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Concrete calculations have pointed out that amplitudes in perturbative gravity exhibit unanticipated cancel-
lations taming their ultraviolet behaviour independently of supersymmetry. Similar ultraviolet behaviour of
N = 4 super-Yang-Mills and N = 8 maximal supergravity has explicitly been observed until three loops.
The cancellations can be connected to two manifest features of gravitational theories: firstly gauge invari-
ance from diffeomorphism symmetries and secondly that amplitudes are colourless and exhibits crossing
symmetry. We will discuss these two properties in turn as well as the rôle of supersymmetry and string
theory dualities in the structure of multiloop amplitudes in supergravity.
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1 Introduction

The theoretical construction of unification models for particle physics has led to remarkable progress in
the understanding of fundamental interactions in Nature. However a complete theory for gravity is still
illusive and it is expected that subtle quantum gravity effects will play an important role in understanding
the outstanding fundamental problems of modern cosmology and models for particle physics. Since the
discovery of quantum mechanics in the last century, physicists have been pursuing the construction of a
consistent theory for quantum gravity in order to gain a complete understanding of quantum gravitational
effects at all scales. Field theories with point-like interactions for gravity in four dimensions are non-
renormalisable because of the dimensionality of the gravitational coupling constant. No known symmetry
has so far been shown capable of regulating the ultraviolet divergences for such a theory although such
constructions have not been proven either to be impossible. Interestingly unique quantum corrections to
gravity can be extracted from treating general relativity as a point-like effective field theory [1].

String theory provides a consistent framework for quantum gravity and its supersymmetric extensions.
Within this formalism various gravity amplitudes can be computed [2, 3]. Expressions for field theory
amplitudes preserving supersymmetry can be derived in the infinite tension limit (α′ → 0) of the string.
String theory rules for graviton amplitudes that hold at tree level have been formulated very elegantly
by Kawai-Lewellen-Tye [4]. Interestingly such rules also hold in a number of different scenarios [5, 6]
with various matter contents [7]. At one-loop level string based rules have been formulated for amplitude
calculations in both gauge theory and gravity [8, 9]. The effect of massive string modes on the low energy
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effective action of various compactifications of string theory leads to important quantum corrections [10]
which are relevant for particle physics unification, moduli stabilisation [11] and cosmology [12].

String theory combines the effect of a hard ultraviolet momentum cutoff (determined by the extension
of the string while keeping gauge invariance) and the decoupling of unphysical states thanks to the modular
invariance of its world-sheet theory. Although the theory is perturbatively finite, its complete degrees of
freedom are provided by the non-perturbative U-duality symmetries [13–15].

Power counting arguments based on known symmetries indicate that supergravity theories have ultravi-
olet divergences in four dimensions and candidates for explicit counter-terms at three-loop order have been
constructed [16–19]. However contrary to the statements from power counting arguments it has recently
been shown by explicit computation that one-loop amplitudes in N = 8 supergravity [20–24] can be con-
structed from the same basis of scalar integrals as N = 4 super Yang-Mills. Furthermore divergences in
four dimensions in maximal N = 8 supergravity have been shown to be explicitly absent until three-loop
order by direct computation [25]. It has been suggested that the absence of divergences might persist to
higher loop order [26–29] with the consequence that four dimensional N = 8 supergravity could be a
perturbatively finite theory [21, 22, 25, 27–29].

The discrepancy between power counting and explicit computation emphasises the lack of knowledge
of the consequences of physical effects such as (diffeomorphism) gauge invariance in amplitude calcula-
tions [22, 30, 31]. This together with the suggestions of possible finiteness of N = 8 supergravity is a
motivation for reconsidering the ultraviolet behaviour of (super)gravity theories and their relation to string
theory.

This analysis aims to answer the following questions:

How can N = 8 supergravity amplitudes be finite?
What rôle does string theory symmetries and dualities play in the possible finiteness?

2 One-loop amplitudes in gravity

A one-loop n-graviton amplitude in D = 4 − 2ε dimensions takes the generic form

M
(D)
n;1 = μ2ε

∫
dD�

∏2n
j (q(2n,j)

μj �μj ) +
∏2n−1

j (q(2n−1,j)
μj �μj ) + · · · + K

�2
1 · · · �2

n

≡ μ2ε

∫
dD�

P2n(�)
�2
1 · · · �2

n

(1)

where �2
i = (� − k1 − · · · − ki)2 are the propagators along the loop and q

(i,j)
μj are functions of external

momenta and polarisations. Because of the two derivative nature of the cubic gravitational coupling, the
numerator P2n(�) is a polynomial with at most 2n power of loop momentum � ≡ �n.

A one-loop amplitude can be expanded via a succession of Passarino-Veltman reductions [32] in a linear
basis of n-points scalar integrals

I(D)
n =

∫
dD�

�2
1 · · · �2

n

(2)

where �2
i = (� − K1 − · · · − Ki)2 and where Kp = ki1 + · · · + kip is the sum of momenta flowing

into the corner p. A loop amplitude in four dimensions with 2n powers of loop momenta from each vertex
can be shown to generically contain scalar box, triangle and bubble integrals and as well as polynomial
(non-logarithmic) rational terms [33].

Explicit evaluation of one-loop gravity amplitudes in D = 4 − 2ε dimensions in [20, 21, 34, 35] show
that only scalar box integrals enter in the decomposition of gravity one-loop amplitudes. This ‘only boxes’
property (or the ‘no triangle hypothesis’) indicates that the highest total power of the loop momentum
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a) b) c)

Fig. 1 Basis of one-loop scalar
integrals given by a) a scalar box,
b) scalar triangle and c) a scalar
bubble integral. In D = 4 − 2ε di-
mensions these diagrams carry all
the ultraviolet and infrared diver-
gences of the amplitudes.

polynomial in the numerator in the generic one-loop amplitudes has to be the same as in the N = 4 super
Yang-Mills theory (i.e. of order n− 4 and not as naı̈ve power counting suggests 2n− 8). For theories with
less supersymmetries it was argued in [22] that the highest power of loop momentum is given by

P2n(�) ∼ �2n−N−(n−4), for � � 1 . (3)

This behaviour displays two types of cancellations of loop momenta,

i) There is a cancellation of N powers of loop momenta due to the effect of the N linearised on-shell
supersymmetries (counting the number of supersymmetries in units of four dimensional Majorana
supercharges). This cancellation is independent of the number of external states and the dimension as
long as the number of supersymmetries is preserved.

ii) There are n − 4 extra ‘unexpected’ [22] cancellations which depend on the number of external legs.

An N = 4 super-Yang-Mills n-point one-loop amplitude contains two kind of contributions. One comes
with at most n−4 powers of loop momentum where n powers of loop momentum come from the derivatives
in the cubic vertices and four cancellations are due to supersymmetry

∫
dD�

Pn−4(�)
�2
1 · · · �2

n

with n ≥ 4 . (4)

Another contribution comes with up to 2n− 8 powers of loop momenta and has many trivial cancellations
due to explicit powers of �2

i in the numerator. Such contributions lead to trivial cancellations such as

∫
dD�

Pn−4(�)�2
n+1 · · · �2

n+p

�2
1 · · · �2

n+p

=
∫

dD�
Pn−4(�)
�2
1 · · · �2

n

with n ≥ 4 . (5)

These types of contributions arise from ϕ4-type of vertices.
Since the one-loop N = 8 supergravity amplitude have the same maximum number of loop momenta

as N = 4 super-Yang-Mills, they can be expanded in the same basis of elementary scalar master integrals
(in the dimensional regularisation scheme).1 The tensorial structure multiplying these integrals in gravity
are related to the ones of the corresponding super-Yang-Mills amplitudes by the Kawai-Lewellen-Tye
relations [4, 34, 36]. At the level of the effective action the connection is not immediate because of the
different nature of gauge interactions. There are no particular reasons for the higher-derivative corrections
to the supergravity effective action to be related directly via KLT to the corresponding contributions of the
super-Yang-Mills effective action. The relation between the two theories is however a useful guide for the
explicit construction of higher-derivative gravitational corrections [10, 37].

1 In field theory we work using the dimensional regularisation scheme. The momentum cutoff scheme is more natural from
the string/M-theory point of view, and will be used later on. Such a scheme is however difficult to implement in field theory
without breaking gauge invariance. In the cutoff regularisation scheme the basis of integrals could be different in particular for
the integrals containing the finite part of the amplitude.
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3 Origin of the cancellations

For a theory with N on-shell linearly realised supersymmetries the integration over the fermionic zero
modes leads to the cancellation of N powers of loop momenta.

At the one-loop level the extra cancellations of powers of loop momenta was shown in [31] to be
accounted for firstly (a) by the summation over all the permutations of the external legs due to the absence
of the concept of colour in gravity and secondly (b) by the decoupling of longitudinal modes from the
diffeomorphism gauge invariance.

a) The absence of colour which forces a summation over all the orderings of the external legs leads to
various cancellations for on-shell amplitudes. At higher-loop order this implies that one should sum
over all planar and non-planar contributions. From this, four dimensional gravity amplitudes have a
better infrared behaviour than the corresponding (coloured) ordered QCD amplitudes. One example
is the cancellation of the leading 1/ε2 pole in the four dimensional one-loop amplitude [8, 38] which
affects the higher-loop order via the cancellation of the leading 1/ε4 pole between planar and non-
planar contributions at two-loop order.

For instance the one-loop amplitude four-graviton amplitude in D = 4 − 2ε takes the form [8, 38]

M
(4−2ε)
4;1 = R4

[
1
st

F (s, t) +
1
su

F (s, u) +
1
tu

F (t, u)
]

(6)

with

F (s, t) =
2
ε2

((−s)−ε + (−t)−ε) − ln2
(s

t

)
− π2 + O(ε) (7)

for which the leading ε−2 pole cancels on-shell

1
ε2

(
1
st

+
1
su

+
1
tu

)
R4 = 0 . (8)

In higher dimensions (D ≥ 5) the leading ultraviolet 1/ε pole cancels on-shell by the same type of mech-
anism. At two-loop order, this effect is responsible for the cancellation of the leading 1/ε4 pole in four
dimensions and the 1/ε2 in higher dimensions, between planar and non-planar contributions [36]. Equiva-
lent cancellations have been found in QED amplitudes as well, see for instance [39, 40].

b) The diffeomorphism symmetries and the decoupling of the longitudinal modes in the amplitudes give
a set of reduction formulas needed for the reduction of loop integrals in a basis of elementary scalar
box integrals. The origin of the cancellations of the highest powers of loop momenta is linked to this
mechanism [31].

Note added in Proof: Within the string based rules, it is possible to show that only scalar box integral
contributions appear in N = 8 one-loop supergravity amplitudes from gauge invariance. See N. E. J.
Bjerrum-Bohr and Pierre Vanhove “On Cancellations of Ultraviolet Divergences in Supergravity Ampli-
tudes”, arXiv:0806.1726; “Absence of Triangles in Maximal Supergravity Amplitudes”, arXiv:0805.3682
[hep-th].

4 Consequences for the ultraviolet properties of gravity amplitudes

4.1 One-loop amplitudes

The behaviour in Eq. (3) indicates that the n-graviton one-loop amplitude has ultraviolet divergences in
dimensions

D1−loop ≥ D1−loop
c = N + n − 4 . (9)
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For more than four gravitons the critical dimension in (9) indicates that one-loop gravity amplitudes are
more converging that naı̈vely expected from supersymmetric cancellations alone. This leads to the critical
dimension for ultraviolet divergences Dsusy

c = N .
For N = 8 supergravity the one-loop gravity amplitude would be finite in eight dimensions for at least

five gravitons and finite in ten dimensions for at least seven gravitons. For N = 4 supergravity one-loop
amplitudes are finite in four dimensions for at least five gravitons.

4.2 Higher-loop amplitudes

At L loop order linearised on-shell supersymmetry implies that the critical dimension for ultraviolet diver-
gences in the four-graviton amplitude is given by

D ≥ 2 +
cN
L

. (10)

This implies that supergravity theories are finite in two dimensions and that they are not finite in four
dimensions. The loop order for the appearance of the first logarithmic divergence is determined by the
value of 6 ≤ cN ≤ 18 depending on the implementation of the linearised on-shell supersymmetries
determining the mass dimension of the first possible counter-term to the supergravity theory [16–19, 29].

The low energy limit of the four-graviton amplitude at L loops

M
(D)
4;L ∼ ∂2βLR4 + · · · (11)

where we have allowed 2βL powers of derivatives distributed on the four Riemann tensors (N = 8 super-
gravity four-graviton amplitudes have a factor of R4). The ellipses refer to higher derivative contributions
and as well non-analytic contributions.

Since an L loop n-graviton amplitude has mass dimension

[M (D)
n;L ] = mass(D−2)L+2 (12)

the behaviour in Eq. (11) indicates that the amplitude should be expanded in a basis of L-loop integrals
with the mass dimension2

[Ii,(D)
4;L ] = mass(D−2)L−(6+2βL) (13)

and a critical dimension for ultraviolet divergences given by

D ≥ 2 +
6 + 2βL

L
. (14)

When βL = L at each loop order two extra powers of the external momenta is factorised and the critical
dimension for ultraviolet divergences is given by [27, 29]

D ≥ Dc = 4 +
6
L

. (15)

This is the same critical dimension as N = 4 super-Yang-Mills and would imply finiteness in four di-
mensions if valid at all loop order. As soon as βL is bounded after some loop order, the relevant critical
dimension is given by (14) and the theory will have an ultraviolet divergence in four dimensions.

The rule βL = L is the optimal one for finiteness in four dimensions. If βL grows slower than L the
theory will not be finite in four dimensions. For instance N = 4 supergravity is expected to satisfy the
rule βL = L/2 and have a critical dimension for ultraviolet divergences given by D ≥ 3 + 6/L, and

2 This basis contains planar and non-planar contributions and some integrals will have numerators with momentum factors [28].
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a first divergence at L = 6 loops in four dimensions. If βL grows faster than L, the theory would be too
finite. For instance the L loop (planar and non planar) ladder diagrams of the four-graviton amplitudes are
all two-particle cut constructible and are given by scalar ϕ3 diagrams with a prefactor satisfying the rule
βL = 2(L − 1). These diagrams are ultraviolet finite for D ≤ 6 which means that the leading ultraviolet
divergences of N = 8 amplitudes are not contained in these ladder diagrams.

When the rule βL = L is satisfied at each loop order the four-graviton amplitudes get a new ultraviolet
primitive divergence of order ΛD−4 which is typical of “effective” interactions of the type of N = 4 super-
Yang-Mills. Amplitudes satisfying this rule should be expandable in the same basis of integrals as N = 4
super-Yang-Mills, but since gravity has no colour, one must include the planar and non-planar diagrams.

The absence of triangles and bubbles at one-loop order implies via general factorisation theorems that
higher-loop amplitudes cannot contain diagrams factorisable in one-loop amplitudes containing triangles
or bubbles. This constraint affects the structure of the higher loop amplitude [28] but is not a sufficient
condition for perturbative finiteness which requires further subtle cancellations between triangle free con-
tributions [25].

5 Relation to string/M-theory and string theory dualities

In the previous section we only discussed the effects of on-shell supersymmetries, diffeomorphism invari-
ance and the absence of colours. In this section we will discuss the rôle of string theory dualities.

The rule βg = g implies that the ∂2gR4 couplings to the ten-dimensional string theory effective action
receive perturbative contributions up to genus g [27,41–44]. This rule has been directly shown up to genus
six using the pure spinor formalism [26, 45].

The eleven dimensional incarnation of N = 8 supergravity is non-renormalisable with a two-loop
logarithmic divergence as indicated by the formula (15). The associated counter-term is the dimension
twenty operator ∂12R4 (see as well [46]). After having reduced the gravity integrals to the scalar integral
basis, one can regulate the integrals with a local ultraviolet cutoff Λ in eleven dimensions without breaking
gauge invariance [41–44]. This is more suitable for extracting the contributions to the effective action. The
cutoff should be determined by the microscopic degree of freedom of M-theory and is related to the tension
of the M2-brane TM2 ∼ 1/�3

P or the M5-brane TM5 ∼ 1/�6
P . The N = 8 supersymmetric cancellations

of loop momenta in the one-loop amplitudes imply that the highest power of the one-loop sub-divergences
is given by Λ3 and more generally one gets the following infinite series of counter-terms to the M-theory
effective action

SM−theory =
1
�9
P

∫
d11x

⎡
⎣R(11) +

∑
k≥0

ck �6k+6
P ∇6kR4

⎤
⎦ . (16)

This is precisely the series of higher-derivative corrections to the M-theory effective action that is selected
by the strong coupling limit of string theory [47]. The coefficients are constrained by the microscopic
degrees of freedom of M-theory and its duality symmetries, and have been determined up to order k = 2
in [41–44]. Using the renormalisation scheme where the value of the counter-term is fixed by the relation
between multiloop amplitudes in M-theory and string theory and its duality symmetries, one finds that the
R4 counter-term is fixed by the value of the type II genus one four-graviton contribution, the ∂6R4 by the
genus two and the ∂12R4 by the genus three contribution [41–44].

We consider a Kaluza-Klein expansion of the eleven dimensional multiloop amplitudes on a circle of
radius R11 �P . Using the M-theory conjecture [14] which identifies R3

11 = g2
s and �P =

√
R11 �s one

finds [27] that in the string weak coupling limit, where R11 → 0 the higher-derivative D2gR4 couplings to
the low-energy expansion of type II superstring satisfy the non-renormalisation condition βg = g.
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6 Conclusion and discussion

We have discussed cancellations that could be enough for making the ungaugedN = 8 supergravity theory
perturbatively finite. It is interesting to note that a non-renormalisable theory with a dimensionful coupling
constant still can have a surprisingly good ultraviolet behaviour. Ungauged N = 8 supergravity is unlikely
to lead directly to relevant phenomenology because of the absence of chiral matter. However since most
of the cancellations in (3) are independent of supersymmetry it is expected that interesting results can be
obtained in theories with less supersymmetry and with more phenomenological relevance.

We have not discussed the properties of gauged supergravity theories [48–51] which are phenomeno-
logically more promising and seems to enjoy nice quantum properties [52–54]. The non-Abelian structure
of the gauging naturally contain duality multiplets under the full U-duality group of supergravities [55]
which will bring new effects in the loop amplitude and need a separate analysis.

The local SU(8) R-symmetry of the ungaugedN = 8 allows one only to consider superfields of at least
mass dimension at least 1/2 leading to possible counter-terms starting from eight-loops [16, 17]

δL = κd+12
(4)

∫
d4xd32θ det(E)L(R, T ) (17)

where L(R, T ) is a superspace density of mass dimension d. In the full superspace this density has a least
mass dimension 2, because it can only be constructed from superfields of at least mass dimension 1/2.
For instance using the mass dimension 1/2 gravitino superfield χα

ijk and the dimension 1 vector superfield

W ij
αβ invariants under the non-linear E7 × SU(8) symmetry of the ungauged N = 8 supergravity, one

can construct the possible eight- or nine-loop counter-terms [16–19, 29] given by the following higher-
derivative supersymmetric invariants

δL = κ14
(4)

∫
d4xd32θ det(E)(χα

ijkχ̄ijk
α )2 ∼ κ14

(4)

∫
d4x

√−g[D10R4 + susy completion] (18)

δL = κ16
(4)

∫
d4xd32θ det(E)(W ij

αβ)4 ∼ κ16
(4)

∫
d4x

√−g [D12R4 + susy completion] . (19)

Gauged N = 8 supergravity has SO(8) × SU(8) invariant possible counter-term [56]

δL = κd+12
(4)

∫
d4xd32θ det(E)L(R, T ) f(g) (20)

with f(g) constructed from the gauge fields. This expression reduces to the ungauged counter-terms in the
limit g → 0 with f(g) → 1. But there exist as well an infinite set of new counter-terms which do not reduce
to counter-terms of the ungauged theory. As in the ungauged case only superfields of mass dimension 1/2
are invariant under the local SU(8) R-symmetry (the new spin 1 superfield from the gauging are of mass
dimension 1), and the first possible counter-term can only arise at eight loops. It is interesting to understand
in more details the structure of the loop amplitudes in these different versions of N = 8 supergravity.

This analysis illuminates the importance of string theory dualities and symmetries and their rôle in
the cancellations. These dualities and symmetries appear to be very important in the possible ultraviolet
finiteness of N = 8 supergravity together with physical effects such as diffeomorphism invariance of
amplitudes, although further research is needed to fully clarify these matters at higher loop order.
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