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PACS 67.80.bd – Superfluidity in solid He4, supersolid He4

PACS 67.80.K – Other supersolids
PACS 61.72.Lk – Linear defects: dislocations, disclinations

Abstract. - We suggest that below a certain temperature Tk, the free energy for the creation of
kinks-antikinks pairs in the dislocation network of solid He4 becomes negative. The underlying
physical mechanism is the related liberation of vacancies which initiate Feynman’s permutation
cycles in the bulk. Consequently, dislocations should wander and sweep an increasingly larger
volume at low temperatures. This phenomenon should lead to a stiffening of the solid below Tk

and possibly to the appearance of a non zero superfluid fraction at a second temperature Tc ≤ Tk.

After a burst of theoretical activity in the early sev-
enties [1–3], the question of supersolidity is again the fo-
cus of intense attention since the discovery by Kim and
Chan [4, 5] of a non classical moment of inertia in solid
He4 at low enough temperatures. The physical mecha-
nism leading to superfluid flow in these crystals is still
unclear; it is actually not even established that there is
true superflow. However, some consensus seems to prevail
on several aspects of the problems [6]. From a theoret-
ical point of view, there is now agreement that perfect
He4 crystals are not supersolids [7, 8], or at least have an
extremely small superfluid fraction, much too small to ac-
count for experimental findings (see also [10]). Two rather
striking features have been emerged from experiments: i)
the supersolid critical temperature and the superfluid den-
sity are surprisingly large and ii) both depend sensitively
on the detailed preparation history of the crystal sam-
ples [11] and on the presence of minute fractions of He3

impurities [4, 5]. The role of superfluid flow within grain
boundaries [12], possibly important in some experimental
conditions, also seems to be moot since single He4 crys-
tals still appear to display significant supersolidity [5]. It
now looks plausible that dislocations might play an im-
portant role. de Gennes [13] has discussed some aspects
of the quantum mobility of dislocations, and concluded
that kink anti-kink bound states should suppress, rather
than enhance, dislocation mobility. There has also been
some recent work [14] suggesting that the core of dislo-
cations could be superfluid, possibly leading to a (small)

supersolid signal. A phenomenological theory of the role
of dislocations can be found in [15]. The aim of this note
is to discuss some aspects of the physics of dislocations
in a quantum crystal of bosons and suggest that below a
certain temperature Td, the free energy of kink-antikink
pairs (in the climb direction) becomes negative, leading to
an increasing wandering of dislocations that would form
an entangled network similar to a polymer melt. This
proliferation of kink-antikink pairs should lead both to an
increased stiffness of the solid, and to kink-induced super-
fluid motion. The ideas put forth here are clearly highly
speculative; we nevertheless hope to modestly contribute
to the ongoing heated debate on the origin of supersolidity.

Our approach follows Feynman’s seminal paper on su-
perfluidity [16], and more recent work by Pollock and
Ceperley [17] on the importance of permutation cycles to
understand superfluidity. The starting point is the exact
path-integral representation of the partition function Z of
a bosonic system of N interacting particles as:

Z =
1

N !

∑

P

∫

∏

i

d~zi

∫

D~xi(t) exp S({~xi(t)}) (1)

S =



−
∫ β

0

dt







∑

i

m

2h̄2

(

∂~xi

∂t

)2

+
∑

i<j

V (~xi − ~xj)











where the initial positions of the particles are ~zi = ~xi(0)’s
and the final positions are constrained to be any permu-

tation P of the initial configuration. The difficulty is to
correctly guess what set of configurations and “trajecto-
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ries” dominate this very high dimensional integral. As em-
phasized by Feynman, although t is the imaginary time,
it helps intuition to think of a problem of N classical
particles moving in “real” time. At high temperature,
β = 1/T is small, and the particles do not have much
time to move around, so that the main contribution to
Z comes from the trivial identity permutation such that
xi(0) = xi(β), ∀i; the bosonic nature of the particles is
irrelevant. When β increases, more and more permuta-
tions can be explored. In a liquid, where motion is rela-
tively easy, Feynman argues that at some temperature the
average length of permutations diverges, leading to a su-
perfluid phase transition. The precise connection with su-
perfluidity was worked out by Ceperley and Pollock, who
showed using linear response theory and periodic bound-
ary conditions that the superfluid fraction fs can be ex-
actly written as [17]:

fs =
T

T ∗

N〈 ~W 2〉
6a2

; ~W = N−1
∑

i

∫ β

0

dt
∂~xi

∂t
(2)

where the average is taken over all permutations with the
weight defining Z, a is the interatomic spacing (introduced
for convenience) and T ∗ ≡ h̄2/2ma2 is the typical kinetic
energy of the particles (a ≈ 3A and T ∗ ≈ 1K in solid
He4). Any permutation can be decomposed into cycles.
From the above formula, it is clear that only permutations
corresponding to system spanning cycles wrapping around
the torus can lead to a non zero winding number, W , and
hence to a non zero superfluid fraction fs. The weight of a
given cycle involving the simultaneous jump of n particles
that all move a distance of order a is:

pn ∼ exp[−nβm

2h̄2

(

a

β

)2

−nβV ] = exp

[

−nm∗
T

4T ∗

]

, (3)

where V is a typical energy barrier encountered during the
motion of each particle and m∗ = m

(

1 + 4V T ∗/T 2
)

is the
effective mass. In reality the dependence of m∗(T ) on tem-
perature is expected to be more complicated. In particular
this expression is only valid at high enough temperatures.
When T < (T ∗V )1/2, quantum tunneling sets in and leads
to decrease of the effective value of V . At zero temper-
ature one expects a finite effective mass m∗, larger than
the bare one m because of interactions (using the pre-
vious notation this means that V vanishes quadratically
with temperature as T → 0).

Feynman’s insight [16] was to realize that whereas pn

decreases exponentially with n, the number of permuta-
tion cycles increases exponentially with n, as zn up to a
power-law prefactor in n. If the barrier V is small enough
compared to T (as in a liquid, where particles can move
easily while avoiding each other), the entropy of these cy-
cles dominates whenever T < Tλ ≃ 4T ∗ ln z − V , favoring
infinite cycles and hence superfluidity. In a solid, however,
the energy of the intermediate state is much larger, and is
in fact expected to grow faster than n due to elastic defor-

mations. Therefore, naively, only finite cycles are expected
in a perfect solid, and the superfluid density remains zero.

As has been recognized for a long time, the presence of
vacancies can change this. Let us rephrase the argument
of Andreev and Lifshitz [1] at finite temperatures, which
we will extend later to dislocation kinks. Vacancies in the
initial configuration {zi} act as initiators of permutation
cycles. A neighboring particle can easily hop to the empty
site; once this is done (in imaginary time) the next par-
ticle can also easily hop, and so on (maybe slightly more
collective moves are possible, too). For a path of length
n, each particle must dash off to the neighboring empty
site in “time” ∼ β/n, while paying an effective potential
energy V . The extra multiplicative weight associated to
the path is now:

pn ∼ exp

[

−n
β

n

m

2h̄2

(

a

β/n

)2

− βV

]

≡ p0 exp

[

−n2 T

4T ∗

]

.

(4)
In fact, the above estimate can be seen as a saddle point
calculation where one decomposes the path in hops of du-
ration τi such that

∑n
i=1 τi = β, with fixed intermediate

positions along the path. The saddle-point corrections
add a factor nCn(T/T ∗)3/2/2

√
π to the above naive re-

sult, where C is a numerical constant. The above cal-
culation becomes unsuitable at low temperatures when
transition between sites becomes instantonic transitions
(i.e. localized events along the time axis). It leads to a
slightly different expression for pn and allows one to re-
cover the tight-binding model used by Andreev and Lif-
shitz (see Appendix). However, in both cases, ln pn ∼
−T ∗/TG(nT/T ∗), where G(u) = G0 + G1u + G2u

2 for
the above “quasi-free” model and G(u) = u ln(u/eT ) for
the tight binding (instanton) model (see Appendix for the
expression of the transmission coefficient T ).

For the vacancy to return to its initial position at time
β, the path must be a closed random walk on the crystal
lattice. One can define the free-energy Fv for the creation
of a single vacancy around a given site as: 1

Fv ≈ Ev − T ln

[

1 +
∞
∑

n=2

Πn

]

, Πn ≃ znpn

(2πn)3/2
(5)

where Ev is the energy of a localized vacancy, when no
permutation is allowed. The extra term zn/(2πn)3/2 ac-
counts for the number of random walks returning at the
origin after n steps (for large n). Using again a saddle-
point approximation for the sum, valid when T ≪ T ∗,
we find that it is in both cases dominated by values of n
around n∗ = µT ∗/T ≫ 1 with µ = 2 ln(zC) in the quasi-
free model and µ = zT in the instanton model. Noting
that V (T → 0) = 0, the limiting behaviours are easily
found to be:

Fv(T ≪ T ∗) ≈ Ev − ζT ∗; Fv(T ≫ T ∗) ≈ Ev, (6)

1The full free energy of a single vacancy should clearly include
the obvious −T ln(V/a3) contribution, corresponding to the choice
of the initial site on the permutation cycle.
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with ζ = ln2(zC) for the quasi-free model and ζ = zT for
the tight-binding model. The leading correction when T >
0 is found to be positive, equal to +3T/2 lnT ∗/T for both
models, as it should be, since finite temperatures inhibit
permutation cycles. The free-energy for the creation a
vacancy Fv is therefore lowered at low temperatures. The
shape of Fv − Ev as a function of T/T ∗, for both models
and for different choice of parameters is shown in Fig. 1.2

Depending on the value of these parameters, one may find
a temperature Tv at which Fv vanishes. When Fv > 0,
the equilibrium density φv of vacancies is given obtained
by minimizing the total free energy (per unit volume):

F = Tφv

[

ln

(

φva3

e

)

− 1

]

+ φvFv + O(φ2
v) . (7)

This leads to

φ∗

v =
exp(−Fv/T )

a3
, (8)

which is vanishingly small at low temperatures. If on the
other hand Fv becomes negative, one expects a finite den-
sity of vacancies in the system even when T → 0. This
density is now controlled by the vacancy-vacancy interac-
tion [1], which adds a term Aφ2

v/2 to the above expression
for F . When Tv ≪ T ∗, the vacancy density first decreases
as the temperature is reduced, but then sharply increases
as the temperature approches Tv. At low temperatures,
the density is given by φ∗

v ≈ |Fv|/A. When A is small,
the proliferation of vacancies might actually lead to a true
phase transition to a low density solid phase. The case of
kinks discussed below will closely follow the above argu-
ment. Note that the decrease of φv until Tv holds only
when Fv decreases faster than linearly with temperature,
which is indeed what we finds in our approximate treat-
ments, see Fig. 1. Even when this is not the case, Tv is the
characteristic temperature determining the point where
vacancy-vacancy interaction becomes crucial in order to
limit the density of vacancies (which would otherwise pro-
liferate). Now, for superfluidity to set in, the permutation
paths should not end where they where initiated since in
this case the winding number W in Eq. (2) above is zero.
Paths should rather end on the site where a different va-
cancy started off. If the end-to-end distance of the path
is R, the corresponding weight is modified to:

Πn(R) = Πn exp

[

− R2

2na2

]

. (9)

It is clear that these paths are exponentially suppressed
when R2 ≫ n∗a2. If one wants to see the appearance of
a permutation cycle winding around the system and con-
tributing to W , the distance between vacancies should be
such that the suppression factor does not preclude the ex-
istence of a percolating path of inter-vacancy hops, which

2In a fermionic environment, the free-energy reduction is much
weaker, because different permutations interfere destructively. As a
rough approximation one may keep only self-retracing paths, which
leads to a reduction of µ and ζ in the above formulas.

0 1 2 3 4 5
T/T*

-4

-3

-2

-1

0

F
v-E

v/T
*

Tight-binding
Quasi-Free

Fig. 1: Evolution with temperature of the excess free-energy
Fv − Ev for the creation of a single vacancy, lowered by the
surrounding permutations of the bosonic solid, for both models:
quasi-free (dashed lines) and tight binding (plain lines). From
top to bottom, ζ = 12, 1.52, 22 and V = 0 for the quasi-free
model (this is only reasonable at low enough T/T ∗). Axis are
in reduced units: T/T ∗ and F/T ∗.

happens below a certain temperature Tc given by:

a
√

n∗ ∼ aφ∗−1/3
v −→ Tc ∼

µ

2
φ∗2/3

v T ∗. (10)

The superfluid transition temperature Tc is of the same or-
der of magnitude as the temperature at which a dilute gas
of particles of mass m would Bose condense. Below Tc, the
superfluid fraction can be estimated using the Ceperley-
Pollock formula. The probability that a given atom be-
longs to a winding chain is φ∗

vn∗, each of which contributes
to 〈W 2〉 by an amount a2/N , leading to:

fs ≈ T

T ∗
φ∗

v

µT ∗

2T
∼ φ∗

v; (11)

i.e. the superfluid density is of the order of the vacancy
density, which is itself temperature dependent. Due to
the large positive value of Fv(T = 0) in solid He4 (around
13K, see [8]), the density of vacancies is extremely small
and vanishes at zero temperature [9]. As a consequence,
the condition (10) is never met. No supersolid transition
induced by vacancy delocalization is expected and this sce-
nario cannot account for experimental results.

On the other hand, it is most probable that even single
He4 crystal contains quenched-in dislocations; estimates
vary in the range 106 − 1010 cm−2. This means that the
typical distance D between two dislocations is in the range
300 ≤ D/a ≤ 3 104, and the probability φ for an atom to
be part of a dislocation of the order φ ∼ 10−9 − 10−5,
much smaller than the superfluid fraction 2 10−3 reported
for isotropically pure single crystals (1 ppb of He3 im-
purities). An important message conveyed by the work
of Boninsegni et al. [14] is that dislocation cores can be
considered as liquid-like, and permutation cycles are fa-
vored along the dislocation lines at low temperatures. In-
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Fig. 2: Left: cartoon of an edge dislocation in the plane per-
pendicular to the dislocation direction. The creation of a kink-
antikink in the climb direction (or jog) corresponds to liber-
ating a vacancy, as indicated by the arrow, which can then
initiate a permutation cycle in the bulk. Right: side view of
the same situation.

deed, even classically self-diffusion is enhanced in disloca-
tion cores [21]. Because these lines are one dimensional,
however, superfluid coherence is only maintained up to
length ℓ such that ℓ ∼ aT ∗/T (see, e.g. [15]).

Now, consider an edge dislocation with a kink-antikink
corresponding to one (or several) atom(s) moving in the
climb direction (see Fig. 2) 3. In effect, this creates a va-
cancy (or a string of vacancies) which can now act as the
starting point of permutation cycles in the direction trans-

verse to the dislocation. The creation energy of a kink-
antikink pair, Ek, is expected to be appreciably lower than
that of a vacancy Ev, since the crystal is already strongly
deformed around the dislocation. When temperature goes
down, the creation free-energy of the kink-antikink pair is
lowered by the permutation cycles initiated around it, and
is given by an expression similar to Eq. (6):

Fk(T ≪ T ∗) ≈ Ek + B(T ) − ζT ∗, (12)

where B(T ) is the effective barrier to unbind the vacancy
from the dislocation core, averaged over the relevant va-
cancy paths and corrected by quantum tunnelling effects.
At high temperature it is equal to the binding energy, EB,
between the vacancy and the dislocation core, but is re-
duced by quantum fluctuations at low temperatures. This
effective barrier in fact depends on the typical extension
of the paths R∗ ∼ a

√
n∗ and on the orientation of these

paths, since the deformation field around the dislocation
contains both compressed and expanded regions [15].

Our scenario relies on the assumption that Ek, B are
small enough such that Fk(T ) becomes negative below a
temperature Tk (see Fig 1). Both Ek and B should indeed
not to be larger than a few Kelvins, at least when pressure
is not too large. Taking for example ζ = 4, Ek = 3T ∗, and
B(T → 0) ≈ 0 leads to Tk ∼ 0.2T ∗ or 200 mK (see Fig.

3These objects are in fact called jogs in the dislocation literature
[18] but we will still call them kinks.

1), with a rather modest extension of permutation cycles
R∗(Tk) ∼ 3a: the released vacancies do not travel very
far away from the dislocation cores. If the free energy for
the creation of kinks indeed become negative below Tk,
one should see a proliferation of kinks and anti-kinks in
the configurations that contribute most to the partition
function Z of the solid4. This would lead to a substan-
tial lengthening of the already present dislocations, which
start wandering around in the solid, carrying an O(1) den-
sity of kinks. Bose statistics of the surrounding atoms
favors the extension of the curvilinear length of disloca-
tions. The nature of the resulting quantum dislocation
“soup”, i.e. how much dislocations can wander around
into the solid and how large are the regions sweeped by
dislocations, is a very complicated problem. The difficulty
is to give a correct quantitative treatement of quantum
dislocations. We suggest that the the limiting factor to a
complete delocalization of dislocations is due to the elastic
energy. Consider for example a single dislocation. From
the reasoning above, it should carry, below Tk an O(1)
density of kinks-antikinks pairs. Large fluctuations can
only be achieved if kinks and antikinks unpair. However,
in this case one has to consider on top of the free energy
(12) the elastic interaction energy between kinks and an-
tikinks which disfavors the accumulation of kinks and the
corresponding wandering of the dislocation on large length
scales. Furthermore dislocations form a network inside the
solid. Thus, one also has to consider the elastic energy due
to dislocation-dislocation interactions which, again, limits
the density of dislocations. Other (shorter-range) inter-
actions between kinks and antikinks could also play an
important role.

We propose here an admittedly very naive analysis of
this difficult problem. Calling φd the total density of sites
sweeped by dislocations (per unit volume now), a simple
mean-field argument allows one to write the free-energy
per unit volume of the dislocation network as:

f ≈ Fkφd +
1

2
Y φ2

d (13)

where Y is a typical elastic interaction scale, formed with
the shear modulus G and the atomic volume a3. Since
Ga3 ≈ 100K, a rough order of magnitude is Y ∼ 50 K,
to within a factor 2. The equilibrium density of disloca-
tions is therefore φ∗

d ∼ −Fk/Y . Below Tk there is thus
an extra contribution df to the total free energy com-
ing from the dislocation soup and the corresponding pro-
liferation of permutation cycles. Using the above naive
estimate, the extra free energy contribution reads, close
to Tk: df ∼ −(Tk − T )2, leading to a small extra spe-
cific heat contribution below Tk. Whether Tk corresponds
to a true phase transition where the dislocations network
changes nature and forms a kind of “quantum dislocation

4There is a remark in de Gennes’ paper [13] where this possibility
is mentioned, which he tentatively associates with melting of the
solid.
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soup” phase is an open problem. Well below Tk, a rea-
sonable estimate is Fk ∼ −50 mK, leading to φ∗

d ∼ 10−3,
a significant increase from the bare estimate 10−9 − 10−5

given above, which assumes that dislocations are essen-
tially straight lines. However, the density of the system,
or the Debye-Waller factor, should only change by very
small, unmeasurable amounts at Tk, compatible with ex-
perimental findings [19]. Since the density of liquid and
solid only differ by 10%, we expect the change of den-
sity at Tk to be ∼ 10−4 at most. But the delocalization
of dislocations should affect the elastic property of the
solid. From the above argument, the density and fluctua-
tions of the “polymer melt” are governed by the repulsive
(elastic) interactions between otherwise proliferating and
expanding dislocations. When the solid is deformed, the
melt must adapt and deform as well. Since the initial
state minimizes the free energy, Eq. (13), any shear de-
formation can only increase the free energy to quadratic
order, leading to an increased shear (and bulk) modulus.
This might explain the recent results from the Beamish
group [20], the anomaly in the sound velocity reported
some years ago by Goodkind et al [22] and the elastic
resonance frequencies reported in [23]. The elastic region
should however significantly narrow down below Tk, giving
way to enhanced plasticity effects. We note at this stage
that the sudden appearance of a dislocation melt could
lead to partial decoupling of the solid in a oscillating pen-
dulum experiment [24], although more careful calculations
are needed to see if this is enough to explain the observed
NCRI fraction.

Coming back to a possible supersolidity transition, we
follow Boninsegni et al. [14] who show that superfluid or-
der establishes along the (coiled) dislocations. Using the
kink mechanism above superfluid order can also explore
a sausage of radius R ∼ a

√
n∗ around the sites sweeped

by dislocations. This can be thought of as a kink-induced
proximity effect. Superfluidity propagates from disloca-
tion to dislocation over the whole system only if another
dislocation is typically present within a sausage of coher-
ence length ℓ ≃ aT ∗/T (a kink would move very easily
along the dislocation to match the incoming permutation
path). The condition for macroscopic superfluidity there-
fore reads:

φ∗

d × (πR2ℓ) > 1 → T < Tc = T ∗

√

µπφ∗

d/2 ∼ 100mK,

(14)
which would give the right order of magnitude for the
appearance of supersolidity in experiments. Using the
Pollock-Ceperley formula, the superfluid density is then
given by the “saugage” fraction (each dislocation point can
be the source of a permutation cycle up to a fast transla-
tion of a kink) :

fs =
T

T ∗
φ∗

d

µT ∗

6T
∼ 3 10−4, (15)

which is compatible with recent data on single crystals
with 1ppb He3 impurities. Clearly, the above numbers

are only intended to be rough estimates, maybe more sig-
nificant is our unusual, 2d like scaling prediction Tc ∼
T ∗

√

φ∗

d.
An interesting consequence of our scenario is the role

of He3 impurities. Calling ϕ the fraction of these impu-
rities and assuming that they mostly gather within dislo-
cation cores at low temperatures, one finds that the typ-
ical distance between He3 impurities along dislocations is
d = aφ∗

d/ϕ. In Feynman’s picture, it is clear that He3 are
detrimental to superfluidity since any permutation cycle
involving an He3 atom will not contribute to the partition
function anymore. One expects that as soon as d ∼ ℓ,
the concentration of He3 becomes noticeable and affects
the superfluid density. When T ∼ 10 mK, our estimate
above leads to ℓ/a ∼ 100 and hence ϕ = 10 ppm. On the
other hand, He3 impurities might also change the density
of quenched-in dislocations and reduce the bare energy of
a kink-antikink Ek, so that the overall influence of He3 on
supersolidity could be rather complex.

What about solid He3? The delocalisation of vacan-
cies at low temperatures, and therefore the lowering of
the kink-antikink creation energy, may also occurs in this
case. However, the effect is much weaker for fermions and
Tk is expected to be much smaller than in He4 (see foot-
note 2). Kinks should proliferate more easily in spin po-
larised than in unpolarised solid He3. Of course, there
is no superfluidity in this case (except if vacancies pair
up), but there could still be observable elastic anomalies
in solid He3 at low enough temperature and pressure (per-
haps also accompanied by a small magnetic susceptibility
anomaly due to the formation of spin-polarons around va-
cancies [27]). More experiments on the elastic properties
of solid He3 would be welcome.

Let us summarize the main features of our scenario.
Around a temperature Tk, kinks proliferate and the dis-
locations form a “quantum dislocation soup” analoguous
to an entangled polymer melt. Whether the dislocations
network undergoes a true phase transition is at this stage
an open problem, but one expects a (small) specific heat
anomaly and a change the elastic properties of the system
around Tk. This could explain the shear modulus anomaly
recently reported by Day and Beamish [20] and other elas-
tic anomalies, perhaps even a partial decoupling of the
solid in a oscillating pendulum experiment. If Tc < Tk,
one should see a region with modified shear (and bulk)
modulus but only a small superfluid density before su-
persolidity really sets in at Tc, when permutation cycles
hook up different dislocations. Because our mechanism
is a hybrid between longitudinal (along dislocation lines)
and transverse permutation cycles, small concentration of
He3 impurities may significantly reduce the superfluid den-
sity. If the kink-energy can be increased substantially by
increasing the pressure, one should see a complete sup-
pression of both elastic anomalies and supersolidity when
Ek(P ) > ζ(P )T ∗. On the other hand, one should also
take into account how the initial concentration of disloca-
tions changes upon increasing the pressure. The mecha-
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nism for supersolidity proposed in this work may also be
relevant in more general cases. Indeed, supersolidity has
been obtained not only for single He4 crystals but also for
He4 in porous Vycor [4] and after rapid quenches [25]. In
these two latter cases, the underlying solid matrix could
be so full of defects that taking the crystal as the reference
state and considering its defects such as dislocations may
not be relevant. A more sensible reference state might be
an amorphous solid [26]. Nevertheless, supersolidity could
also arise in this case because of the liberation of vacan-
cies from “soft” preferred regions following a mechanism
similar to the one we proposed in this work. Finally, we
suggest that the repulsive interaction between superfluid
vortices and coiled dislocations could lead to interesting
physical effects; we expect shear cycles below Tc to be
hysteretic and affect the supersolid properties.
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Appendix. – In the following we present a derivation
of the excess free energy for a vacancy in a bosonic crystal,
Fv, which makes clear the connection with Andreev and
Lifshitz [1]. We consider the contribution to the path in-
tegral given by paths in which a vacancy is created in the
origin just after t = 0, it wanders around and come back at
the origin at t ≈ β. We estimate the additional multiplica-
tive weight induced by this process compared to the one
in which particles oscillate around crystalline positions.
Close to t = 0 a vacancy-interstitial pair is formed. The
potential energy of this configuration is higher than the
initial crystalline one. Once created and at low tempera-
ture, vacancies allow the system to gain kinetic energy by
moving through the lattice. In order to estimate this effect
we note that the crystal with the vacancy-interstitial pair
is a local minimum of the potential energy. Moving the
vacancy on other lattice sites one obtains new local min-
ima with the same energy (at least if the vacancy is far
enough from the interstitial which will happen most of the
time at large β). As a consequence the extra weight due
to paths in which the vacancy starts at t ≈ 0 and comes
back at the same position at t ≈ β can be estimated sum-
ming over instantons, where each instanton corresponds
to the motion of the vacancy to a nearest neighbor lat-
tice site (we neglect for simplicity all other jumps). Each
step leads to a factor [28] K = T ∗g exp(−S0), where S0

is the value of the action for a single instanton and g is
the contribution due to the Gaussian integration around
the saddle point. We can write K = T ∗T , where T is
the transmission coefficient of the barrier. For large β one

has to sum a dilute gas of instantons. The integration
over the instanton positions in time gives, for n instan-
tons, (βK)n/n! [28]. Thus, the weight of a path of n steps
on the lattice can be written (for large n):

pn =
C√
2πn

exp

[

−T ∗G(nT/T ∗)

T

]

, G(u) = u ln(u/eT )

(16)
where the constant factor C takes into account the
extra contribution due to the creation and annihila-
tion of the interstitial-vacancy pair at t ≈ 0, β. The
computation of Fv via the sum over closed paths of
length n can be performed by decomposing over paths
consisting of nx forward and nx backward steps in
the x direction (and similarly for the other two direc-
tions). The number of closed paths of n steps with
nx, ny, nz forward steps in the x, y, z directions, is equal
to n!/(nx!2ny!2nz!

2)δn,2nx+2ny+2nz
(for simplicity we fo-

cus on a cubic lattice). Introducing into the sum the iden-

tity f(n)2 =
∫ 2π

0
dθ/(2π)

∑

∞

n′=0 e−iθ(n−n′)f(n)f(n′) and
summing over all ns variable one finds the familiar result:

Fv = Ev − 3T ln

(
∫ 2π

0

dθ

2π
exp (2βK cos(θ))

)

(17)

Up to proportionality constants, this is exactly what one
would have obtained for a particle (vacancy) in a tight
binding model at temperature T . This computation allows
one to show how vacancies can lead to quasi-particle exci-
tations and bridges the gap between our approach and the
one of Andreev and Lifshitz [1] who analyzed the T = 0
case starting directly from a tight binding model. Note
that Fv(T = 0) = Ev − 6T ∗T .
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