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Abstract. Glasses are often described as a genuine state of matter. The aim of this paper is to briefly
review several ideas, old and new, about what makes glasses so special as a state of matter: glasses are
liquids that do not flow, characterized by increasingly cooperative dynamics.

PACS. 61.43.Fs Glasses – 05.20.-y Classical statistical mechanics – 05.50.+q Lattice theory and statistics

1 Introduction

The most salient properties of fragile glasses are (a)
the non exponential (“stretched”), spatially heterogeneous
and temporally intermittent nature of the relaxation; (b)
the extremely fast rise of their viscosity η that increases
by 15 orders of magnitude as the temperature is decreased
by less than a factor 2, and appears to diverge at a finite
(Vogel-Fulcher) temperature; (c) the aging and memory
effects of the out-of-equilibrium phase, that shows some
similarities with spin-glasses. A rather remarkable aspect
of the Vogel-Fulcher divergence (b) is that the extrapo-
lated freezing temperature TV F is found to be, for a whole
range of materials, rather close to the Kauzmann temper-
ature TK where the extrapolated entropy of the super-
cooled liquid becomes smaller than that of the crystal.
Assuming that the entropy of a typical metastable state
in which the glass can get stuck is close that of the crys-
tal, the difference between the liquid and crystal entropies
(aka the configurational entropy) counts approximatively
the number of metastable states in which the glass can
get stuck. The experimental finding, T0 � TK , then im-
plies that the divergence of the viscosity is related to a
rarefaction of metastable states (also called the entropy
crisis phenomenon).

The striking observation that makes the ‘problem of
glasses’ interesting is that very many, totally different ma-
terials, exhibit the same properties, pointing to the exis-
tence of a somewhat universal mechanism: glassy dynam-
ics is physics more than chemistry.
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2 Mean field: landscapes and MCT

Two apparently quite different frameworks have been dis-
cussed in the (fourty years old) literature to account for
this phenomenology:
– phase space/energy landscape pictures, where the sys-

tem is trapped in metastable states of varying depth.
The dynamics is made of small harmonic vibrations
around each metastable configurations, separated by
hops between different minima of energy (or free-
energy);

– cooperatively rearranging regions of increasing length.
The dynamics becomes sluggish because larger and
larger regions of the material have to move simulta-
neously to allow substantial motion of individual par-
ticles.

Although the idea of cooperative dynamics seems most
reasonable, its reality has remained elusive until recently:
a consistent definition of this growing length, its experi-
mental measurement and its calculation within a theoret-
ical model (even highly simplified) are subjects of topical
activity. Interestingly, similar concepts are also relevant
for the description of other “jammed” systems, such as
dense granular assemblies that flow in a very jerky way.

The landscape picture can be given more flesh
within mean-field spin-glass theories. The Random Energy
Model, for example, contains already a lot of the glass phe-
nomenology (entropy crisis at TK , aging..). The analogy
with spin-glasses actually helps understanding that the
proper order parameter to describe the glassy state is the
Edwards-Anderson parameter, which is a measure of the
amplitude of density fluctuations which does not decay
with time. More elaborate mean field spin-glasses theo-
ries lead to dynamical equations that are identical to the
“Mode Coupling” theory (MCT) of supercooled liquids.
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MCT is considered by many to be the only available first
principle theory of the supercooled state, starting from
interacting atoms and making its way up to compute the
viscosity of the liquid as a function of density and temper-
ature. This theory makes a number of quantitative pre-
dictions that can be compared to experiments, some of
which in remarkable agreement with observations. This
analogy between MCT and mean-field spin-glasses allows
one to interpret the MCT scenario for dynamical arrest
in a clear fashion: the potential energy landscape has only
unstable saddle points above a certain “threshold” energy,
around which the system can only pause momentarily be-
fore continuing its exploration of phase space. This cor-
responds to the high temperature liquid phase. Lowering
the temperature, the number of unstable directions de-
creases. At the energy threshold (corresponding to TMCT ),
the saddles only have marginal (zero curvature) escape
directions, responsible for the MCT divergence of relax-
ation times. For lower energies (temperature) there are
only minima where the system gets trapped. The number
of these minima is exponential in the size of the system as
long as TK < T < TMCT , but the barriers between them
are (in mean-field) infinite: once trapped in a minimum,
the system remains there forever. These marginal saddles
(or minima) also dominate the out of equilibrium dynam-
ics: after a quench below TMCT the system ages due to
a never-ending descent toward the threshold states. The
system never relaxes to equilibrium because the older it
is, the fewer and the flatter the unstable directions and
the longer it takes to decrease the energy.

3 Finite dimensions and dynamic
heterogeneities

Is this above mean-field picture at all relevant for finite
range interactions? Phase-space pictures cannot be di-
rectly applied when the dynamics is local: the energy sur-
face must somehow “factorize”. “Hops” in phase space
should correspond to definite spatial structures (vacan-
cies? strings? fractal clusters?). The observed dynamical
heterogeneities, and the corresponding viscosity/diffusion
decoupling must be accounted for. Hidden behind phase
space pictures, there must thus be a dynamical length
scale ξ(T ) governing the slowing down of these materi-
als. Contrarily to simple systems where this length scale
is the characteristic size over which some order (ferro-
magnetic, crystalline, etc.) is established, the difficulty of
glasses and spin-glasses is that no obvious local order sets
in. The definition of a dynamical length scale is more sub-
tle and requires a four point density correlation function
that attempts to quantify the size of dynamically corre-
lated regions. Since the glass order parameter is already
a two-body correlation function, the natural “suscepti-
bility” for the MCT transition is a four-point function.
Interestingly, the MCT freezing transition is indeed ac-
companied by the growth of a dynamic correlation length
scale, exactly as usual second order phase transitions are
accompanied by the growth of a static correlation length.
This dynamic susceptibility is in fact related in a deep

way to a dynamical response: if a local perturbation is
introduced at point r in space (for example a local ex-
cess density), what is the size of the region where the
dynamics is significantly affected? This dynamic response
can be computed explicitely within MCT, and reveals the
existence of a dynamic correlation length that diverges as
(T −TMCT )−1/4. As noted above, the MCT transition can
be interpreted as describing the appearance of marginally
metastable states that slow down the dynamics. These
states are characterized by soft modes that involve a di-
verging number of particles moving in correlated clusters.
A series of precise and non trivial predictions about the
scaling of these dynamic clusters can be made close to
TMCT , which are in rather good quantitative agreement
with simulations in the weakly supercooled region. Some
of these predictions are however more general than MCT,
such as the link between the four-point susceptibility and
the dynamical response. In fact, the integral over space of
the dynamic response is related to the derivative of the
two-point correlation function with respect to a control
parameter, e.g. the temperature, which is easily measured.
This leads to a simple and direct way to access dynamic
correlation volumes experimentally. In close analogy with
spin-glasses, one also expects that the appearance of long-
ranged amorphous order in glasses should be signaled by
growing non-linear susceptibilities (e.g. non-linear dielec-
tric constant).

Since dynamic fluctuations diverge close to TMCT , one
expects that MCT will fail in low enough dimensions.
It turns out that below dc = 8, fluctuation effects be-
come dominant and lead in particular to a breakdown of
the Stokes-Einstein relation. Therefore, MCT predictions
cannot be quantitative in three dimensions very close to
TMCT . However, a more essential problem of MCT is that
barriers between metastable states must be finite for real-
istic potentials, even for T < TMCT . Therefore, the very
divergence of the viscosity at TMCT is smeared out and
replaced by a crossover.

What is then the nature of the growing length scale
at lower temperatures? Old free volume ideas, recently
revived within the context of ‘facilitated’ models, sug-
gest that mobility defects trigger the dynamics and be-
come more and more dilute as temperature decreases –
the length scale is then related to the distance between
defects. A more ambitious scenario, proposed by Adam-
Gibbs in the 60’s and, inspired by mean-field spin-glasses,
by Kirkpatrick, Thirumalai and Wolynes in the 80’s, re-
lates the size of collectively rearranging regions to the con-
figurational entropy of the glass. The idea is that of en-
tropic melting of frozen clusters: small clusters have few
low energy metastable configurations and are pinned in
one of them by the external environment; large clusters
can explore many configurations and free themselves from
any boundary conditions: entropy, which is extensive, wins
over the energetic gain due to pinning boundary condi-
tions. On small scales, the dynamics from state to state is
fast (low barriers) but leads to nowhere – the system ends
up always visiting the same state. For larger scales, the
system can at last delocalize itself in phase space and kill
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correlations, but this takes an increasingly large time. The
crossover scale ξ, determined by the balance between con-
figurational entropy and pinning boundary energy, then
sets the relaxation time and diverges when the configura-
tional entropy goes to zero, explaining the deep connection
between dynamics and thermodynamics (absent in mobil-
ity defect theories). The supercooled liquid is in a mosaic
state, made up as a patchwork of all possible frozen config-
urations, with cell size ξ. The dynamics within scale ξ is
collective and landscape (trap) pictures should be rele-
vant. For larger scales, however, the dynamics occurs in
parallel and global phase space ideas are meaningless. The
mosaic state offers a plausible interpretation of the ran-
dom first order transition to an amorphous solid predicted
by mean-field theories. The relevance of this beautiful sce-
nario, where the liquid slows down because of the emer-
gence of a very large number of metastable states that mo-
mentarily trap the system, with larger and larger frozen
regions as the system is allowed to visit deeper and deeper
energies (i.e. more and more jammed states), is however
still quite controversial. This theory is certainly still im-
perfect in many ways: no realistic model where this it can
be proved mathematically yet exists. Although its mean
field version has been worked out in detail, its finite di-
mensional extension have still to be put on firm theoretical
grounds (some steps on highly stylized models have been
made recently). Yet, it has already produced many non
trivial predictions, such as the idea of out of equilibrium
effective temperatures and scaling of dynamic correlations,
and it explains naturally some puzzling experimental facts
such as the Adam-Gibbs relation between dynamics and
thermodynamics. One of its main asset, compared to many
other scenarios of glass transition, is that is firmly based
on a well defined microscopic theory.

The same issues in fact exist also for spin-glasses.
Parisi’s mean-field solution in this case reveals an even
richer and more complex landscape structure, with valleys
within valleys within valleys, in a hierarchical (fractal)
fashion. Although this fractal picture is very helpful to
account for example for the memory and rejuvenation ef-
fects, the way to reconcile mean-field with real spin-glasses
where the dynamics again becomes slow because of the
growth of some cooperative length scale is far from set-
tled. A remarkable effect predicted in spin-glasses is their
extreme fragility to tiny temperature changes, that may
induce large rearrangements in the equilibrium spin con-
figuration. Such a fragility was also discussed in other
contexts (pinned vortex lines, dislocations, domain walls;
force chains in granular materials). The extent to which
this ‘temperature chaos’ effect also exists in regular glasses
and allows one to understand rejuvenation in these mate-
rials is an open problem.

4 Some open problems

Some of the outstanding questions that remain before we
can say we understand why glasses do not flow are the
following:

– How relevant (if at all) are mean-field ideas/models
for real glasses (and spin-glasses)? Is cooperativity
non thermodynamical as in mobility defect/facilitated
models or related to an exponential degeneracy of
metastable states, as in mean-field models? Can one
make some (controlled) theoretical progress on a non
mean-field model of glasses, or at least formulate a
Ginzburg-like criterion to understand the parameter
region where mean-field models are relevant to describe
real glassy materials? Can one describe in detail the
crossover between the (high temperature) MCT region
and the (low temperature) mosaic/activated region?

– What is the geometry of elementary dynamical excita-
tions in glasses (and spin-glasses): strings, fractal clus-
ters? Is there really, experimentally, a detectable grow-
ing dynamical length scale in glassy systems (including
jamming granular materials, soft glassy materials, spin
glasses) that is the cause of the dramatic slowing down
of the dynamics? How large can this length actually
grow (experiments suggest roughly 100 correlated par-
ticles at Tg). Can this explain the apparent universality
of glassy dynamics? Is this length scale important to
understand, e.g. anomalous phonon modes or fracture
in these materials? Does this length scale measure the
size of the cooperative rearranging regions?

– Is there a random matrix like theory of the statis-
tics of energy landscapes, that would make MCT
predictions generic? Is the idea of fragility and disor-
der/temperature chaos, now well established for disor-
dered systems (spin glasses, randomly pinned objects)
and possibly related to rejuvenation effects, also rele-
vant for structural glasses?

We hope that the upsurge of theoretical, numerical and ex-
perimental activity on dynamical heterogeneities in glasses
and disordered materials will help answering some of these
questions in the near future.
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