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Abstract:

We propose an asymptotic expansion formula for matrix integrals, including oscil-

latory terms (derivatives of theta-functions) to all orders. This formula is heuristically

derived from the analogy between matrix integrals, and formal matrix models (combi-

natorics of discrete surfaces), after summing over filling fractions. The whole oscillatory

series can also be resummed into a single theta function. We also remark that the co-

efficients of the theta derivatives, are the same as those which appear in holomorphic

anomaly equations in string theory, i.e. they are related to degeneracies of Riemann

surfaces. Moreover, the expansion presented here, happens to be independent of the

choice of a background filling fraction.
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1 Introduction

Convergent matrix integrals of the form

Ẑ =

∫

Hn

dM e−N Tr V (M) (1.1)

are very usefull in many areas of physics (statistical physics, mesoscopic physics, quan-

tum chaos,...) and in mathematics (probabilities, orthogonal polynomials,...) [35, 11].

People are mostly interested in their asymptotic behavior in the large n limit (and

n/N ∼ constant).

There is another form of matrix integrals, called formal-matrix integrals, which

come from combinatorics (2d quantum gravity for physicists [10, 15, 18]). They are

generating functions for counting discrete surfaces (also called ”maps”) of given topol-

ogy. Formal matrix integrals are only asymptotic series, they are not convergent in

general, and almost by definition, they always have a large n expansion (see [18]). All

the terms in their large n expansion are known [17, 22], and are deeply related to alge-

braic geometry and integrable systems. They have many applications to combinatorics,

and string theory in physics [34, 36].

In this article, we use the analogy between the two types of matrix integrals, and

generalizing the method of [9], we propose an asymptotic formula for convergent matrix

integrals, including oscillations to all orders:

Ẑ ∼ e
P

g N2−2gFg

(

Θ +
1

N
(F ′

1Θ
′ +

F ′′′
0

6
Θ′′′) + . . .

)

∼ e
P

g N2−2gFg
∑

k

∑

li

′
∑

hi

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

liΘ

(1.2)

where Θ is a theta function, i.e. a periodic function, this is why we call Θ and its

derivatives ”oscillatory terms”.

Then we observe that the series containing the oscillatory terms can be resummed

into a single theta function:

Ẑ ∼ e
P

g N2−2gFg Θ

(

NF ′
0 +

∞
∑

k=1

N1−2ku(k), iπτ +
∞
∑

j=1

N−2jt(j)

)

(1.3)

We also observe that the coefficients in front of the derivatives of Θ in eq.1.2, are

the same which appear in the so-called ”holomorphic anomaly equations” discovered

in the context of topological string theory [8]. In other words they are related to the

combinatorics of degeneracies of Riemann surfaces.
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Finally, we observe, that although we define each term of the expansion after choos-

ing a reference filling fraction ǫ∗, the partition function is in fact independent of that

choice. This is related to the so-called background independence problem in string

theory, first observed by Witten [38].

For the 1-hermitian matrix model (with real potential), the first term of this asymp-

totic expansion

Ẑ ∼ e
P

g N2−2gFg Θ (1.4)

was derived rigorously by Deift& co [14] using Riemann-Hilbert methods, and their

method proved the existence of a whole oscillatory series containing derivatives of the

Theta-function. The same result was also obtained by heuristic physicists methods by

[9]. Here, we generalize the method of [9] and we give the exact coefficient of the whole

series.

Also, in case where the genus of the Theta function is zero, there is no oscillatory

term, and one finds the so-called topological expansion Ẑ ∼ e
P

g N2−2gFg , which is

well known to coincide (in the sense of asymptotic formal series) with the generating

function for enumerating discrete surfaces [10]. In this genus zero case, the asymptotics

of the convergent matrix integral were derived by several methods and several authors

[16, 30]. The coefficient of the expansion are of course the symplectic invariants of [22].

For other convergent matrix models, for instance the 2-matrix model, such expan-

sions were conjectured many times [23, 24], but never proved. Here, we don’t prove it

either. We merely give all the coefficients in the formula to prove, and we explain their

heuristic origin.

As we said above, the heuristic origin of the formulae presented in this article, is

just the analogy between formal and convergent matrix models.

Outline:

• In the first section, we define the convergent matrix model on generalized paths,

and write it as a sum over filling fractions.

• In the second section, we consider the formal matrix model.

• In the 3rd section we perform the sum over filling fractions, and we get Θ-

functions.

• In the 4rth section we discuss the link with degenerate Riemann surfaces and

holomorphic anomaly equations.

• In the 5th section we discuss the background independence problem.

• Section 6 is the conclusion.
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1.1 Introductory example: 1 matrix model

1.1.1 Paths and homology basis

Consider a polynomial potential V (x), of degree d + 1 = deg V , with complex coeffi-

cients. There are many different paths γ such that the integral

∫

γ

dx e−V (x) (1.5)

is absolutely convergent. These are the paths which go to ∞ in a sector where ReV > 0,

or more precisely, the paths which connect two such sectors (see [5] for a discussion on

that, or [3]. Those considerations can be easily extended to any V such that V ′ is a

rational fraction).

Example: quartic potential V (x) = x4, we have deg V = 4, i.e. there are d = 3

independent paths, for example we choose:

1

γ
3

γ
2

γ

. In this example,

we have R = γ2 + γ3.

In fact, there are d = deg V ′ homologically independent such paths. Let us choose

a basis:

γ1, . . . , γd (1.6)

This means any (unbounded) path on which the integral
∫

γ
dx e−V (x) is well defined,

can be decomposed on the basis:

γ =

d
∑

i=1

ci γi (1.7)

By definition:
∫

γ

dx e−V (x) =
d
∑

i=1

ci

∫

γi

dx e−V (x) (1.8)

In this definition, the ci’s can be arbitrary complex numbers, they don’t need to be

integers.

However, if γ is itself a path, the ci’s can take only the values +1,−1, or 0.

If the ci’s are not integers, we say that γ =
∑

i ciγi is a generalized path.
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1.1.2 Matrix model on a generalized path

Let γ be a generalized path. We define the set of Normal matrices on γ:

Hn(γ) = {M = U diag(x1, . . . , xn)U † / U ∈ U(n) , ∀i xi ∈ γ} (1.9)

equipped with the measure:

dM = ∆(x)2 dU dx1 . . . dxn , ∆(x) =
∏

i<j

(xj − xi) (1.10)

where dU is the Haar measure on U(n), and ∆(x) is the Vandermonde determinant,

and dx is the curviline measure along the path (if γ = x(s) , s ∈ R, is a parametrization

of the path we have dx = x′(s) ds).

Remark: Hn(R) = Hn is the set of hermitian matrices, with the usual U(n)

invariant measure.

Remark: In general Hn(γ) is not a group, for instance the sum of two matrices in

Hn(γ) is not in Hn(γ), and the product by a scalar is not either. Also, the ”measure”

dM is not positive, in fact it is complex.

The matrix integral on Hn(γ) is defined as follows:

Ẑ(γ) =
1

n!

∫

Hn(γ)

dM e−N Tr V (M) =
1

n!

∫

γn

dx1 . . . dxn ∆(x)2
∏

i

e−NV (xi) (1.11)

or in other words:

Ẑ(γ) =
∑

n1+...+nd=n

cn1
1 . . . cnd

d Z(n1/N, . . . , nd/N) (1.12)

where we have defined:

Z(n1/N, . . . , nd/N) =
1

n1! . . . nd!

∫

γ
n1
1 ×...×γ

nd
d

dx1 . . . dxn ∆(x)2
∏

i

e−NV (xi) (1.13)

1.1.3 Assumption: topological expansion

First, let us assume that only g + 1 ≤ d of the ci’s are non-vanishing. We write:

∀i = 1, . . . , g , ci = e2iπνi , cg+1 = 1 , ∀i = g + 2, . . . , d , ci = 0

(1.14)

If γ is a path, the ci’s take the values ±1, and thus νi = 0 or 1/2. The vector (ν1, . . . , νg)

is going to be considered a charcateristic in a genus g Jacobian. Also, up to reverting

the orientation of γi, we can always assume that if γ is a path,

γ = path ⇒ ∀i = 1, . . . , g + 1, ci = 1 , ⇒ ν = 0 (1.15)
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Hypothesis:

Our working hypothesis is that the basis paths γ1, . . . , γg+1 have been chosen so

that each Z(n1/N, . . . , nd/N) admits a large N topological expansion:

ln (Z(ǫ1, . . . , ǫd−1)) ∼ F (ǫ) =
∞
∑

h=0

N2−2hF (h)(ǫ) (1.16)

It is conjectured that given a (generic) potential V , and a generalized path γ, such

a ”good” basis always exists (may be not unique). In fact, for the 1-matrix model

with polynomial potential, this can be proved a posteriori from the asymptotics of M.

Bertola [6, 7]. But for more general cases, it is only a conjecture, for instance for the

2-matrix model.

Now, let us explain where this hypothesis comes from, and what heuristic arguments

support it.

1.1.4 Loop equations and Virasoro constraints

It is well known that any integral defined in eq.1.13, satisfies an infinite set of lin-

ear equations, sometimes called ”loop equations” [15], or Virasoro constraints, or

Schwinger–Dyson equations, or Euler–Lagrange equations, and which just come from

integration by parts:

∀k ≥ −1 , Vk.Z = 0 (1.17)

Vk =

deg V
∑

j=1

jtj
∂

∂tk+j
+

1

N2

k
∑

j=0

∂

∂tj

∂

∂tk−j
, V (x) =

∑

j

tjx
j (1.18)

They satisfy Virasoro algebra:

[Vk,Vj] = (k − j)Vk+j (1.19)

Remark: It is important to notice that, since integration by parts is independent

of the integration paths (as long as there is no boundary term), both Ẑ(γ) and any

Z(n1/N, . . . , nd/N), ∀ni, satisfy the same set of loop equations.

1.1.5 Formal matrix models and combinatorics of maps

Formal matrix integrals are defined as formal generating functions for enumerating

discrete surfaces (also called ”maps”, i.e. topological graphs embedded on a Riemann

surface, such that each face is a disc) of given topology. Basically, Fg is the generating

function for counting ”maps” of genus g. The generating series:

lnZformal =

∞
∑

g=0

N2−2gFg (1.20)
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needs not be convergent, and in fact it is never convergent if the weights for ”maps”

are positive. It is merely a formal series, whose only role is to encode the Fg’s.

The formal matrix integrals satisfy the same loop equations, i.e. Virasoro con-

straints as Ẑ(γ) and Z(n1/N, . . . , nd/N) (see [15]). In the context of combinatorics of

maps, loop equations are known as Tutte’s equations [37], and were first obtained by

counting ”maps” recursively (removing one edge at each step).

The Fg’s of formal matrix integrals have all been computed: F0 has been known

for a long time, then F1 [12], and all the Fg’s with g ≥ 2 were computed recently in

[20, 22].

In fact, it was proved in [20, 22], that any solution of loop equations which has a

topological large N expansion of the form:

lnZ =

∞
∑

g=0

N2−2gFg (1.21)

can be obtained by the symplectic invariants of [22], i.e. they are encoded by a spectral

curve.

1.1.6 Spectral curves

Both the convergent matrix integral, and the formal matrix integral are associated to

an (algebraic) spectral curve of the form:

y2 = V ′(x)2 −
4

N

〈

Tr
V ′(x) − V ′(M)

x−M

〉

(1.22)

• For the convergent matrix integral Ẑ defined in eq.1.11, the average < . > is

taken with respect to the measure dM e−N Tr V (M). The notion of a spectral curve,

comes from the orthogonal polynomials method of Dyson-Mehta [35], combined with

the theory of integrable systems [2]. The orthogonal polynomials satisfy an integrable

differential equation of the form ~ψ′ = D(x) ~ψ, where D(x) is a 2 × 2 matrix with

polynomial coefficients, and the spectral curve is by definition the set of eigenvalues of

D (Jimbo-Miwa-Ueno [32]), i.e.:

y2 =
1

2
Tr D(x)2 (1.23)

It was proved [4] that:

1

2
Tr D(x)2 = V ′(x)2 −

4

N

〈

Tr
V ′(x) − V ′(M)

x−M

〉

(1.24)
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• For the formal matrix model, and more generally, for an arbitrary solution of the

Virasoro constraints which has a topological expansion, the average < . > has a formal

meaning, and can be defined from the Virasoro generators Vk. It is not the purpose

of this article to explain where it comes from (see [18, 15]), and the spectral curve is

the algebraic equation satisfied by the ”disc amplitude”, i.e. generating function for

counting planar ”maps” with one boundary (i.e. having the topology of a discs), and

it can be proved that it satisfies:

y2 = V ′(x)2 − 4P (x) (1.25)

where P (x) is a polynomial of degree d − 1 = deg V ′′, and with the same leading

coefficient as V ′.

P (x) = (d+ 1) td+1 x
d−1 +

d−2
∑

k=0

Pk x
k (1.26)

The coefficients Pk, are the conserved quantities in the context of integrable systems

[2], whereas the coefficients of V ′ are called the Casimirs. The coefficients Pk are in

1-1 correspondance with the so-called ”action variables”:

ǫi =
1

2iπ

∮

Ai

ydx , i = 1, . . . , d− 1 (1.27)

Here in the random matrix context, the ǫi’s are called filling fractions.

1.1.7 Symplectic invariants

In [22], it was proved, that given a spectral curve

E(x, y) = 0 (1.28)

(here E(x, y) = y2 − V ′(x)2 + 4P (x), i.e. in other words, given a potential V (x) =
∑d+1

k=1 tkx
k and a polynomial P (x) = (d+ 1) td+1 x

d−1 +
∑d−2

k=0 Pk x
k, or in other words

given V ′ and the filling fractions ǫi’s), it is possible to define an infinite sequence:

Fg(E) , g = 0, . . . ,∞ (1.29)

such that:

τ(E) = exp
∞
∑

g=0

N2−2gFg(E) (1.30)

is a solution of loop equations.

The Fg(E) were constructed in [22] for any spectral curve E(x, y) = 0, and they

have many interesting properties, for instance they are invariant under symplectic
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deformations of the spectral curve, and τ(E) is the τ -function of an integrable hierar-

chy. Their modular properties were also studied in [22] and further clarified in [19], and

they happen to be deeply related to the so-called Holomorphic anomaly equation

first found in string theory [8, 1], and which relate the non-holomorphic part of the

generating function for counting Riemann-surfaces to the contribution of degenerate

Riemann surfaces (nodal surfaces). This will play a role below.

Also, in [22], were defined the correlators:

W
(g)
k (z1, . . . , zk) , g = 0, . . . ,∞ , k = 0, . . . ,∞ , ( W

(g)
0 = Fg ) (1.31)

which are multilinear symmetric meromorphic differential forms on the spectral curve.

They also have many interesting properties, in particular they can be used to compute

derivatives of the Fg’s with any parameter on which E may depend. For instance

derivatives with respect to filling fractions are:

∂

∂ǫj
W

(g)
k (z1, . . . , zk) =

∮

Bj

W
(g)
k+1(z1, . . . , zk, zk+1) (1.32)

(where τ is the Riemann matrix of periods of the spectral curve, and Ai ∩ Bj = δi,j is

a symplectic basis of non contractible cycles, see [27, 28] for algebraic geometry).

1.1.8 Heuristic support to the conjecture

The conjecture is supported by the following facts:

• Both the convergent matrix integral Z(n1

N
, . . . ,

ng+1

N
, 0, . . . , 0) defined in eq.1.13,

and the formal matrix integral Zformal(ǫ1, . . . , ǫg) satisfy the same loop equations.

• Since loop equations are linear, the space of solutions is a vector space.

• For given V ′, both the convergent integral Z(n1

N
, . . . ,

ng+1

N
, 0, . . . , 0), and the formal

Zformal(ǫ1, . . . , ǫg) are specified by the same number of parameters, i.e. g parameters

(indeed n1 + . . .+ ng+1 = n, so that only g of them are independent).

Those observations support the idea that there exists a good basis of the vector

space of solutions, such that each basis function is at the same time formal and conver-

gent, i.e. there exists a set of basis paths γi, such that Z(n1

N
, . . . ,

ng+1

N
, 0, . . . , 0) admits

a topological expansion.

We do not prove this conjecture in this article, but we take it as an asumption.

1.2 Generalization 2-Matrix model

All this can be extended to a larger context, for instance the 2-matrix model, or the

chain of matrices, or the matrix model coupled to an external field.
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2 matrix model

Consider 2 polynomial potentials V1 and V2, such that deg V1 = d1 + 1, deg V2 =

d2 + 1. There are d1 × d2 independent paths on C × C on which the following integral

is absolutely convergent:

∫ ∫

γ

dx dy e−V1(x)−V2(y)+xy , γ =

d1d2
∑

i=1

ciγi (1.33)

where each γi is a product of a path in the x−plane and a path in the y−plane.

Then, similarly to the 1-matrix case, we can also define a matrix integral on a

generalized path (see [23]):

Ẑ(γ) =

∫

Hn×Hn(γ)

dM1 dM2 e−N Tr (V1(M1)+V2(M2)−M1M2) (1.34)

which satisfies:

Ẑ(γ) =
∑

n1+...+nd=n

cn1
1 . . . cnd

d Z(n1/N, . . . , nd/N) (1.35)

where we have defined:

Z(n1/N, . . . , nd/N) =
1

n1! . . . nd!

∫

γ
n1
1 ×...×γ

nd
d

dx1 ∧ dy1 . . . dxn ∧ dyn

∆(x)∆(y)
∏

i

e−N(V1(xi)+V2(yi)−xiyi) (1.36)

The 2-matrix model generalized integral satisfies loop equations (which form a

W-algebra instead of Virasoro), which also come from integration by parts, and are

independent of the path. In particular, each Z(n1/N, . . . , nd/N) satisfies the same loop

equations.

There is also a formal 2-matrix model, which was introduced as a generating func-

tion for bi-colored discrete surfaces, it was called the ”Ising model on a random lattice”

[31]. Almost by definition, the formal 2-matrix model has a topological expansion:

lnZ =
∑

g

N2−2gFg (1.37)

The formal 2-matrix model satisfies the same loop equations as the convergent one,

and the solution of loop equations was found in [21, 13, 22], and it was found that the

Fg’s are again the symplectic invariants of [22].

matrix model with external field

10



The same features also hold for the matrix models in an external field. The famous

example is the Kontsevich integral [33], also called ”matrix Airy function”:

ZKontsevich =

∫

dM e−N Tr M3

3
−MΛ (1.38)

whose topological expansion is the combinatorics generating function computing inter-

section numbers.

Summary

In all cases, there is a convergent matrix model defined on generalized paths, and

there is a formal matrix model which computes the combinatorics of some graphs. Both

the convergent and formal model obey the same set of loop equations.

The formal model has a topological expansion

lnZ =
∑

g

N2−2gFg (1.39)

where the Fg’s are the symplectic invariants of [22], computed for some algebraic spec-

tral curve E(x, y) = 0. And in all cases the dimension of the homology basis of paths on

which the integral is absolutely convergent, is the same as the genus g of the spectral

curve, i.e. the number of filling fractions:

γ =

g+1
∑

i=1

ciγi ⇔ ǫi =
1

2iπ

∮

Ai

ydx , i = 1, . . . , g (1.40)

In all those cases, the method we describe below should work.

2 Formal matrix model

Now, assume that Z(ǫ1, . . . , ǫd−1) has a topological asymptotic expansion:

ln (Z(ǫ1, . . . , ǫd−1)) = F (ǫ) =

∞
∑

h=0

N2−2hFh(ǫ) (2.41)

Each Fh must then be a solution of formal loop equations, and therefore it is given by

the formulae of [22], and therefore each Fh is analytical in the ǫi’s.

Then, we choose arbitrarily a ”prefered” filling fraction ǫ∗, and perform the Taylor

expansion:

Fh(ǫ) =
∞
∑

k=0

1

k!
F

(k)
h (ǫ− ǫ∗)k , F

(k)
h =

∂kFh

∂ǫk
(ǫ∗) (2.42)

11



Remark: We don’t write the indices for readability, but F
(k)
h is a tensor. For read-

ability we write the formulae as if there were only one variable ǫ, i.e. g = 1, but in fact

we mean:

Fh(ǫ) =
∞
∑

k=0

1

k!

∑

i1,...,ik

F
(k)
h i1,...,ik

k
∏

j=1

(ǫ− ǫ∗)ij , F
(k)
h i1,...,ik

=
∂kFh

∂ǫi1 . . . ∂ǫik
(ǫ∗)

(2.43)

but for simplicity we shall write eq.2.42, and we leave to the reader to restore the

indices if needed.

The derivatives of Fg, are given by eq.1.32 (see [22]):

F
(k)
h i1,...,ik

=
∂l

∂ǫi1 . . . ∂ǫik
Fh =

∮

Bi1

. . .

∮

Bik

W
(h)
k (z1, . . . , zk) (2.44)

In particular, it is well known (see [22]), that

F ′
0 =

∮

B

ydx (2.45)

and 1
2iπ
F ′′

0 = τ is the Riemann matrix of periods (see [27, 28] for introduction to

algebraic geometry) of the specral curve E , i.e.

1

2iπ

∂2F0

∂ǫi∂ǫj
= τi,j = τj,i =

∮

Bi

duj (2.46)

where duj is the normalized basis of holomorphic differentials [27, 28] on E :
∮

Ai

duj = δi,j (2.47)

And thus we have (formally):

Z(ǫ) = Z(ǫ∗) eiπN2(ǫ−ǫ∗)τ(ǫ−ǫ∗) e2iπN2ζ(ǫ−ǫ∗)
∑

k

∑

li

∑

hi

N
P

i(2−2hi)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

(ǫ− ǫ∗)
P

li (2.48)

where we the sum carries only on li ≥ 1 and 2 − 2hi − li < 0 for all i.

One should notice that the exponential is now at most quadratic in the ǫ’s.

3 Oscillations

Now we are going to perform the sum of eq.1.12:

Ẑ(γ) =
∑

n1+...+ng+1=n

cn1
1 . . . c

ng+1

g+1 Z(n1/N, . . . , nd/N) (3.49)

12



where

γ =
∑

i

ciγi , ci = e2iπ νi (3.50)

Since the filling fractions ǫi = ni

N
take integer values (up to a 1/N factor), we have

to perform a sum of exponentials of square of integers. Such sums are called theta

functions. They play a key role in algebraic geometry. Let us recall a few properties

[27, 28].

3.1 Theta functions

We define the Θ-function:

Θ(u, t) =
∑

n∈Zg

e(n−Nǫ∗)u e(n−Nǫ∗)t(n−Nǫ∗) e2iπ nν (3.51)

It clearly satisfies:
∂Θ

∂t
=
∂2Θ

∂u2
(3.52)

It is related to the usual Jacobi-theta function:

Θ(u, t) = θ−Nǫ∗,ν(
u

2iπ
,
t

iπ
) e2iπνNǫ∗ (3.53)

where (−Nǫ∗, ν) is called the characteristics. The Jacobi theta function with charac-

teristics (a, b) is defined by:

θa,b(u, τ) =
∑

n

e2iπ(n+a)(u+b) eiπ(n+a)τ(n+a) = θ0,0(u+ b+ τa, τ) eiπaτa e2iπa(u+b) (3.54)

It takes a phase after translation along an integer lattice period n+ τm:

θa,b(u+ n+ τm, τ) = e2iπ(an−mb) θa,b(u, τ) e−2iπmu e−iπmτm (3.55)

3.2 Convergent matrix model

We thus have:

Ẑ(γ) ∼
∑

n

e2iπ nν Zformal(n/N)

∼
∑

n

cn1
1 . . . c

ng

g Z(n1/N, . . . , ng/N, 0, . . . , 0) (3.56)

The sum carries on integers ni ≥ 0 and
∑

i ni = n. Therefore ng+1 = n−
∑g

i=1 ni is not

independent from the others. Another remark, is that in that sum we expect that only

the vicinity of some extremal ni will dominate the sum, and that values of the ni’s far

13



from the extremum should give an exponentially small contribution. That asumption

allows to extend the sum to ni ∈ Z.

Then, we use the Taylor expansion of eq.2.48, and we find (again we use tensorial

notations):

Ẑ(γ) ∼ Z(ǫ∗)
∑

n∈Zg

e2iπ
P

i νini eiπ(n−Nǫ∗)τ(n−Nǫ∗) e2iπNζ(n−Nǫ∗)

∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

(n−Nǫ∗)
P

li

(3.57)

where we recognize the Θ-function and its derivatives

Ẑ(γ) ∼ Z(ǫ∗)
∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

liΘ

∂u
P

li

∣

∣

∣

∣

u=NF ′

0,t=iπτ

(3.58)

This formula is the main result presented in this article.

For instance the first few terms in powers of N−1 are:

Ẑ(γ) ∼ Z(ǫ∗)
(

Θ +
1

N
(F ′

1Θ
′ +

F ′′′
0

6
Θ′′′)

+
1

N2
(
F ′′

1

2
Θ′′ +

(F ′
1)

2

2
Θ′′ +

F ′′′′
0

24
Θ(4) +

F ′
1 F

′′′
0

6
Θ(4) +

(F ′′′
0 )2

72
Θ(6))

+ . . .
)

(3.59)

3.3 Resummation

The expansion of formula .3.58 can be resummed into a single Θ-function. We want to

write it as:

Ẑ(γ) = Z(ǫ∗) Θ(u, t) (3.60)

where

u = NF ′
0 +

∞
∑

h=1

N1−2hu(h) , t = iπτ +

∞
∑

h=1

N−2ht(h) (3.61)

For instance, one easily finds the first orders:

u(1) = F ′
1 +

F ′′′
0

6

Θ′′′(u(0), iπτ)

Θ′(u(0), iπτ)
(3.62)

t(1) =
F ′′

1

2
+
F ′′′′

0

24

Θ′′′′(u(0), iπτ)

Θ′′(u(0), iπτ)
+
F ′

1 F
′′′
0

6

(

Θ(4)

Θ′′
−

Θ
′′′

Θ′

)

+
(F ′′′

0 )2

72

(

Θ(6)

Θ′′
−

Θ′′′2

Θ′2

)

(3.63)
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The Taylor expansion of eq.3.60 reads (and we use eq.3.52):

Ẑ(γ) = Z(ǫ∗) Θ(NF ′
0 +

1

N
u(1) + . . . , iπτ +

1

N2
t(1) + . . .)

= Z(ǫ∗)
∑

m,n

(m+ n)!

m!n!
(u− u(0))m(t− t(0))n ∂m+2n

∂um+2n
Θ(u(0), t(0))

= Z(ǫ∗)
∑

m,n

∑

k1,...,km

∑

j1,...,jn

(m+ n)!Nm−2
P

ki−2
P

ji

m!n!

u(k1) . . . u(km) t(j1) . . . t(jn) ∂
m+2n

∂um+2n
Θ(u(0), t(0)) (3.64)

and now we identify the powers of N with equation.3.58. For any given p > 0, we must

have:
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0))

=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0)) (3.65)

where in the first sum, the indices are such that

p = 2

m
∑

i=1

ki + 2

n
∑

i=1

ji −m , ki > 0, ji > 0 (3.66)

and in the second sum

p =

r
∑

i=1

(2hi + li − 2) , li > 0, 2 − 2hi − li < 0 (3.67)

This equation defines u(k) and t(l) recursively in a unique way.

Indeed, assume that we have already computed u(1), . . . , u(q−1) and t(1), . . . , t(q−1).

Choose p = 2q − 1 in eq.3.65:

u(q) Θ′(u(0), t(0))

=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0))

−
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0))

(3.68)

where in the first sum we have 2q− 1 =
∑r

i=1(2hi + li − 2), li > 0, 2− 2hi − li < 0, and

in the second sum we have 2q − 1 = 2
∑m

i=1 ki + 2
∑n

i=1 ji −m, which implies ki < q

and ji < q, i.e. all the terms in the RHS are known from the recursion hypothesis. We

have thus determined u(q). Then, let p = 2q, we have:

t(q) Θ′′(u(0), t(0))
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=
∑

r

∑

li

∑

hi

1

r!l1! . . . lr!
F

(l1)
h1

. . . F
(lr)
hr

∂
P

li
u Θ(u(0), t(0))

−
∑

k1,...,km

∑

j1,...,jn

(m+ n)!

m!n!
u(k1) . . . u(km) t(j1) . . . t(jn) ∂m+2n

u Θ(u(0), t(0))

(3.69)

where in the first sum we have 2q =
∑r

i=1(2hi + li − 2), li > 0, 2 − 2hi − li < 0, and

in the second sum we have (m,n) 6= (0, 1), 2q = 2
∑m

i=1 ki + 2
∑n

i=1 ji − m, which

implies ki ≤ q and ji < q, i.e. all the terms in the RHS are known from the recursion

hypothesis. We have thus determined t(q).

Therefore we have:

Ẑ(γ) = Z(ǫ∗) Θ

(

NF ′
0 +

∑

k

N1−2ku(k), iπτ +
∑

j

N−2jt(j)

)

(3.70)

It would be interesting to understand how this formula matches the tau-function

obtained from integrability properties [2].

4 Holomorphic anomaly equations

One may observe that all the terms with even powers of N in formula eq.3.58 have al-

ready appeared in another context, in topological string theory [34], and more precisely

the so called ”holomorphic anomaly equations” [8].

Holomorphic anomaly equations are about modular invariance versus holomorphic-

ity.

Let us briefly sketch the idea. String theory partition functions represent ”integrals”

over the set of all Riemann surfaces with some conformal invariant weight. In other

words, they are integrals over moduli spaces of Riemann surfaces of given topology, and

topological strings are integrals with a topological weight, they compute intersection

numbers (see [36, 34] for introduction to topological strings).

Moduli spaces can be compactified by adding their ”boundaries”, which corre-

spond to degenerate Riemann surfaces (for instance when a non contractible cycle

gets pinched). The integrals have thus boundary terms, which can be represented

by δ-functions, and δ-functions are not holomorphic. In other words, string theory

partition functions contain non-holomorphic terms which count degenerate Riemann

surfaces.

On the other hand, if one decides to integrate only on non-degenerate surfaces, one

gets holomorphic patition functions, but not modular invariant, because the boundaries
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of the moduli spaces are associated to a choice of pinched cycles. Modular invariant

means independent of a choice of cycles.

To summarize, the holomorphic partition function is obtained after a choice of

boundaries, i.e. a choice of a symplectic basis of non contractible cycles Ai ∩Bj = δi,j,

and cannot be modular invariant. The modular invariance is restored by adding the

boundaries, but this breaks holomorphicity.

There is thus a relationship between holomorphicity and modular invariance.

Let Fg be the partition function corresponding to the moduli space of non-

degenerate Riemann surfaces of genus g, i.e. Fg is holomorphic but not modular

invariant (it assumes a choice of a basis of cycles Ai, Bi, i = 1, . . . , g), and let F̂g

be the partition function including degenerate surfaces, i.e. non holomorphic but mod-

ular invariant. The holomorphic anomaly equation discovered by [8], states that:

∂F̂g =
1

2
∂κ

(

F̂ ′′
g−1 +

g−1
∑

h=1

F̂ ′
hF̂

′
g−h

)

(4.71)

where κ is the Zamolodchikov Kähler metric symmetric matrix:

κ = (τ − τ)−1 (4.72)

It was found in [8, 1, 19] that:

Ẑ = e
P

g N2−2g F̂g

= e
P

g N2−2gFg
∑

l

∑

k

∑

li>0

∑

hi>1−
li
2

N
P

i(2−2hi−li)

k!l1! . . . lk!

F
(l1)
h1

. . . F
(lk)
hk

(2l − 1)!! κl δ2l−
P

li

(4.73)

Remember that we use tensorial notations, and

(2l − 1)!! κl F
(l1)
h1

. . . F
(lk)
hk

(4.74)

means in fact a sum of (2l− 1)!! terms containing all the possible pairings of 2l indices

of the matrix κ, with the 2l indices of the tensors F
(li)
hi

.

For example to order N−2, i.e. g = 2 we have:

F̂2 = F2 + κ

(

F ′′
1

2
+

(F ′
1)

2

2

)

+ 3κ2

(

F ′′′′
0

4!
+ 2

F ′
1 F

′′′
0

2 3!

)

+ 15 κ3

(

(F ′′′
0 )2

2 3! 3!

)

(4.75)

where the last term 15 κ3 (F ′′′
0 )2 contains two topologically inequivalent types of pairings

among the indices:

15 κ3 (F ′′′
0 )2 →

∑

i1,i2,i3,i4,i5,i6

9 κi1,i2κi3,i4κi5,i6

∂3F0

∂ǫi1∂ǫi2∂ǫi3

∂3F0

∂ǫi4∂ǫi5∂ǫi6
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+6 κi1,i4κi2,i5κi3,i6

∂3F0

∂ǫi1∂ǫi2∂ǫi3

∂3F0

∂ǫi4∂ǫi5∂ǫi6
(4.76)

This equation can be diagrammatically represented as follows [1]:

F̂2 = +
1

2
+

1

2
+

1

8
+

1

2

+
1

8
+

1

12
(4.77)

where each term represents a possible degeneracy of a genus 2 Riemann surface (imagine

each link contracted to a point). The prefactor is 1/#Aut, i.e. the inverse of the number

of automorphisms, for instance in the last graph we have a Z2 symmetry by exchanging

the 2 spheres, and a σ3 symmetry from permuting the 3 endpoints of the edges, i.e.

12 = #(Z2 × σ3) automorphisms.

Formally, eq.4.73 is very similar to eq.3.58, with the identification:

(2k − 1)!! κk → Θ(2k) (4.78)

proof: eq.4.73 is the Wick theorem expansion of the following integral [1, 19]:

Z(ǫ∗, κ) = e
P

h N2−2hFh(ǫ∗,κ)

=

∫

dη eF (η)−N2(η−ǫ∗)F ′

0−
N2

2
(η−ǫ∗)F ′′

0 (η−ǫ∗)−N2iπ(η−ǫ∗)κ−1(η−ǫ∗)

= Z(ǫ∗)

∫

dη e
P

l>0

P

h>1−l/2
N2−2h

l!
F

(l)
h (η−ǫ∗)l−N2iπ(η−ǫ∗)κ−1(η−ǫ∗)

= Z(ǫ∗)
∑

k

∑

li>0

∑

hi>1−li/2

N
P

i 2−2hi

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∫

dη (η − ǫ∗)
P

li e−N2iπ(η−ǫ∗)κ−1(η−ǫ∗) (4.79)

i.e.

Z(ǫ∗, κ) = Z(ǫ∗)
∑

k

∑

li

∑

hi

N
P

i(2−2hi−li)

k!l1! . . . lk!
F

(l1)
h1

. . . F
(lk)
hk

∂
P

lif

∂u
P

li

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

(4.80)

where f(u, t) is nearly the same as Θ except that we have an integral instead of a sum

over integers:

f(u, t) =

∫

dǫ eN(ǫ−ǫ∗)u eN2(ǫ−ǫ∗)t(ǫ−ǫ∗) e2iπN ǫν

= e2iπN ǫ∗ν

∫

dǫ eNǫ(u+2iπν) eN2ǫtǫ

= e2iπN ǫ∗ν e−
1
4

(u+2iπν)t−1(u+2iπν)
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(4.81)

It also satisfies:
∂f

∂t
=
∂2f

∂u2
(4.82)

It is clear that:

∂2l+1f

∂u
P

li

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

= 0 ,
∂2lf

∂u
P

li

∣

∣

∣

∣

u=0,t=− 1
2
κ−1

= (2l − 1)!! κl (4.83)

which proves our claim eq.4.78.

This analogy between convergent integrals obtained by summing over filling frac-

tions, and holomorphic anomaly equations is puzzling, and it would be worth getting

some understanding of that fact.

5 Background independence

So far, ǫ∗ was chosen arbitrary, and eq.3.58, eq.3.70 and the property 4.78 hold in-

dependently of the choice of ǫ∗. Indeed Ẑ(γ) does not depend at all on a choice of

ǫ∗.

If we take eq.3.58 as a definition of a string theory partition function, it seems at

first sight that it depends on ǫ∗, but in fact it does not. Those facts are related to the

so-called ”background independence” problem in string theory [38].

From [6], it should be expected that if we choose ǫ∗ such that the spectral curve

has the Boutroux property:

Boutroux property : ∀C , Re

∮

C

ydx = 0 (5.84)

then, the formal series
∑

g N
2−2gFg as well as the Θ-sums in eq.3.58 and eq.3.70, should

be convergent series, and thus we really have an asymptotic expansion instead of only

an asymptotic series. However, this fact is not proved yet (except for the 1-matrix

model).

Boutroux curves in particular, are such that:

ǫ∗ =
1

2iπ

∮

A

ydx ∈ R
g , ReF ′

0 = Re

∮

B

ydx = 0 (5.85)

Boutroux curves can be obtained as follows: Notice that ReF ′′
0 = −π Imτ < 0 (the

imaginary part of the Riemann matrix of periods is always positive, see [27, 28]), and

thus −ReF0 is a convex function on ǫ∗ ∈ Rg, therefore it has a minimum in each cell of

the moduli space. The minimum clearly satisfies eq.5.85. In other words there should
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be one Boutroux curve in each cell of the moduli space of the spectral curve. One may

expect that each cell corresponds to a possible connectivity pattern of the generalized

path γ.

Notice that if the potentials are real, and the filling fraction ǫ∗ is real, then F0 is

real as well, and the Boutroux condition becomes F ′
0 = 0.

6 Conclusion

In this article, we have improved the asymptotic (conjectured) formula of [9] for matrix

integrals to all orders. We have also found an interesting connection between this

expansion and combinatoric geometry of degenerate Riemann surfaces, through the

holomorphic anomaly equation.

The relationship between higher genus g > 0 formal matrix integrals and nodal dis-

crete surfaces was already known [18, 9], and here we see that there is also a relationship

with nodal Riemann surfaces. In fact, so far all intersection numbers in Kontsevich in-

tegral [22], or Weil-Petersson volumes [25, 26], were computed with genus zero (g = 0)

spectral curve formal matrix models. This works tends to show that higher genus

spectral curves have to do with nodal surfaces. This relationship needs to be further

investigated.
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