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We study a new ensemble of random correlation matrices related to multivariate Student (or more
generally elliptic) random variables. We establish the exact density of states of empirical correlation
matrices that generalizes the Marčenko-Pastur result. The comparison between the theoretical
density of states in the Student case and empirical financial data is surprisingly good, even if we
are still able to detect systematic deviations. Finally, we compute explicitely the Kullback-Leibler
entropies of empirical Student matrices, which are found to be independent of the true correlation
matrix, as in the Gaussian case. We provide numerically exact values for these Kullback-Leibler
entropies.

I. INTRODUCTION

Estimating and analyzing the correlation matrix of N different variables from a data set is very recurrent problem
in statistical analysis. Typically, one observes the value of the N different variables over a time period of size T . The
total number of data point is NT whereas the number of elements of the correlation matrix is N(N − 1)/2. In many
applications, both T and N are large but Q = T/N is of order unity. For example, in financial applications the values
of T and N go from few hundreds to a few thousands. In these cases, the correlation (or covariance) matrix is in fact
rather poorly determined. This means, in particular, substantial noise in the determination of the eigenvalues and
eigenvectors. For instance, focus on the case where all random variables are in fact independent, such that the true
correlation matrix Cij is the identity matrix. The empirical determination of C, which we call E, is obtained from
the zero mean, unit variance Gaussian variables rt

i using the Pearson estimator:

Eij =
1

T

T∑

t

rt
ir

t
j (1)

The eigenvalue spectrum ρ(λ) of E only approaches a δ-function at λ = 1 when Q → ∞. When Q is finite, however,
ρ(λ) is non-trivial. Under mild hypothesis about the distribution of the ri

ts (essentially that the variance is finite),
the spectrum approaches, in the large N, T limit, the Marčenko-Pastur distribution [1]:

ρ(λ) =

√
4λq − (λ − 1 + q)2

2πλq
λ ∈ [(1 −√

q)2, (1 +
√

q)2] (q = 1/Q < 1). (2)

For finite N , the edges of the spectrum are smoothed. The statistics of exceptionally large eigenvalues is described by
the Tracy-Widom distribution [2], or by a Fréchet distribution when the rt have power-law tails decaying sufficiently
slowly [3]. The probability of large fluctuations of the maximum eigenvalue (for Gaussian rt) has been derived in [4].

In this work we focus on a more general ensemble that often provides a faithful representation of empirical data.
We will consider that the random variables rt

i can be written as a product of two terms: rt
i = σtηt

i where ηt
i and σt

are independent random variables. The ηt
i are characterized by a true correlation matrix Cij = 〈ηiηj〉 and σt

i are such
that 〈σ2〉 = 1. Furthermore, ηt

i are drawn independently from the same distribution at each time t. A particular case
on which we shall focus extensively corresponds to Gaussian distributed ηi and

P (σ) =
2

Γ(µ
2 )

exp

[
−σ2

0

σ2

]
σµ

0

σ1+µ
, (3)

where σ2
0 = 2µ/(µ − 2) in such a way that 〈σ2〉 = 1 (Γ(x) is the Gamma function). This case corresponds to a

multivariate Student distribution for the original variables rt
i . This defines the Student Ensemble we will consider

more specifically below, although many of our results extend to arbitrary choice of P (σ) and P ({ηt
i}), defining a

large class of elliptic distributions. We will also focus on applications of our results to finance where the correct
determination of the true correlation matrix between stocks play a very important role.

The application of Random Matrix Theory to financial correlation matrices was first suggested in [5, 6, 7, 8]. In
this context rt

i are daily (or higher frequency) returns of N different stocks over a time period of size T . As discussed
above, even in the absence of any correlation between stocks, we expect the eigenvalues of an empirical correlation
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matrix, determined over a finite time interval, to be non trivial. As a consequence, distinguishing between noise and
genuine information in the empirical density of states is a subtle matter. For example, the diagonalisation of the
correlation matrix of, say, 450 stocks computed over a bit more than 4 years (1125 trading days) reveals one very
large eigenvalue corresponding to a roughly uniform eigenvector, corresponding to the “market mode”, and a handful
of other large eigenvalues that can be seen to correspond to large sectors of economic activity. Smaller eigenvalues,
however, form a blob around λ = 1. Is this blob well described by the Marčenko-Pastur distribution? In order to
answer this question one has to rescale the small (supposedly “pure noise”) empirical eigenvalues in order to have
λ = 1 and compare to a Marčenko-Pastur distribution (for which one has by definition λ = 1). Different results are
obtained depending on the number of largest eigenvalues that are considered meaningful. They are shown in Figs. 3
and 4 below. The agreement between empirical data and the Marčenko-Pastur distribution is seen to be acceptable,
although some systematic deviations are observed [5, 8]. Should these deviations then be interpreted as the presence
of true economic information hidden in the noise band, or are we missing an important effect? The phenomenology
of financial markets suggests that a more faithful model consists in assuming that all individual stock returns are
impacted by the same, time dependent scale factor σt that represents the “market volatility”: rt

i = σtη
t
i , where ηi

t

are zero mean, unit variance Gaussian variables, and σt is a random variable. From empirical studies, we know that
the σt’s have long range temporal correlations but for the purpose of the present study we only have to specify the
marginal distribution P (σ). One possible choice that matches quite well the data is to choose Eq. (3) with µ ≃ 3− 5.
This corresponds to a multivariate Student distribution for the returns, discussed for example in [9, 10]. This is the
model we will consider more specifically below. Another possible choice, inspired by the multifractal random walk
model [11], is a log-normal distribution for P (σ).

II. WISHART-STUDENT MATRICES

A. Density of states of Pearson and Maximum Likelihood Estimators

The first question we address is the generalisation of the Marčenko-Pastur spectrum for multivariate Student
variables, when the Pearson estimate Eq. (1) is used to determine the empirical correlation matrix. The computation
of the density of states (DOS) can be straightforwardly performed using free random matrices techniques [12]. The
trick is to use the so called Blue function which is the inverse of the resolvent G: B(G(z)) = z. The quantity
B(x) − 1/x is called the R-transform of G and under certain hypotheses, obeyed by any elliptic Wishart ensemble
such that Cij = 〈ηiηj〉 = δij , is known to be additive [12].[18]

Since any elementary matrix σ2
t ηt

iη
t
j is a projector, its resolvent is simply:

Gt(z) =
1

N

(
1

z − µ
Qst

+
N − 1

z

)
(4)

where Q = T/N and σ2
t ≡ µ/st (henceforth, µ = µ/2 − 1), such that P (s) = sµ/2−1e−s/Γ(µ/2) in the Student case.

We have used that in the large N limit
∑

i(η
t
i)

2/N = 1. Inverting the resolvent at leading order we find:

Bt(x) =
1

x
+

µ
Qst

N(1 − xµ
Qst

)
(5)

Using the additive properties of the R-transform we finally find the Blue function for E:

B(x) =
1

x
+

1

T

∑

t

µ
st

(1 − xµ
Qst

)
=

1

x
+

∫
dsP (s)

µ
s

(1 − xµ
Qs)

(6)

where the second identity is due to the large T, N limit at fixed Q.
The relation between the resolvent and the density of states is G(λ − iǫ) = GR(λ) + iπρ(λ), where GR is the real

part of the resolvent. Inverting this relation we find two coupled equations on GR, ρ:

λ =
GR

G2
R + π2ρ2

+

∫
dsP (s)

µ(s − µGR/Q)

(s − µGR/Q)2 + µ2π2ρ2/Q2
(7)

0 = ρ

(
− 1

G2
R + π2ρ2

+

∫
dsP (s)

µ2/Q

(s − µGR/Q)2 + µ2π2ρ2/Q2

)
(8)
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FIG. 1: Comparison between the Wishart Student distribution for Q = 2 and µ = 6, solution of the previous equations, and
the numerical result obtained for N = 50 and 8000 samples.

Note that these equations are actually valid for any P (σ) (when tails are not too heavy). The last equation of course
always admits the ρ = 0 solution. At very small λ, the solution of these equations is indeed ρ = 0. The corresponding
GR solves the equation

λ =
1

GR
+

∫
dsP (s)

µ

s − µGR/Q
(9)

The RHS is well defined only for negative GR, it goes to zero for very large and negative GR, it goes to minus infinity
at GR = 0− and it has a maximum somewhere in between. The maximum of the RHS corresponds to the largest
value of λ for which there is a real solution, i.e. to the left edge of the DOS. It can be determined obtaining the value
of GR where the RHS of the previous equation has a maximum:

1 =

∫
dsP (s)

µ2G2
R/Q

(s − µGR/Q)2
, (10)

and plugging this value into (9). When P (s) extends to s = 0, as is the case for Student variables, there is no real
solution for larger values of λ. This implies that the DOS has no right edge in that case. In order to determine the
DOS right tails we focus on the large λ limit of eqs (7,8). It is easy to check that Eq. (7) is solved in the large λ
limit by GR ≈ 1/λ if ρ/GR goes to zero. We will check that this is indeed the case after having determined ρ(λ). In
order to do so, we analyze Eq. (8) assuming ρ/GR → 0. In this case the integral can be computed exactly and one
gets (for large λ):

ρ(λ) ≃ µµ/2

Γ(µ/2)Qµ/2−1

1

λ1+µ/2
. (11)

This result abides our initial assumption ρ/GR = ρλ → 0 when λ → ∞. It can be interpreted in terms of rare
events. Indeed the distribution of σ has exactly the same power law tail. A very large σ∗ on a given day, t, leads
to an quasi-eigenvalue λ ≃ σ∗2/Q plus subleading contribution. As a consequence, writing (for s << 1, λ >> 1)
TP (s)ds = Nρ(λ)dλ allows one recover precisely the left tail of the DOS. As expected, provided µ > 2, the power-tail
disappears in the limit Q → ∞.

The Wishart-Student distribution for Q = 2 and µ = 6, solution of the previous equations, is plotted in Fig. 1 and
compared to a numerical result obtained for N = 50 and 8000 samples. The agreement is excellent.

We should however point out that the Pearson estimator is not, in the case of Student variables, the maximum
likelihood estimator of C. The formula for this estimator was worked out in [9] and is given instead by the solution
of:

E∗
ij =

N + µ

T

∑

t

rt
ir

t
j

µ +
∑

mn rt
m(E∗−1)mnrt

n

(12)
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FIG. 2: Comparison between the numerical solution of the self-consistent equation (12) for N = 50, 80, 150 and Q = 2.5 (500
samples) and the Marčenko-Pastur distribution. The agreement is excellent. Notice that the blurring of the MP right edge is
a finite size effect, as shown by the evolution from N = 50 to N = 150.

This reproduces the usual Pearson estimate when µ → ∞ at fixed N . We are interested in the other limit N, T → ∞
at fixed µ. In this case µ can be dropped everywhere. As a consequence, the previous equation simplifies into:

E∗
ij =

1

T

∑

t

ηt
iη

t
j

N−1
∑

mn ηt
m(E∗−1)mnηt

n

(13)

Furthermore, in the large N, T limit at fixed Q the denominator in the RHS is expected to become self-averaging and
independent of t at leading order. Since the above equation only fixes E∗ up to an arbitrary multiplicative constant,
we fix the value of the denominator to unity, which we can then verify self consistently. Since the ηt

i are Gaussian
random variables with unit variance, the maximum likelihood estimator of C is a Wishart matrix, and the eigenvalue
spectrum is again given by the Marčenko-Pastur distribution. In order to check that the denominator is indeed equal
to unity, we break E∗ into two contributions: E∗

1 +1/(T )ηt
iη

t
j , where E∗

1 is the part of the Wishart Matrix independent

of the ηt
i . Expanding the expression for the denominator in powers of 1/(T )ηt

iη
t
j , one finds at leading order in N:

(Tr(E∗)−1)/N
1

1 + Tr(E∗)−1/(Q)
(14)

where we have used that in the large N, T limit TrE∗/N ≈ TrE∗
1/N and

∑
i(η

t
i)

2/N = 1. Recalling that the trace
of the inverse of a Gaussian Wishart correlation matrix equals Q/(Q − 1) one can straightforwardly verify that the
denominator is indeed equal to one. We have tested our result by numerical simulation by solving numerically the
self-consistent equation (12) for N = 50, 80, 150 and Q = 2.5. The density of states, averaged over 500 samples, is
compared to the Marčenko-Pastur distribution in Fig. 2. The agreement is excellent, thus confirming our analytical
result.

This result is quite remarkable, especially from the point of view of cleaning noisy correlation matrices. Using the
Maximum Likelihood Estimate of C one improves a lot the estimator; it allows to remove completely the effect of the
noise due to σ fluctuations, in particular to cut the noisy power-law tails of the Wishart-Student distribution.

At this stage, it is interesting to discuss the generality of the above results. First, remark that the DOS could also
be computed for an arbitrary correlation true matrix Cij = 〈ηiηj〉 using free random matrix theory and the so-called

S-transform: since in this case E =
√

CEWS

√
C, where EWS is a Wishart-Student empirical matrix considered above,

the eigenvalues of E will be the same as those of the product CEWS . The spectrum of E can be computed from the
S-tranform of both C and EWS , extending the classical result for Wishart matrices. Furthermore, our derivation of
Eqs. (7,8) does not require Gaussian ηis but only that

∑
i(η

t
i)

2/N = 1 for large N . Finally, although we focused on
a particular shape P (σ), Eqs. (7,8) generalizes straightforwardly to any P (σ) with not too heavy tails, for example a
log-normal distribution.
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FIG. 3: Comparison between the analytical results, Student (for µ = 3.85) and Gaussian Wishart, and the empirical data.

B. Applications to financial data

In the following we compare the Wishart-Student distribution to empirical data. We have considered the daily
returns of 450 stocks of SP-500 from 2003 to 2007 and computed the empirical (Pearson) correlation matrices E for
Q = 2.5. The resulting average density of states is compared to the Marčenko-Pastur DOS and the Wishart-Student

DOS for µ = 4 and µ = 5. Note that we renormalized the empirical DOS by 1 −∑Km

k λk/N where k runs over the
indexes of the largest Km eigenvalues. As discussed in the introduction, this is done in order to subtract a clearly non
random contribution. Although the first few eigenvalues are certainly non-random the precise choice of Km is a subtle
matter. Different analysis suggest that Km ≈ 10 [5]. In the following we have chosen to determine Km directly from
the Wishart-Student DOS: we determine the values of λ0.5, λ0.9 such that the probability that all sampled eigenvalues
are less than these values is either 0.5 or 0.9 (of course assuming that the underlying distribution is Student). All
eigenvalues that are larger than these cut-offs are assumed to be meaningful. λ0.5, λ0.9 depend on µ; furthermore the
determination of Km can be altered by other effects not taken into account in our simple model. Therefore we have
verified that our results are stable when Km is between 2 and 10. In Fig. 3 and 4 we show the comparison between the
analytical results, Student and Gaussian Wishart, and the empirical data. We have used 20 samples corresponding
to a sliding average with step of 15 days. The two figures correspond respectively to the µ = 3.85 and µ = 5 case. In
the first case we renormalized the empirical data considering the first or the first two eigenvalue as meaningful. In
the second case we considered the first three or the first five as meaningful.

The agreement with the Wishart-Student DOS is surprisingly good. The optimal value of µ appears to be close to
µ = 3.85 in agreement with the value of µ obtained from the marginal distribution of daily returns (µ ≈ 3.85, see [9]).
As stressed above these results are not affected much as as long as Km is between 2 and 10.

In order to test directly the hypothesis that the returns are multivariate Student variables, we have repeated the
same analysis with daily returns scaled by a proxy of the instantaneous volatility, namely:

ηt
i =

rt
i/σt

i√
N−1

∑N
j=1(r

t
j/σt

j)
2

(15)

and studied the eigenvalue spectrum of Êij = 1/T
∑

t ηt
iη

t
j , again subtracting the top eigenvalues. Note that we have

normalized each return by σt
i =

∑
t′ 6=t(r

t
i)

2/T as discussed in [9].
In theory, the resulting spectrum should now be well fitted by the Marčenko-Pastur distribution. As shown in Fig.

5, the spectrum of Ê indeed moves closer to the Marčenko-Pastur result but is still distinctly different. However, the
rescaled returns ηt

i are still found have fat-tails; a possible explanation is that the volatility of a given stock fluctuates
not only through a common (market) factor σt but also through common sectorial volatilities, which could explain the
deviation from Marčenko-Pastur. Another possibility is of course that there are still non-trivial eigenvectors within
the “noise blob”. We leave the detailed study of this question for further studies.
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FIG. 4: Comparison between the analytical results, Student (for µ = 5) and Gaussian Wishart, and the empirical data.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2
MP
Student
Emp-normalized-10
Empirical-10

FIG. 5: Comparison between the standard DOS of Wishart correlation matrices obtained from empirical data (Empirical-10)
and the one obtained renormalizing the returns by a proxy of the daily volatility (Emp-normalized-10). Both are rescaled using
Km = 10 (Q = 2.5). MP and Student are the analytical Marčenko-Pastur and Student (µ = 4) results.

III. KULLBACK-LEIBLER ENTROPY

The Kullback-Leibler (KL) entropy allows one to measure the distance between two probability distributions and
is defined in the following way [15]:

S(2|1) =

∫
dxP1(x) log

(
P1(x)

P2(x)

)
(16)

It is easy to show that this entropy is semi-positive definite using that S21 = −〈log P2/P1〉P1
≥ − log〈P2/P1〉P1

=
− log〈1〉P2

= 0. Furthermore its minimum is reached for P1 = P2. As a consequence it is a possible measure how
much the distribution P2 differs from P1. Note however that it is an asymmetric measure: S(1|2) 6= S(2|1).

Tumminello et al. [16] computed the KL entropy for two multivariate Gaussian distributions with correlation
matrices C1,2 and found:

S(C2;C1) = −1

2

[
Tr logC

−1
2 C1 + Tr(C−1

2 C1) − Tr1
]

(17)
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From this expression, they established that for N -multivariate Gaussian variables (stock returns) with true correlation
matrix C, the following holds:

• The average of S(E;C) is independent of C for all N where E is the Pearson estimator of C on a T long time
series: 〈S(E;C)〉 = Z(N, T )

• The average of S(E1;E2) is also independent of the true correlation C, where E1,E2 are the empiri-
cal correlations corresponding to two independent realisations of the multivariate process described by C:
〈S(E1;E2)〉 = Z ′(N, T )

This is a very interesting remark because in cases where the a priori distribution is indeed Gaussian one can judge
the relative performance of different cleaning procedures of E without knowing the true correlation matrix C, by
computing S(E;Ecl) where Ecl is the cleaned empirical correlation matrix. The above two values Z, Z ′ provide
interesting benchmark values for S. The best one can do is to recover the true correlation matrix: Ecl = C, so
S(E;Ecl) < Z means that some noise remains in the cleaned matrix, while S(E;Ecl) > Z means that the cleaning
is too violent and introduces some distortion. On the other hand, the most trivial cleaning procedure is doing
nothing: Ecl = E. Therefore, considering two independent realizations, a good cleaning procedure should be such
that S(E1;E2,cl) ≤ Z ′. Furthermore, Z ′ is also interesting to estimate the reproducibility of the filtering procedure
by comparing it to S(E1,cl;E2,cl), see the discussion in [16]. We also remark also that the value of the KL entropies
cited above (divided by N) is self-averaging in the limit of a very large number of stocks N .

As discussed above, the distribution of stock returns is not Gaussian but rather multivariate Student with an
exponent µ ≈ 4 − 5. [Note that the marginal distribution of single stock returns is then also found to be a Student-t
distribution]. In order to apply the above ideas to real data, we need to extend the results of Tumminello et al.
[16] to multivariate elliptic distributions, parameterized by an arbitrary distribution P (s) of the inverse variance. As
explained above, the Gaussian case corresponds to P (s) = δ(s − µ) and the Student case corresponds to P (s) =
sµ/2−1e−s/Γ(µ/2).

A. Kullback-Leibler entropy for elliptic laws

In order to compute S(2|1) for generic elliptic laws one has to compute:

S12 =

∫
dxP1(x) log (P2(x)) , (18)

where x is an N -dimensional vector. The Kullback Leibler entropy will then be obtained as S11 − S12. Therefore all
constant terms, i.e. independent of the correlation matrix C, cancel between the two contributions.

A general expression for S12 can be worked out using replicas:

S12 = lim
n→0

∂n

∫
dx1...dxN P1(P2)

n. (19)

For any positive integer n one can plug into the above equation the general expression of multivariate elliptic laws
and find the following expression for S12:

lim
n→0

∂n

∫
dx1...dxN dsds1...dsnP (s)sN/2

n∏

a=1

P (sa)sN/2
a

exp
(
− 1

2

∑
i,j xixj [sC

−1
1 +

∑
a saC

−1
2 ]ij

)

√
2π

N(n+1)√
detC1 det(C2)n

(20)

One can now integrate out the x variables and get:

S12 = lim
n→0

∂n

∫
dsds1...dsnP (s)

n∏

a=1

P (sa)sM/2
a

(
1

√
2π

N√
det(C2)

)n
1√

det[1 + C
−1
2 C1

∑
a sa/s]

(21)

Introducing the following identity in the previous expression:

∫
dyδ

(
y −

∑

a

sa

)
=

∫
dydŷ exp(−iyŷ + iŷ

∑

a

sa), (22)
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one can finally make the analytic continuation to real n:

S12 = lim
n→0

∂n

∫
dsdydŷP (s)

(∫
dsP (s)sN/2eisŷ

√
2π

N√
det(C2)

)n
e−iyŷ

√
det[1 + C

−1
2 C1y/s]

(23)

It is now possible to differentiate with respect to n, take the limit n → 0 and get the general expression:

S12 = −1

2
Tr log C2 +

∫
dsdydŷP (s) log

(∫
dsP (s)sN/2eisŷ

√
2π

N√
det(C2)

)
e−iyŷ

√
det[1 + C

−1
2 C1y/s]

+ K (24)

where K is a constant independent of the Cs. The final expression for the Kullback-Leibler entropy is therefore:

S(2|1) = −1

2
Tr log[C−1

2 C1] −
∫

dsdydŷP (s) log

(∫
dsP (s)sN/2eisŷ

)
e−iyŷ

√
det[1 + C

−1
2 C1y/s]

+

∫
dsdydŷP (s) log

(∫
dsP (s)sN/2eisŷ

)
e−iyŷ

(1 + y/s)N/2
(25)

An important remark that will be very useful below is that this expression can be written in general as S(2|1) =
Trf(C−1

2 C1), where f is a function that depends on P (s). In the following we will apply the general expression above
to the Gaussian case, to check its validity, and to the Student case.

1. Gaussian distribution

Let us focus on the multivariate case when P (s) = δ(s − µ). In this case the second term in the general expression
above simplifies considerably. Up to a constant term that cancels out between the second and the third term and
after rescaling y, ŷ → ŷµ, y/µ we find:

− i

∫
dŷdy

ŷe−iyŷ

√
det[1 + C

−1
2 C1y]

(26)

Integrating over ŷ one gets:

∫
dyδ′(y)

1√
det[1 + C

−1
2 C1y]

=
1

2
∂y Tr

C
−1
2 C1

1 + C
−1
2 C1y

∣∣∣∣
y=0

=
1

2
Tr[C−1

2 C1] (27)

Repeating the same procedure for the third term, we finally recover the expression derived in [16]:

S(2|1) =
1

2

[
−Tr logC

−1
2 C1 + Tr(C−1

2 C1) − Tr1
]
, (28)

which can indeed be obtained in a much simpler way.

2. Student distribution

In order to proceed we have first to compute:

∫
dsP (s)sNeiŷs (29)

which in the case of a Student distribution P (s) = sµ/2−1e−s/Γ(µ/2) reads:

Γ(N + µ/2)

Γ(µ/2)
(1 − iŷ)−N−µ/2 (30)
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We will use this identity to simplify the second term of (25) finding:

N + µ

2

∫
dsdydŷP (s) log (1 − iŷ)

e−iyŷ

√
det[1 + C

−1
2 C1y/s]

+ K ′ (31)

In order to be able to integrate over ŷ we apply the identity log z =
∫∞

0
(e−t −e−zt)/t to z = 1− iŷ. Hence, we obtain:

N + µ

2

∫
dsdtP (s)



exp(−t)

t
− exp(−t)

t
√

det[1 + C
−1
2 C1t/s]



 (32)

The double integral is dominated by small values of t/s such that the leading contribution can be obtained expanding
to the first order in t/s. This can be readily checked when C

−1
2 C1 = 1. Thus, in the large N limit, one finds:

N + µ

2

∫
dsdtP (s)

(
exp(−t) − exp(−t − tTrC−1

2 C1/(2s))

t

)
(33)

Using again the integral expression of the logarithm we find that the second term of (25) reads:

N + µ

2

∫
dsP (s) log

(
1 + TrC−1

2 C1/2s
)

(34)

Putting all pieces together we find finally the expression for the Kullback-Leibler entropy for multivariate student
distributions:

S(2|1) = −1

2
Tr log[C−1

2 C1] +
N + µ

2

∫
dsP (s) log

(
1 + TrC−1

2 C1/2s

1 + N/2s

)
(35)

This expression allows one to recover the Gaussian case above in the limit µ/N → ∞, where s ∼ µ/2 ≫ N . As a
consequence one can expand the logarithm and find the previous expression for Gaussian distribution. The case of
interest here is instead µ/N ≪ 1. In this case the previous expression simplifies into:

S(2|1) = −1

2
Tr log[C−1

2 C1] +
N

2
log
(
TrC−1

2 C1/N
)

(36)

One can change continuously from the Gaussian case to the Student case by tuning the parameter x = N/µ in the large
N, µ limit. Gaussian and Student correspond respectively to x = 0,∞. Note that the final expression is independent
of µ in the x = ∞ case, at least its leading contribution in N which is what we are interested in.

B. Applications

Following [16] we shall now compute Z/N and Z ′/N , i.e. SKL(C1,C2) when C1 = E1 is the empirical correlation
matrix generated from the a priori correlation matrix C and C2 is either equal to C or is another independent
empirical correlation matrix E2. The crucial results of [16] is that these expectation values are independent of the
true correlation matrix C. This is in fact true in the case of a general multivariate elliptic distribution since the
final expression can be written as Trf(C−1

2 C1). A generic empirical correlation matrix E can indeed be written as:

E =
√

CE0

√
C where E0 is a Wishart correlation matrix of independent random variables. As a consequence the

contribution of C cancels out from traces of powers of E
−1
2 C1 and one gets, for example:

S(2|1) = Trf(E−1
1 C) = Trf(E−1

0 ) (37)

i.e. as found in [16], the Kullback-Leibler entropy does not depend on the a priori correlation matrix C. However,
its value depends on P (s). In order to compare to real data we will compute explicitely these entropies for Gaussian
and Student distributions. Both are expected to be self-averaging quantities in the large N limit.
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1. Gaussian

Calling ρMP (λ) the Marčenko-Pastur density of states of the empirical correlation matrices (with C = 1) we find,
from the general expression above:

S(E;C)

N
=

1

2

∫
dλρ(λ)[− log λ + 1 − λ] (38)

In order to compute S(E1;E2) one has to calculate TrE−1
1 E2/N . This can be performed noticing that the distri-

bution law for these matrices is invariant under arbitrary independent rotations. Therefore we find

〈TrE−1
1 E2/N〉 =

1

N
〈
∑

a,b

1

λa
|〈a|b〉|2λb〉 =

1

N2
〈
∑

a,b

1

λa
λb〉 =

∫
dλρMP (λ)λ

∫
dλρMP (λ)λ−1 (39)

Hence, the final result is:

S(E1;E2)

N
= −1

2
+

1

2

∫
dλρMP (λ)λ

∫
dλρMP (λ)

1

λ
(40)

It can be shown that these expressions coincide with the ones of [16] in the large N limit.

2. Student

Calling now ρS(λ) the density of states of the Wishart-Student matrices computed in section II above, we find:

S(E;C)

N
= −1

2

∫
dλρS(λ) log λ +

1

2
log

(∫
dλρS(λ)λ

)
(41)

Applying the same argument used in the Gaussian case, one also finds:

S(E1;E2)

N
=

1

2
log

(∫
dλρS(λ)λ

)
+

1

2
log

(∫
dλρS(λ)/λ

)
(42)

The numerical values of these entropies, computed for different Q = T/N and µ’s, are given in the Tables below.

µ = 3 Q = 1.5 Q = 2 Q = 3 Q = 5

Z/N 0.645126 0.527893 0.409243 0.303255

Z ′/N 0.990942 0.730459 0.519955 0.361961

µ = 4 Q = 1.5 Q = 2 Q = 3 Q = 5

Z/N 0.445103 0.336914 0.233323 0.149822

Z ′/N 0.814573 0.568792 0.376484 0.23867

µ = 5 Q = 1.5 Q = 2 Q = 3 Q = 5

Z/N 0.361844 0.263336 0.172947 0.10532

Z ′/N 0.739387 0.502362 0.320584 0.193947

A comparison of these values to financial data, along the same line as [16], is left for a future work. Note that
since the Maximum Likelihood Estimate of the a priori correlation matrix is a Wishart-Gaussian matrix in the large
N limit (see section II), the values of Z, Z ′ found by [16] in the case of Wishart-Gaussian matrices turn out to be
correct for the Maximum Likelihood Estimate of Student correlation matrices, as very recently found numerically by
Tumminello et al. [17].
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IV. CONCLUSION

In this work, we have studied in some details a new ensemble of random correlation matrices related to multivariate
Student (or more generally elliptic) random variables. We have found the exact density of states for the Pearson
estimate of the correlation matrix for uncorrelated variables, that generalizes the Marčenko-Pastur result. It would be
interesting to know whether the joint distribution of eigenvalues can also be computed exactly in this case. We have
shown that for the Maximum Likelihood estimator, the density of states is still exactly given by the Marčenko-Pastur
distribution.

The comparison between the theoretical density of states in the Student case and empirical financial data is surpris-
ingly good, in any case much better than the Marčenko-Pastur result. However, we are still able to detect significant
systematic deviations, which suggest the need of a richer, non-elliptic model for the joint distribution of returns, or
the presence of information carrying, low eigenvalues of the correlation matrix (or both).

Finally, we have computed explicitely the Kullback-Leibler entropies of empirical Student matrices, which are found
to be independent of the true correlation matrix, as in the Gaussian case. Using our result on the density of states,
we give the exact numerical value of the Kullback-Leibler entropies in various cases of interest.

We thank Fabrizio Lillo for very useful discussions and for sending ref. [17] prior to publications, and the organizers
of the second Cracow meeting on Random Matrices for providing us with the opportunity to put this work together.
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