remember that hi =

√
qxi, and thus hI(x) =

√
qx =

√
q(b+2γ(1+cos φ)). In other words,

the inverse function
√

q x(I) gives the typical partition hI(x). We have parametrically

hI = N − n + 2γ
√

q(1 + cos φ),

I =

√
qγ

π

(

2(sin φ − φ cos φ) + u1(φ − sin φ cos φ)

−
d∑

k=2

uk

(
sin (k + 1)φ

k + 1
− sin (k − 1)φ

k − 1

))

.

(2.38)

The typical λI = hI + I − N ’s are given by

λI = I − n + 2γ
√

q(1 + cos φ). (2.39)

If we plot λI + I as a function of λI − I, we get the typical shape of the π/4 rotated
partition. Examples are plotted below in section 2.6.

2.5.2. Subleading fluctuations. The correlation functions W
(g)
n defined in [20] give all the

corrections to the densities and density correlations of the hi’s, to all orders in
√

q. For
instance we have

〈∑

i

1
√

qx − hi

〉

∼
∞∑

g=0

q−g W
(g)
1 (x), (2.40)

and more generally the cumulant functions expand as
〈

n∏

k=1

(
∑

i

1

xk − hi/
√

q

)〉

c

∼
∞∑

g=0

q1−g−n/2 W (g)
n (x1, . . . , xn), (2.41)

where the W
(g)
n ’s are the correlators defined in [20] for the spectral curve equation (2.31).
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By taking the discontinuity (or by subtracting the principal part), we also obtain the
correlations of densities ρ(x) =

∑
i δ(x − hi):

〈ρ(x)〉 ∼ √
q

y(x)

iπ
− 1

2iπ

∞∑

g=1

q1/2−g W
(g)
1 (x), (2.42)

and more generally

〈ρ(x1) · · ·ρ(xn)〉c ∼
in

(2
√

2π)n

∞∑

g=1

q1−g−n/2 W (g)
n (x1, . . . , xn). (2.43)

The method for computing the W
(g)
n ’s is explained in [20], and it can easily be implemented

on a computer.

2.6. Examples

2.6.1. No Casimirs. We choose all tk = 0.
Consider the partition generating function:

ZN(q) =
∑

n(λ)≤N

P(λ) q|λ| = 1 + q +
q2

2
+

q3

6
+ · · · . (2.44)

Equations (2.28) reduce to uk = 0 for all k, and γ = 1, and n − 1
2

= 2
√

q. The spectral
curve is thus

E =

⎧
⎪⎨

⎪⎩

x(z) =
N − 1/2 − 2

√
q

√
q

+ z +
1

z
+ 2,

y(z) = ln (z),

(2.45)

and therefore

ln ZN(q) ∼
∞∑

g=0

q1−g Fg(E). (2.46)

In fact, it is well known [46] that when N → ∞, the generating function of partitions is

Z∞ =
∑

λ

P(λ) q|λ| = eq, (2.47)

i.e.,

ln Z∞ = q, (2.48)

which shows that

Fg(E) = δg,0. (2.49)

• Density and typical shape
We have

I =
2
√

q

π
(sin φ − φ cos φ), λ = I − 1

2
+ 2

√
q cos φ, (2.50)
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i.e. by writing λ − I = 2
√

qu we recover the famous [6, 56] asymptotic shape of large
partitions:

λ − I = 2
√

qu, λ + I = 4
√

q (
√

1 − u2 + u arcsin(u)). (2.51)

2.6.2. Second Casimir. In this example, we choose only t2 �= 0. Consider the following
sum:

ZN(q, t2) =
∑

n(λ)≤N

P(λ) q|λ| e−(t2/2
√

q)C2(λ). (2.52)

Equations (2.28) give

2u0 = −t2 e−u0 u1, u1 = t2 e−u0 , (2.53)

i.e. u0 is determined by

−2u0 e2u0 = t22 → −2u0 =

∞∑

k=1

kk−1

k!
t2k
2 = t22 + t42 +

3

2
t62 + · · · . (2.54)

Then we have

u1 =
√
−2u0, γ = e−u0 , n − 1

2
= (2 + u1) e−u0

√
q. (2.55)

The spectral curve is

E(t2) =

⎧
⎪⎨

⎪⎩

x(z) = e−u0 (z + z−1 −
√
−2u0),

y(z) = ln z +

√
−2u0

2

(

z − 1

z

)

,
− 2u0 = t22 e−2u0 . (2.56)

The same spectral curve was already found by [42] who computed F0. Here, we also have
the full topological expansion:

ln ZN(q, t2) ∼
∞∑

g=0

q1−g Fg(E(t2)). (2.57)

For example we find (using Mathematica with the definitions of [20])

F1 = 1
24

ln
(
e−2u0 (1 + 2u0)

)

F2 =
e2u0

180

u3
0 (1 − 12u0)

(1 + 2u0)5

....

(2.58)
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As an example, we plot the typical shape of a partition with t2 = 0.2:

and corrections to the limit shape are given by
〈

∑

i

1
√

qx(z) − hi

〉

= ω(z) +
1

q
ω

(1)
1 (z) + O(q−2), (2.59)

where

ω
(1)
1 (z) =

z2

24 e−2u0 (1 + 2u0)
2 (z2 − 1)5 ((1 + z2)(1 − 14z2 + z4) − 24 (−2u0)

3/2 z3

+ 2
√
−2u0 z (1 + 10 z2 + z4) + 4 u0 (1 + z2)(1 − 8z2 + z4)). (2.60)

One may observe that the density 1/iπy(z) is positive (as a density should be) only
if t2 < e−1/2. At t2 = e−1/2 there is a phase transition at which our ‘one-cut’ hypothesis
ceases to be valid.

2.7. Phase transitions and number of cuts

In section 2.3.2, we made the assumption that W̃ (x) has only one cut [0, a]. Then we
could compute the density of the hi’s on the cut. It may happen that the density that we
compute this way is not positive, which means that our one-cut assumption was possibly
wrong.

For example, in the example of section 2.6.2, a ‘pure gravity’ phase transition
(i.e. conformal field theory (3, 2), characterized by the Painlevé I equation) occurs when
t2 = e−1/2 (i.e. u0 = −1

2
).

In fact, all situations may occur as we vary the parameters tk: cuts may split, merge,
shrink, or appear; they can move to the complex plane, and branch so that they form trees.
Most of those transitions have been described in the random matrix theory literature, and
take place also in this particular matrix model.

In principle, the correct assumption is the one which minimizes Re F0.
It would be interesting to study the phase transitions between different regimes of

the tk’s, and see how the cuts change, and thus how the shape of typical large partitions
change. This would be merely an adaptation of mostly known phase transitions of matrix
models, specialized to this case. Although the method of [18, 20] is applicable to all those
situations for any number of cuts, we will not use it in this paper.

However, a non-positive density is not a problem when the partition functions that
we consider are only formal series.

doi:10.1088/1742-5468/2008/07/P07023 16

http://dx.doi.org/10.1088/1742-5468/2008/07/P07023


J.S
tat.M

ech.
(2008)

P
07023

All order asymptotic expansion of large partitions

The importance of the one-cut assumption comes from the fact that most often,
this is the assumption which gives the formal generating series which enumerates some
objects. Formal generating series are very often obtained from Feynman’s method, i.e. a
perturbative expansion near a minimum of an action. We keep the quadratic part of
the action in the exponential, and Taylor expand the non-quadratic terms, so that we
end up having to compute series of polynomial moments of Gaussian integrals, which are
represented diagrammatically through Wick’s theorem. This method naturally associates
combinatorics objects to integrals [19].

A one-cut case means that all eigenvalues of the random matrix are expanded near
the same minimum, whereas multicut cases mean that we expand near several minima.
Multicut cases lead to formal series which enumerate objects of different types (one type
for each minimum, i.e. for each cut). This is less natural than one-cut cases where we
enumerate only objects of the same type.

Thus, for formal series, the correct assumption on the number of cuts is not obtained
by minimizing ReF0, but is obtained from the type of objects which we wish to enumerate,
i.e. near which minimum that we want to expand.

Here in this paper, we focused on the one-cut case for simplicity, but it is clear that
the entire method would work for any number of cuts. The symplectic invariants of [20]
were indeed defined for any number of cuts.

2.7.1. Universal regimes. Since we have a matrix model, we find the same universal regimes
as usual in matrix models. Correlation functions in various regimes are obtained from
some universal kernels. Also, it was found in [20] (cf theorem 8.1 in [20]) how to study
the vicinity of phase transitions of the Fg’s.

For instance it is clear that we have a ‘sine kernel’ in the bulk of the spectrum at
microscopic scaling, a ‘Szegö kernel’ in the bulk at macroscopic scaling, an ‘Airy kernel’
and the Tracy–Widom law [58] (which is also the conformal minimal theory (1, 2)) near
regular turning points, and we have the Kadomtsev–Petviashvili (KP) kernels (i.e. minimal
conformal field theory (p, q)) near singular points of the type y ∼ xp/q, and polynomial
kernels of [23] when a new cut opens. In general, the KP kernel for a (p, q) critical point,
is the kernel (defined in section 9.1 in [20]) of the limit spectral curve (see section 10.3
of [20]) of equation

Ep,q =

{
x(z) = Q(z), deg Q = q,

y(z) = P (z), deg P = p.
(2.61)

However, we shall not study the details of those universal regimes and transitions in
this paper.

3. The q-deformed Plancherel measure

In this section, we repeat the same transformation into a matrix integral, chiral ansatz
and topological expansion, for the q-deformed Plancherel measure.

We compute

ZN(q, tk) =
∑

n(λ)≤N

Pq(λ) exp

(

− 1

gs

d+1∑

k=1

tk gk
s

k
Ck(λ)

)

, q = e−gs, (3.1)
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in the small gs topological expansion regime:

ln ZN(e−gs, tk) ∼
∞∑

g=0

g2g−2
s Fg. (3.2)

We shall discuss an important application of this model to topological string theory
in section 4.4.2 below.

3.1. Transformation into a matrix integral

Let

q = e−gs, T = gs(N − 1
2
). (3.3)

Let the contour Cq be a circle of radius r with |q−1| > r > 1 centered at 0. In
particular it encloses all the qh with h ∈ N.

Consider the q-series

g(x) =

∞∏

n=1

(

1 − 1

x
qn

)

. (3.4)

It vanishes when x = qh with h ∈ N
∗, and we have

g(qh) = 0, g′(qh) = −g(1)2 eiπh q−h(h−1)/2

qh(1 − qh) g(q−h)
, (3.5)

and thus the function

f(x) = −g(1)2 e−iπ/gs ln (x)e1/2gs (ln x)2

(1 − x)
√

x g(x)g(1/x)
(3.6)

has simple poles with residue 1 when x = qh for h ∈ N (one easily sees that it has a pole
of residue 1 at x = 1 as well).

Notice that if x = qh with h ∈ N, we have

[h]! =
h∏

j=1

(q−j/2 − qj/2) = q−h(h+1)/4 g(1)

g(1/x)
. (3.7)
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Therefore we have
∮

CN

dx1 . . .dxN

∏

i<j

(xi − xj)
2

∏

i

f(xi)
e−A(ln (xi)/ ln q) (g(1/xi)

2/g(1)2) eln (xi) ln (qxi)/2 ln q

xN−1
i

=

∞∑

h1,...,hN=0

∏

i<j

(qhi − qhj )2
∏

i

e−A(hi)

[hi]!2
q(1−N)hi

= N !
∑

h1>···>hN≥0

∏
i<j(q

hi − qhj)2

[hi]!2

∏

i

e−A(hi) q(1−N)hi

= N !
∑

h1>···>hN≥0

∏
i<j(q

(hi−hj)/2 − q(hj−hi)/2)2

[hi]!2

∏

i

e−A(hi). (3.8)

In other words, the q-deformed Plancherel measure partition function is a matrix
integral:

∑

h1>···>hN≥0

∏
i<j[hi − hj ]

2

[hi]!2

∏

i

e−A(hi) =
1

N !

∫

HN (Cq)

dM e−(1/gs)Tr V (M), (3.9)

with the potential

1

gs

V (x) = ln g(x) − ln g(1/x) + (N − 1) lnx +
iπ

gs

ln x + ln (1 − x)

+
1

gs

∑

k

(−1)k tk
k

(T + ln x)k. (3.10)

Remark. Since the contour Cq is a circle of radius r, the ensemble HN(Cq) is (up to a
scaling r) the ensemble of unitary matrices

HN(Cq) = r U(N). (3.11)

It was already noticed [5, 33] that sums over partitions with the Plancherel measure have
many common properties with unitary matrix models, and here the connection becomes
very apparent.

3.2. The potential

We use the following asymptotic expansion of the q-series (for |q−1| > |x| ≥ 1):

ln (g(x)) = − 1

gs

∞∑

m=0

Li2−m(x−1)
Bm

m!
gm

s , (3.12)

where Bm is the mth Bernoulli number (B0 = 1, B1 = −1
2
, . . ., and B2m+1 = 0 if m ≥ 1),

and Lin(x) =
∑∞

k=1 xk/kn is the polylogarithm function. We have

x
g′(x)

g(x)
=

1

gs

∞∑

m=0

Li1−m(x−1)
Bm

m!
gm

s . (3.13)

doi:10.1088/1742-5468/2008/07/P07023 19

http://dx.doi.org/10.1088/1742-5468/2008/07/P07023


J.S
tat.M

ech.
(2008)

P
07023

All order asymptotic expansion of large partitions

The polylogarithm functions have many properties, in particular,

Li′n =
1

x
Lin−1, (3.14)

Li−m(1/x) = (−1)mLi−m(x) m > 0, (3.15)

Li1(x) = − ln (1 − x), Li0(x) =
x

1 − x
, (3.16)

and Li−m with m > 0 is a rational fraction with poles at x = 1 and which vanishes at
x = 0 and at x = ∞.

Therefore,

xV ′(x) =

∞∑

m=0

(Li1−m(x) + Li1−m(x−1))
Bm

m!
gm

s

+ (N − 1)gs + iπ + gs
x

x − 1
−

d∑

k=0

(−1)k tk+1(T + ln x)k

= (−2 ln (1 − x) + ln x − iπ) +
gs

2
+ 2

∞∑

m=1

Li1−2m(x)
B2m

2m!
g2m

s

+ (N − 1)gs + iπ + gs
x

x − 1
−

d∑

k=0

(−1)k tk+1(T + ln x)k

= − 2 ln (1 − x) + ln x + T −
d∑

k=0

(−1)k tk+1(T + ln x)k

+
gsx

x − 1
+ 2

∞∑

m=1

Li1−2m(x)
B2m

2m!
g2m

s . (3.17)

Notice that terms on the last line are rational fractions with poles at x = 1, and which
vanish at x = 0 and at x = ∞.

3.3. Restriction to two Casimirs

In principle, the recipe above should allow us to find the spectral curve for any tk’s, but
for simplicity, from now on, we shall assume that tk = 0 if k ≥ 3, and we write

t1 = t, t2 = p − 1, t3 = t4 = t5 = · · · = 0. (3.18)

The potential is then

xV ′(x) = −2 ln (1 − x) + p(ln x + T ) − t + 2
∞∑

m=1

Li1−2m(x)
B2m

2m!
g2m

s +
gsx

x − 1
. (3.19)

The notation (t, p − 1) = (t1, t2) is motivated by the application to algebraic
geometry [12, 41], namely the computation of the Gromov–Witten invariants of Xp, which
we present in section 4.4.2, see equation (4.13).

Also, a motivation for the assumption tk = 0 for k ≥ 3 is that the spectral curve is
much simpler in that case. For higher tk’s, we would need to play with tedious identities
among polylogarithms, and thanks to this assumption, we do not need polylogarithms
higher than Li1(x) = − ln (1 − x).
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3.4. Chiral ansatz and dependence on N

We shall not repeat the discussion of sections 2.3.1, 2.3.2 and 2.3.4. We leave it to the
reader (following the same steps as for the undeformed Plancherel measure) to check that
the spectral curve has an arctic circle property, i.e. all hi’s with i > n are frozen, and
we can choose a chiral ansatz [14, 12] such that the Fg’s do not depend on N . Therefore
we chose N = n, such that the edge of the small q average distributions of the hi’s is at
h = 0, i.e. x = 1. The authors of [12] checked the consistency of the chiral ansatz, by
verifying that F0 is independent of T (there is a T 2 scaling between ours and that of [12]).

In other words, in an appropriate regime of t and p, we may choose T , such that the
spectral curve corresponds to a one-cut distribution, with edge at x = 1.

3.5. Spectral curve

Like in section 2.3, the spectral curve is determined by

W (x + i0) + W (x − i0) = V ′(x), ∀ x ∈ [a, 1], (3.20)

and W (x) is analytical outside the cut [a, 1], and at large x,

W (x) ∼ ngs

x
. (3.21)

Since we look for a one-cut solution, we again use the Zhukovski parametrization and
write

x(z) = 1 − γ

(

z + 2 +
1

z

)

, a = 1 − 4γ. (3.22)

Notice that each value of x corresponds to two values of z, namely z and 1/z. We call the
domain |z| > 1 the physical sheet, and |z| < 1 the second sheet.

Define z0 such that |z0| ≥ 1 and x(z0) = 0, that is,

1

γ
= (1 + z0)(1 + 1/z0). (3.23)

Then, the resolvent is W (x(z)) = ω(z):

x(z)ω(z) = −2 (ln (1 + 1/z) − ln (1 + 1/z0)) + p (ln (1 − 1/zz0) − ln (1 − 1/z2
0))

+
∞∑

m=1

Li1−2m(x(z))
B2m

2m!
g2m

s +
gsx(z)

2(x(z) − 1)
. (3.24)

Indeed, one easily checks that ω(z) has no singularity in the physical sheet |z| > 1. The
condition ω(z) ∼ gsn/x(z) at large z implies

2 ln (1 + 1/z0) − p ln (1 − 1/z2
0) = T = gs(n − 1/2). (3.25)

Then, the loop equation, equation (3.20), implies

x(z)(ω(z) + ω(1/z) − V ′(x(z))) = 0

= 2 (ln γ + 2 ln (1 + 1/z0)) − p (ln (γz0) + 2 ln (1 − 1/z2
0)) + t − pT, (3.26)
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and therefore z0, T and γ are determined by the three equations

0 = 2 (ln γ + 2 ln (1 + 1/z0)) − p (ln (γz0) + 2 ln (1 − 1/z2
0)) + t − pT,

T = 2 ln (1 + 1/z0) − p ln (1 − 1/z2
0),

1

γ
= (1 + z0)(1 + 1/z0),

(3.27)

and after a little bit of algebraic manipulation, z0 is determined as a function of t and p
by

e−t =
1

z2
0

(

1 − 1

z2
0

)p(p−2)

. (3.28)

One should notice that this equation is symmetric in p ↔ 2 − p, which reflects the
symmetry of the Calabi–Yau space Xp ↔ X2−p. The same equation was found in [12]
where the authors wrote w = 1−1/z2

0 (see equation (4.34) in [12] or equation 3.14 of [41]).
Order by order in e−t we have (using the Lagrange inversion formula)

1

z2
0

= e−t +

∞∑

k=2

e−kt

k!

k−2∏

j=0

(kp(p − 2) + j)

= e−t + p(p − 2)e−2t +
p(p − 2)(3p(p − 2) + 1)

2
e−3t + · · · . (3.29)

We also determine T and γ through

e−T =
(1 − 1/z0)

p

(1 + 1/z0)2−p
,

1

γ
= (1 + z0)(1 + 1/z0). (3.30)

The arctic circle is at N = n = 1
2

+ T/gs.
Finally, our spectral curve is

E(t, p) =

⎧
⎪⎪⎨

⎪⎪⎩

x(z) =
(1 − z/z0)(1 − 1/zz0)

(1 + 1/z0)2

y(z) =
1

x(z)

(

− ln z +
p

2
ln

(
1 − z/z0

1 − 1/zz0

)) , e−t =
1

z2
0

(

1 − 1

z2
0

)p(p−2)

.

(3.31)

One may check that this spectral curve is identical to that of [12, 41] (see
equation (3.31) in [41]); therefore it gives the same Fg’s.

This proves the conjecture of [41].

3.6. Topological expansion

3.6.1. Topological expansion. Since Z is by definition a formal power series in gs (it is the
generating function of Gromov–Witten invariants of Xp; see section 4.4.2), and is given
by a matrix model, using [20], we find that Z has a topological expansion

ln Z =
∞∑

g=0

g2g−2
s Fg(E), (3.32)

where the coefficients Fg(E) are the symplectic invariants defined in [20].
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Let us compute the few first orders (the first orders were computed in [12]):

• F0 is found from the general theory of [20] through its third derivative:

∂2F0

∂t2
= − ln

(

1 − 1

z2
0

)

=
∑

k

Γ(k(p − 1)2)

k! Γ(kp(p − 2) + 1)
e−tk. (3.33)

It can be checked that this leads to the expression found in [12, 41]:

F0 = p(p − 2)Li3

(
1

1 − z2
0

)

+ (p − 1)2Li3(1/z
2
0) −

p(p − 2)(p − 1)2

6

(

log

(

1 − 1

z2
0

))3

.

(3.34)

For instance if p = 0 or p = 2 we have F ′′′
0 =

∑
k ekt, i.e. F0 =

∑
k ekt/k3 = Li3(e

t).
And for p = 1 we have F ′′′

0 =
∑

k(−1)k ekt, i.e. F0 = Li3(−et).

• F1 is equal to (according to [20])

F1 =
1

24
ln

(
γ2y′(1)y′(−1)

)
=

1

24
ln

(
z2
0((p − 1)2 − z2

0)

(1 − z2
0)

3

)

, (3.35)

which is the same as in [41].

• F2 is obtained from [20] (taking a few minutes with the basic Mathematica program):

F2 =
1

2880 (z2
0 − (p − 1)2)

5 ((p − 1)8(−1 + 12z2
0 − 12z4

0)

+ (p − 1)6z2
0(−5 + z2

0 + 2z4
0) + 35(p − 1)4z4

0(−1 + z2
0)

+ (p − 1)2z4
0(2 + z2

0 − 5z4
0) + z6

0(12 − 12z2
0 + z4

0)). (3.36)

• Higher Fg’s can be obtained easily with a higher computing time.

3.6.2. Comparison with the conjecture of [41]. The authors of [12] have computed the
spectral curve as the solution of the large N saddle-point equation for the hi’s.
Then, Mariño [41] computed the first few orders F0 and F1 for that spectral curve,
and conjectured that the Gromov–Witten invariants were generated by the symplectic
invariants Fg of the same spectral curve for all g. However, our approach is rather different,
and it is worth commenting on ‘why it works’. It is due to a few ‘miracles’.

In fact, in their computation, the authors of [12] worked in the leading large N limit,
and they made several approximations.

• The first of them is that they set T = Ngs instead of T = (N − 1
2
)gs. This makes no

difference to leading order, but it can make a big difference to subleading orders.

• The second is that they neglected all terms with a 1/N behavior in the Plancherel
measure, keeping only Li2 and Li1; they neglected all the Bernoulli series.

• The third is that they neglected the discreteness of the hi’s, and replaced them by
continuous variables, i.e. they replaced sums by integrals, whereas here in this paper,
we encoded the discreteness of the hi’s by the q-series g(qh), which forces (without
approximation) the hi’s to be integers. The ‘miracle’ is that the g-function combines
very well with the Plancherel measure.
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With those approximations, they deduced a spectral curve, and quite miraculously, it
turns out that it is indeed the same curve as we found here, modulo symplectomorphisms.
In some sense the three approximations compensate each other, and they indeed found
the right spectral curve which gives the answer to all orders. This ‘miracle’ is of course
due to the very special nature of the Plancherel measure; it would not have worked with
another arbitrary measure.

3.7. Symplectic invariance and mirror symmetry

Here, we use the fact that the Fg’s are symplectic invariants, i.e. two spectral curves which
have the same symplectic form dx ∧ dy have the same Fg’s.

Notice that the spectral curve equation (3.31) has the form

E(t, p) =

⎧
⎨

⎩

x(z) = u(z),

y(z) =
1

x(z)
ln v(z),

(3.37)

where both u and v are rational fractions of z.
The symplectic form dx ∧ dy is thus

dx ∧ dy = d ln u(z) ∧ d ln v(z), (3.38)

and therefore the spectral curve E(t, p) is symplectomorphic to the following new spectral
curve:

Ẽ(t, p) =

⎧
⎪⎨

⎪⎩

x(z) = ln u(z), u(z) = γz0

(
1 − z

z0

)(
1 − 1

zz0

)
,

y(z) = ln v(z), v(z) = 1
z

(
1−z/z0

1−1/zz0

)p/2

,
(3.39)

which is an algebraic curve in ex and ey, i.e. there exists a polynomial H(u, v) such that

H(ex, ey) = 0. (3.40)

This is typically an equation of a mirror Calabi–Yau threefold in type B topological string
theory [30, 4, 31, 9].

Remark. Notice that the transformation (u, v) → (uf , v) is also a symplectic
transformation which leaves the Fg’s unchanged. It corresponds to the so-called framing
transformation.

3.8. Mirror curve

The curve H(ex, ey) = 0 can be written by eliminating z:

(ey + e−y)

(

1 +
1

z0

)p/2

exp/2 =
∑

j

(
p
j

)
(−1)j

zj
0

Tj−1

(

(1 + z0)

(

1 +
1

z0

)

(1 − ex) − 2

)

,

(3.41)

where Tj is the jth Tchebychev polynomial, such that Tj(z + z−1) = zj + z−j .
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• Example p = 0 (z0 = et/2):

v +
1

v
+ 2 = (1 − u)(1 + et/2)(1 + e−t/2), (3.42)

i.e.,

0 = (1 + ey)(1 + e−y) + (ex − 1)(1 + et/2)(1 + e−t/2). (3.43)

• Example p = 1 (z2
0 − 1 = et):

v2 +
1

v2
= (1 + z0)

2u + (1 − z0)
2u−1 − 2z2

0 . (3.44)

• Example p = 2 (z0 = −et/2):

v + v−1 + 2 = (1 − u−1)(1 + et/2)(1 + e−t/2), (3.45)

which is symplectically equivalent to the case p = 0 on changing u → u−1.

• Example p = −1 (z−2
0 (1 − z−2

0 )3 = e−t):

v2 + v−2 =

(

1 +
1

z0

)2

u +

(

1 − 1

z0

)2

u−1 − 2

z2
0

. (3.46)

4. Some applications

In this section we discuss some applications of our method.
Important applications of sums of partitions with the Plancherel measure include

growth phenomena (crystals), lengths of increasing subsequences of a random sequence,
totally asymmetric exclusion processes, and algebraic geometry through the computation
of Gromov–Witten invariants and Hurwitz numbers.

Many of those applications are based on standard Young tableaux.
A standard Young tableau is a Ferrer diagram filled with numbers such that the

numbers are increasing along each row and along each column. The number of standard
Young tableaux of shape λ is dim(λ).

4.1. Longest increasing subsequence

Let σ ∈ Σk be a permutation of k elements. Call l(σ) the length of the longest increasing
subsequence of σ.

The Robinson–Schensted algorithm [52, 53] gives a bijection between the group of
permutations Sk and the set of pairs of standard Young tableaux with k boxes (T, T ′)
with the same shape λ (shape(T ) = shape(T ′) = λ, |λ| = k). This bijection illustrates
the formula

k! =
∑

λ,|λ|=k

(dim(λ))2. (4.1)

The length of the longest increasing subsequence is in bijection with the length of the
partition n(λ). The uniform probability law on permutations induces the Plancherel
law on partitions. Therefore, the probability law of the length of the longest increasing
subsequence of a random permutation (uniformly chosen) is the probability law of n(λ)
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with the Plancherel measure [1, 5, 6], [33]–[36], [39, 53, 55, 56]. What one needs to compute
is the expectation value:

E(l(σ) ≤ N) = Ek,N =
1

k!

∑

σ∈Σk ,l(σ)≤N

1 = k!
∑

λ, |λ|=k,n(λ)≤N

P(λ). (4.2)

Instead of working with permutations of a given number of elements k = |λ|, it may be
more convenient to work with a ‘Poissonized’ version (grand canonical ensemble), where
we sum over all numbers k = |λ|, with a ‘chemical potential’ of the form q|λ|. In the end,
we need to compute

ZN(q) = e−q
∑

k

Ek,N
qk

k!
= e−q

∑

λ, n(λ)≤N

P(λ) q|λ|. (4.3)

Baik et al [6] proved that ZN(q) is related to a Henkel determinant, and that in the
large q limit, the distribution of the length of the longest increasing subsequence converges
towards the Tracy–Widom law [58]. In particular they were able to find the ‘typical shape’
of a large partition. For instance they found that the typical size k = |λ| is given by

〈|λ|〉 = q, (4.4)

and the typical length l(σ) = n(λ) is given by

〈l(σ)〉 = 〈n(λ)〉 = 2
√

q, (4.5)

and typical fluctuations are of order q1/6:

〈l(σ) − 2
√

q〉 ∼ O(q1/6). (4.6)

Here, in this paper, we compute not only the large q leading order of ZN(q), but also the
whole 1/q expansion of ZN(q) for large q.

4.2. Growing/melting crystal

The Robinson–Schensted algorithm also gives a simple growth model for a two-dimensional
crystal.

The crystal is represented by π/4 the rotated partition λ. At time t ∈ N, we drop a
new box, falling from the sky at a random position σ(t). When the box hits the crystal,
it slides to the left or to the right until it can no longer move. If we assign the box the
time t at which it arrives (resp. the position σ(t) from which it came), we clearly obtain
at each unit of time a standard Young tableau, and the number of ways of obtaining a
given standard tableau of shape λ after |λ| units of time is the number of permutations σ
which can lead to it, i.e. it is the number of standard Young tableaux of shape λ, i.e. it is
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dim(λ). The two standard tableaux that we obtain from assigning the box t or σ(t) are
precisely the two tableaux of the Robinson–Schensted bijection.

This is a model of a growing crystal.

The other way around, it is also a melting crystal, where at each unit of time only
boxes which are at corners can evaporate. If we label each box with the time at which it
evaporates, we get a standard tableau.

Therefore it is natural to associate with each partition a weight which is its entropy,
namely the number of ways of obtaining it, i.e. dim(λ)2. If the number of boxes is not
fixed, we may consider a grand canonical ensemble, with a weight depending on λ, for
instance of the form q|λ|. Again, the partition function that we need to compute is of the
form

Z(q) =
∑

λ

P(λ) q|λ|, (4.7)

and we are also interested in expectation values of various observables, typically
expectation values of Casimirs.

This analogy between partitions and crystals has been very useful and fruitful,
and has generated a considerable amount of work and discoveries in physics and
mathematics [51, 36, 5, 25, 26, 46].

4.3. TASEP

The acronym TASEP stands for totally asymmetric exclusion process. It is a famous model
of statistical physics, where particles are at integer positions on the real axis [38, 15, 16, 29].
At each unit of time, we choose one particle, and with a certain probability, either it stays
at the same place, or it jumps to the next position to the right if unoccupied. This model
is very important because it is the simplest ‘out of equilibrium’ statistical physics model.

There is a bijective mapping between this model and the growing crystal. Indeed,
in the growing crystal, at each time t, we have a partition λ(t) of weight |λ(t)| = t.
If we consider the π/4 rotated partition, we have for each t a set of ordered integers
h1(t) > h2(t) > · · · > hN(t) ≥ 0. If we interpret the integer hi(t) as the position of the
ith particle at time t, we see that those particles follow a TASEP, whose initial condition
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at t = 0 is a ‘Dirac sea’ (Z− full of particles, N empty).

Here, in this paper, we give a method for computing the correlations of particle
positions of the form

〈(
N∑

i=1

1

ξ1 − hi

) (
N∑

i=1

1

ξ2 − hi

)

. . .

(
N∑

i=1

1

ξk − hi

)〉

(4.8)

for all k, and to any order in the large q expansion.

4.4. Algebraic geometry

4.4.1. Gromov–Witten theory of P
1. P

1 is the complex projective plane, i.e. the complex
plane with a point at ∞; it is (the only) compact Riemann surface of genus 0, and it is
also called the Riemann sphere.

A stable map (C, p1, . . . , pn, f) to P
1 comprises the data of a (possibly stable nodal)

curve C (of complex dimension 1), with n smooth marked points p1, . . . , pn, and a
holomorphic function f of degree d, from C to P

1. A nodal curve is a possibly degenerate
compact Riemann surface (some cycles may have been pinched), and stability means
that if we remove the pinched cycles, all connected domains have strictly negative Euler
characteristics, so there are only finitely many holomorphic automorphisms preserving
the marked points. The degree d of map f : C → P

1, is the number of preimages of a
generic point in P

1. Critical points are the points with less than d preimages, i.e. such
that df = 0. Generically, if C is a smooth curve, f has 2d + 2g − 2 critical points.

The set of all stable maps (C, p1, . . . , pn, f) to P
1 is a finite dimensional complex

manifold (it is locally described by a finite number of complex parameters called moduli;
indeed the data of a given degree function are more or less the data of the coefficients of
a polynomial), which is called the moduli space.

Let Mg,n(P
1, d) be the moduli space of stable maps of degree d to P

1. Since each
point pi is smooth, we have a natural line bundle Li over Mg,n(P1, d), whose fiber is, for
each point (C, p1, . . . , pn, f) ∈ Mg,n(P1, d), the cotangent space of C at pi, i.e. T ∗

pi
C. We

can consider the first Chern class c1(Li) of this line bundle, i.e. the curvature form of a
U(1) connection.

There is a virtual fundamental homology class on Mg,n(P1, d) of dimension 2d +
2g − 2 + n where the intersection theory can be computed (i.e. where classes c1(Li) can
be integrated). By Poincaré duality, classes are dual to cycles, and integrals for classes
compute the number of intersection points of the cycles, provided that this number is
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finite, i.e. provided that the sum of dimensions is the total dimension of the whole space.
If the dimension is wrong we say that the intersection number is zero. The virtual class
allows us to extend the generic dimension of smooth curves 2d + 2g − 2 to degenerate
curves.

Also, some points of moduli spaces may have extra symmetries, and the moduli
spaces are orbifolds (one needs to quotient by the symmetries), and intersection numbers
are counted with the symmetry factor, so that they can be rational numbers instead of
integers.

If we also fix the images of points pi ∈ C to be qi ∈ P
1, the Gromov–Witten invariants

of P
1 are defined as the intersection numbers [59]:

〈τk1 · · · τkm〉d =

∫

[Mg,n(P1,d)]vir∩{f(pi)=qi}i=1...n

c1(L1)
k1 . . . c1(Ln)kn . (4.9)

Those intersection numbers count a finite number of intersection points in Mg,n(P
1, d),

and thus they count certain curves C with marked points p1, . . . , pn mapped to q1, . . . , qn.
Those curves are instantons which extremize a topological sigma model action (type A
topological string theory). To construct a curve which passes through given points, it
is sufficient to know the first few terms in the Taylor expansion near those points, and
thus the degree of tangency at those points, i.e. the number of vanishing coefficients in the
Taylor expansion. Instantons are entirely encoded by those degrees which form a partition
of the total degree d, and the intersection numbers can be rewritten in terms of sums over
partitions.

In [50, 49], it was proved that the Gromov–Witten invariants of P
1 are

〈τk1 . . . τkm〉d =
1

∏
i(ki + 1)!

∑

λ,|λ|=d

P(λ)
∏

i

Cki+1(λ). (4.10)

This sum is nearly of the type of what we computed in this article; we only have to
take derivatives with respect to the tk’s at tk = 0. The general method for computing
the derivatives of Fg with respect to any parameter of the spectral curve is explained
in [20], and can be applied here. It would be interesting to study in further detail the
consequences of our formula for Gromov–Witten invariants of P

1.

4.4.2. Gromov–Witten invariants of CY threefolds and topological strings. See [43, 57, 40, 7,
48, 9] for an introduction to topological string theory and toric Calabi–Yau threefolds.

For any p ∈ Z, consider the toric Calabi Yau threefold Xp, which was investigated
by [2, 11, 41, 12, 27, 28]:

O(p − 2) ⊕ O(−p) −→ P
1, (4.11)

which is a rank 2 bundle over P
1. It is often represented by a toric fan diagram [57]:
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The partition function of the type A sigma model topological string theory in target
space Xp is defined as the generating function of Gromov–Witten invariants of Xp, i.e. a
generating function for counting instantons, i.e. for computing intersection numbers:

ln
(
ZXp(gs, t)

)
=

∞∑

g=0

g2g−2
s Fg(t) =

∞∑

g=0

∞∑

d=1

Ng,d(Xp) e−dt g2g−2
s . (4.12)

Ng,d(Xp) are the Gromov–Witten invariants of Xp, i.e. in some sense the number of
instantons (rational curves embedded in Xp) of genus g and degree d (the numbers may
be rational because of orbifold points).

This can be computed with the so-called topological vertex method [3], and it can be
written as a sum of partitions with Plancherel measure [44, 45, 41, 12]:

ZXp(gs, t) =
∑

λ

Pq(λ) q(p−1)C2(λ)/2 e−t|λ|, q = e−gs, (4.13)

where |λ| =
∑

i λi is the weight of the representation λ, and C2(λ) =
∑

i λi(λi − 2i + 1)
is the second Casimir, and Pq(λ) is the q-deformed Plancherel measure.

Through mirror symmetry [30, 4, 31, 27, 28], the type A topological string theory on
Xp should be dual to a type B topological string theory on a mirror CY threefold, which

we denote as X̃p, and whose equation is expected to be of the form

H(ex, ey) = ξζ (4.14)

(with x, y, ξ, ζ ∈ C
4, so that this is locally a three-dimensional complex submanifold of

C
4), and where H(u, v) is a polynomial in both variables. Expressions for H(u, v) (up to

symplectic transformations) were derived in [12, 41].
F0 was computed in [12, 41, 28], and F1 was computed in [41]. Mariño conjectured

that higher Fg’s with g ≥ 2 are given by the symplectic invariants of [20] for the curve
H(ex, ey) = 0.

Here, we have proved that conjecture for Xp.
To summarize, we have rewritten the type A model partition function of Xp as

a matrix integral, and therefore we obtained the topological small gs expansion from
loop equations (in other words from Virasoro constraints). To leading order, the loop
equations define a spectral curve (of mirror type). Once the spectral curve is known, all
the topological expansions of the matrix integral, and thus the Gromov–Witten invariants,
are then obtained from the method of [20], as was conjectured by Mariño [41].

Finally, we check that the spectral curve of the matrix model (which coincides with
the one found by [12]) is symplectically equivalent to the mirror curve H(ex, ey) = 0, and
therefore it indeed has the same Fg’s.

5. Conclusion

In this paper, we have shown that the topological expansion of a sum over partitions with
the Plancherel measure:

ZN(q; tk) =
∑

n(λ)≤N

P(λ) q|λ| exp

(

−√
q
∑

k

tk q−k/2

k
Ck(λ)

)

(5.1)
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is a matrix integral, and has a topological expansion of the form

ln ZN(q; tk) ∼
∞∑

g=0

q1−g Fg(tk), (5.2)

where the Fg’s are the symplectic invariants of the spectral curve:

x(z) = e−u0

(

z +
1

z
− u1

)

,

y(z) = ln (z) + 1
2

d∑

k=1

uk(z
k − z−k).

(5.3)

Moreover, the same method also gives the large q asymptotic expansion, to all orders, of
the density correlation functions.

Our results were derived in a one-cut regime, but it seems easy to extend them to
any other regime; the only difference is that we would need θ-functions instead of the
Zhukovski rational parametrization.

We have also obtained similar results for the q-deformed Plancherel measure:

ZN(q; tk) =
∑

n(λ)≤N

Pq(λ) exp

(

− 1

gs

∑

k

tk gk
s

k
Ck(λ)

)

, q = e−gs, (5.4)

which is also a matrix model, whose topological expansion is of the form:

ln ZN ∼
∞∑

g=0

g2g−2
s Fg(tk). (5.5)

When t1 = t, t2 = p − 1, the sum Z∞ is the generating function of Gromov–Witten
invariants of the Calabi–Yau threefold Xp. The spectral curve is

x(z) =
(1 − z/z0)(1 − 1/zz0)

(1 + 1/z0)2
,

y(z) =
1

x(z)

(

− ln z + p
2

ln

(
1 − z/z0
1−1/zz0

))

,

e−t =
1

z2
0

(

1 − 1

z2
0

)p(p−2)

. (5.6)

We have thus proved that ZN can be obtained as a matrix integral (a unitary matrix
integral, because the eigenvalues are constrained to be on a circle), and that the Fg’s
are the symplectic invariants of the mirror spectral curve H(ex, ey) = 0. This proves the
conjecture of Mariño [41] for Xp.

Dijkgraaf and Vafa recently noticed that the symplectic invariants of [20] are also
obtained from the Kodaira–Spencer theory [17], and thus we have proved that the type
B topological string theory on the mirror of Xp is equivalent to a matrix model, and to
the Kodaira–Spencer theory.

To go further in the same direction for all toric Calabi–Yau threefolds, one would need
to extend the method to plane partitions, because the topological vertex [3] is expressed
as a sum of plane partitions, and it is only for Xp that it reduces to usual partitions. Then
one needs to ‘glue’ topological vertices together. This is a work in progress [22], but with
more involved tools because the spectral curve is no longer hyperelliptical.
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Many other extensions of the present method can be explored. First, we have not
studied in detail the consequences of our method for crystal growth, longest increasing
sequences, or TASEP.

Also, we have not studied in detail the expectation values of Casimirs. That could
have interesting consequences for the Hurwitz number generating functions. Finally, we
have not computed the spectral curve of the q-deformed Plancherel measure, with higher
Casimirs. The method works in the same way, but the solution is slightly more difficult
to write out. It would be interesting to continue this computation.

The same kinds of sums over partitions also appear in Seiberg–Witten theory, as
discussed in [42]. We do indeed find the same spectral curve and same prepotential F0.
The authors of [42] found their results from the integrable hierarchy structure, and indeed
the symplectic invariants of [20] have such an integrable structure (see section 9 in [20]).
It would be interesting to explore further the computations for that case.

Also, we have studied only one-cut cases, which are the most relevant for
combinatorics formal generating series. However, for many applications to statistical
physics, we have convergent series, and it would be interesting to study phase transitions.
When there are several cuts, the matrix integral no longer has a topological expansion; it
receives an extra oscillatory part, as discussed in [8, 24].
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