IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Higher-loop amplitudes in the non-minimal pure spinor formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEPO05(2009)089
(http://iopscience.iop.org/1126-6708/2009/05/089)

The Table of Contents and more related content is available

Download details:
IP Address: 132.166.22.147
The article was downloaded on 17/02/2010 at 17:27

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/05
http://iopscience.iop.org/1126-6708/2009/05/089/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY IOP PUBLISHING FOR SISSA

I

RECEIVED: April 7, 2009
ACCEPTED: May 6, 2009
PUBLISHED: May 21, 2009

Higher-loop amplitudes in the non-minimal pure
spinor formalism

Pietro Antonio Grassi®”¢ and Pierre Vanhove®®¢
@DISTA, Universita del Piemonte Orientale,
via Bellini 25/q, 15100 Alessandria, Ttaly

YINFN, gruppo collegato sezione di Torino,

Alessandria, Italy
¢IHES, Le Bois-Marie,

35 route de Chartres, F-91440 Bures-sur-Yvette, France
dCEA, DSM, Institut de Physique Théorique, IPhT, CNRS, MPPU,
URA2306, Saclay, F-91191 Gif-sur-Yvette, France

¢ Kavli Institute for Theoretical Physics, University of California at Santa Barbara,
CA 93106-4030, U.S.A.

FE-mail: pgrassi@cern.ch, pierre.vanhove@cea.fr

ABSTRACT: We analyze the properties of the non-minimal pure spinor formalism. We show
that Siegel gauge on massless vertex operators implies the primary field constraint and the
level-matching condition in closed string theory by reconstructing the integrated vertex
operator representation from the unintegrated ones. The pure spinor integration in the
non-minimal formalism needs a regularisation. To this end we introduce a new regulator
for the pure spinor integration and an extension of the regulator to allow for the saturation
of the fermionic d-zero modes to all orders in perturbation. We conclude with a preliminary
analysis of the properties of the four-graviton amplitude to all genus order.

KEYWORDS: Extended Supersymmetry, Superstrings and Heterotic Strings, BRST Quan-
tization

ARX1v EPRINT: 0903.3903

© SISSA 2009 doi:10.1088/1126-6708,/2009,/05,/089


mailto:pgrassi@cern.ch
mailto:pierre.vanhove@cea.fr
http://arxiv.org/abs/0903.3903
http://dx.doi.org/10.1088/1126-6708/2009/05/089

Contents
1 Introduction 1

2 Pure spinor measure of integration in the minimal and non-minimal for-

malism 3
3 Vertex operators in the non-minimal 6
3.1 Siegel gauge for open string 8
3.2 Siegel-Zwiebach gauge for closed strings 9
4 Regulating the non-minimal pure spinor amplitudes 10
4.1 The vacuum of the pure spinor theory 11
4.2 Tree-level amplitudes 12
4.3 Regulating the higher-loop amplitudes 14
4.4 Zero mode counting in the non-minimal formalism 15
4.5 Adding d-zero mode contributions 17
5 Multigraviton amplitudes at higher-loop 17
5.1 The four-graviton amplitude at higher-genus g < 6 18
5.2 The four-graviton amplitudes at higher-genus g > 7 19
5.3 Vanishing of N < 4-point amplitudes 20
A The tree-level amplitude 21

1 Introduction

The pure spinor formulation of perturbative string theory [1, 2] has proved to be a powerful
tool for implementing the role of maximally extended N = 8 supersymmetries in various
amplitude computations. Because this formalism makes use of a constrained ghost variable
it allows to construct superspace invariants over fraction of superspace coordinates that are
difficult to construct in conventional superspace approaches. In an extended formulation
of the pure spinor formalism, Berkovits was able to avoid the complications associated
with the picture changing operators of the original multiloop prescription [2, 3] and to
obtain a new class of partial superspace integrals [4] giving the leading contribution to the
low-energy limit of the four-gravitons amplitude at genus order g < 6

F, = /d169d1690122991229 (Wag)* ~ 0% R* + susy completion (1.1)

Where W3 is the Ramond-Ramond spin 1 superfield [4, 5]. The fact that these quan-
tities give the leading contribution to the low-energy limit of the four-graviton amplitude,



up to genus-six order, confirms the non-renormalisation conditions for the 9?9 R* contri-
butions with ¢ < 6 to the ten dimensional low-energy effective action for type IIA and
type IIB string derived from string dualities in [6].

Since these superspace integrals arise from the zero mode saturation they give a direct
indication of the leading ultra-violet divergence structure of the field theory four-graviton
amplitude in N = 8 supergravity. A four-graviton amplitude with the leading low-energy
limit given by F, in (1.1) has the following dimensions by

[AY] = [0% R*) massP~49-6 g<6 (1.2)

where [- -] gives the mass dimension. We used that a g-loop gravity amplitude has mass
dimension [AJ] = mass(P~29%2 that [9] =mass and [R?] = mass®. It is remarkable that
the explicit four-graviton amplitudes performed in field theory up to and included three
loop order in [7, 8] can be presented in a form that has the manifest ultra-violet behaviour
given by (1.2). This formula indicates that the g-loop four-graviton amplitude in (1.2)
develops ultra-violet divergences from

DZDC:4+S; g<6. (1.3)

When g = 6 the integration in (1.1) is over all the full superspace (all the 32 6 variables)
and supersymmetric protection is exhausted. But at precisely this order the amplitudes
are ill-defined because of singularities in the integration over the pure spinor ghosts [3, 4]
and no firm conclusions could be drawn about the structure of the amplitude at higher-
genus order. In this work we discuss an alternative modification of the non-minimal pure
spinor formalism leading to well defined amplitude at any genus order. A regularisation
of the singularities from the tip of the cone has been given in [3] but the resulting formu-
lation makes very difficult to extract information about the structure of the higher-loop
amplitudes. In order to understand the systematics of the higher-loop multigraviton am-
plitudes we introduce an alternative regulator. With this regulator we give a preliminary
analysis of the structure of the four-graviton amplitude at higher-genus. We hope that this
analysis is a step toward understanding the systematics of N’ = 8 supergravity amplitudes
and the role of the surprising simplifications occurring the structure of the higher-loop
amplitudes [6, 8-13].

In section 2 we review the basics of the minimal pure spinor formalism and its relation
to the non-minimal formalism. In section 3, we discuss the massless vertex operators in the
non-minimal formalism. We derive the relation between the integrated and unintegrated
representation of the vertex operators. Using a Siegel gauge we derive the physical state
condition on massless vertex operators, and the level-matching condition in the case of the
closed string. Because of the dependence of the bym-ghost on the non-minimal sector the
change of representation of the vertex operator and the Siegel gauge are only obtained up to
Q-exact term depending on the non-minimal sector. A different analysis of the Siegel gauge
condition on vertex operators appeared the recent preprint [14]. In section 4 we analyze
the origin of divergences in the pure spinor integration. The singularities in the pure spinor
integration are taken care by the introducing of a new regulator strongly dumped at the



tip of the cone. We show that in order to be able to saturate the fermionic zero modes to
all orders in perturbation — and avoid that the amplitudes are vanishing after some genus
order which would be incompatible with unitarity — one needs to consider an extension
of the regulator with more d-zero mode contributions. In our scheme the non-minimal
bnm-ghost is not modified and applies to any genus order and any number of punctures. In
section 5 we turn to multiloop amplitudes and give the form of the integrand of the leading
low-energy contribution to the multiloop four-graviton amplitude at all genus order. We
conclude by showing that the massless N < 4-point amplitudes are vanishing to all order
in the non-minimal pure spinor formalism. This implies finiteness of string perturbation
in the absence of unphysical singularities in the interior of the moduli space.

2 Pure spinor measure of integration in the minimal and non-minimal
formalism

The action for type II superstring in the pure spinor formalism in flat ten-dimensional
space is given by [1]

2ma/

S = /d22 <L8xm8xm + paf® + ﬁaaé\a + wa, ONY + @58Xa> (2.1)

The matter fields are organized into ten bosonic fields of conformal weight zero =™
with m = 0,...,9 and two sets of fermionic fields (pa, %) and (pz, 5a) of conformal weight
one and zero with o in 16 and @ in 16 or 16 of SO(16) depending if one treats the type ITA
or type IIB string. In the following we will only mention the left-moving sector, but there
are identical contributions from the right-moving sector. The pure spinor ghost A% of
conformal weight zero is constrained by

MA =0 (2.2)

where (7")qg are the 16 x 16 gamma matrices of SO(10). The pure spinor space defined
by the constraint (2.2) is the non-compact conical space defined by a C* bundle over
SO(10)/U(5). The scale of the pure spinor varies between 0 and oco.

The constraint leaves 11 independent components for the pure spinor A* and implies
that the conjugated pure spinors w, of conformal weight one has the following A-gauge
invariance dpwgs = Ay (7™ A)q with A, a gauge parameter. The physical quantities are
described as the cohomology of the pure spinor BRST charge

@m:fw% (2.3)

where do = pg — 5 (Y"0)00%m — £ (07m00)(7™6)4 is the Green-Schwarz constraint, which
satisfies the OPE dq(2)dg(0) ~ —(v")agIlm/z where II,,, = O0xp, + (07,00)/2 is the
supersymmetric momentum. Analogously for the right-moving sector.

In the case of the minimal formalism [1] at genus g order, the 11 zero modes of the
pure spinor ghost A% and 11g zero modes for the conjugated ghost w,, are saturated by the
insertions of delta-functions §(A\*) and d(w,). The BRST-invariant and A-gauge invariant



version of these delta-functions is given by the picture lowering Y and the picture raising
Zp operators

Yo = Cab®5(Ca)®),  Zp = |Qmm, @([wB)\])] — (dB\) §(wB)) (2.4)
where © is the Heaviside step-function, and we have made use of the following notation
1
[WBA] =: wa Bs A\’ := BJ + o B N (2.5)

where the gauge-fixing parameters are the constant spinor C,, and the 46 constants B and
B, We have as well introduced the currents

J =t wa A N™ = wy™"\ (2.6)

are conformal weight one A-gauge invariant quantities.

The integration over the bosonic moduli is taken care by the picture raised conformal
weight two bymm-ghost which satisfies [bmm, @mm]| = ZB Tmm where Ty, is the minimal
formalism stress energy tensor. This field is integrated over the Riemann surface ¥, with
the help of the Beltrami differentials (1|bmm) = [, d?% 147 s bnm »» and the prescription for
a genus-g amplitude, with ¢ > 2, in type IIA/IIB string theory is given by [1] (see as
well [15] for an alternative derivation of the pure spinor measures)

3g—3 11g 11 g N
A= [ d3g37<‘ [T Gulbmm) TT 25, T] Ve V> 27
i=1 j=39—2 k=1 =1

V; are the integrated vertex operators and (---) represents the functional integration over
the world-sheet fields [z, py, 0%, AY, w,] is defined by

()= / dl%dlﬁeﬁdlﬁdf / [d)\]ﬁ / [dw!] - e=5ps (2.8)

At tree-level there is no w-zero mode and the amplitude is given by 3 unintegrated vertex
operators and no insertions of bym-ghost of picture changing operators Zg. At genus one
there are 11 w-zero mode to be integrated over, there is one insertion of the bym-ghost
and one vertex operator is unintegrated. The insertion of the picture changing operators
Yo cuts off the large value of the pure spinor A, localizing the integration measure in a
point.

The pure spinor measure of integration is defined as
[dA] = (7 )77, dAF1 - AN 930 00 0)e (2.9)

where we have introduced the following tensor totally antisymmetric on the k; indices and
fully symmetric ~-traceless on the a7 indices [2]

(eT )k = ehabnrers (ymy o ()1l (V) (Y )rars (2.10)



Such a definition of the measure of integration using derivatives is natural from the
supergeometry point of view as shown in [16]. This measure satisfies the requirement
that the overlap between the vacuum |0) and the highest state in the zero momentum
cohomology |C) = (AMy™0)(AY"0)(AYP0)(0¥mnpt) is a constant

11
(0|C) = <H eaia(xai)(Afyma)(Afyne)(mpe)(efymnpa)> =1. (2.11)

i=1

This gives the rules for computing tree-level amplitudes [1]. We will return to this
computation in section 5 when analyzing the effect of the regulator on the non-minimal
formalism amplitude prescription.

This minimal formalism with only one set of pure spinor ghost, only a picture raised
version of the b-ghost can be constructed which make the analysis of the multiloop am-
plitude difficult beyond two-loops. As well in this formalism the integration over the pure
spinor variables has to be done over patches of the pure spinor space and one needs to
analyze the Cech-cohomology on this space for global properties [17]. As well because of
the presence of picture changing operators the amplitudes are Lorentz and supersymmetric
invariant up to boundary term.

The delta-function insertions provided by the picture changing operators in (2.4) can
be exponentiated by introducing extra new variables [2, 18, 19]. Let start by considering
the case a single fermionic variable § whose BRST transformation is Q8 = A and then by
adding a new doublet 7 and A and their conjugated ghost w and s so that [w,\] = 1 and
{r,s} = 1. In order that physical observables do not depend on these new variables,! we
introduce a new nilpotent BRST operator A = ¢ wr so that (r, s; A\, w) is a topological
quartet under the total BRST-charge Q + A. We can now express the delta-function
insertions as follows

05(\) do(w) = / [dr][dN][ds][d@] N (2.12)

where
N — e*)\j\frefwﬂ)fsd ) (213)

The exponent can be rewritten as A\ + 70 + ww + sd = [Q, V] with the gauge fermion
U=\ + sw . (2.14)

The form of the exponent as BRST-exact quantity ensures that the amplitudes do
not depend upon the extract form of the gauge fermion ¥ unless some singularities in the
amplitude forbid the decoupling of BRST-exact quantities.

!The physical vertex operators do not depend on the non-minimal sector because the non-minimal ghost
number J = M0 — 87 = [Qnm, Sa ], and as well [Qnm, J] = 0. And the physical states are eigenvalues of
the non-minimal ghost number J ¥ = n ¥. Since J is Q-exact all states with non-zero non-minimal ghost
charge are Q-exact ¥ = [Qnm, s\ ¥]/n. Therefore the physical states are in the zero oscillator sector with
n = 0. This is the so-called quartet mechanism.



This procedure can be seen as a motivation for the introduction of the non-minimal
ghosts by Berkovits in [2] for defining the non-minimal pure spinor formalism. He intro-
duced the complex conjugate extra ghosts A, and r, satisfy the relations

MMA=0, M"r=0 (2.15)

In this case and the conjugated variables transform under the gauge symmetry
AL = Ay (7" N 4 Ly (Y™r)® and 015 = Ly (7™A)® where A, and L,, are the
gauge parameters. Therefore the conjugated ghost w® and s can only appear through the
conformal weight one A- and L-gauge invariant quantities

Ny = WYmn\ — $YmnT; J = WA — srS™ = sy )\; S =s\. (2.16)

The non-minimal BRST-charge is
Qnm = anda + f@a Ta - (217)

3 Vertex operators in the non-minimal

The physical state vertex operators are in the cohomology of Qnm defined in (2.17). For
the massless sector of the type 11 superstring the vertex operators come into the integrated
and the unintegrated representations

V= /dQZ|Vopen|2 eF X, U= |Uopen|2 etk X (3.1)
where Uspen = A*A, and
1
Vopen = 00%Aq + 11" Ay + d W + §Nm”an (3.2)
where Ay, A, W* and F,,, are the N'=1 D = 10 super-Yang-Mills superfields

Aal2,6) = 5 (" Oactm + 5 (Um0 (70— 35 Frn(p)a(@r™76) + -+ (3.3

3

DO =

and

(’ym)aﬁAm = DQAB + DBAQ

(Ym)apW? = DoAm — OnAa
1

D WP = Z(’ym")aﬁan (3.4)

Acting with Qpm on Vpen the computation is the same as in the minimal formalism
leading to

[Qnma ‘/open] = 80’(U0pen) + e.o.m. (35)

where e.o.m. are the N'=1 D = 10 super-Yang-Mills equations-of-motion given in (3.4).
The vertex operator Ugpen satisfies [Qnm, Uopen] = 0. Notice that, since Vopen and Uspen



are independent of the non-minimal fields only the minimal part of the BRST charge acts
on the vertex operator.

Because {Qnm,bnm} = Tnm, one can use the bym,-ghost to construct the integrated
vertex operator from the unintegrated vertex operator. If we denote b_; = f do bym, we
have that {Qnm,b_1} = [ doTam = 9,. So, acting with b_1 on Uspen we can derive the
integrated vertex operator Vopen.

The non-minimal byy,-ghost takes the form [2, 3]

bam = SO\ + ixa b* (3.6)
where we have introduced the notations
ha = ¢ AA-(XX); Fo = (;f‘x) (3.7)
and
b% = G + g H + iy KOV 4 g5 is L4010 (3.8)
and the operators
G* = 21" (Ynd)® — Ny (Y™ 00)" — JOO* — %azea
HY = (") (dnyd) + 4N
Ko = 2 ) (I
L — e )PP PINTN,, (3:9)

It was shown in [20] that the non-minimal byy-ghost and the by-ghost of the Y-
formalism are related by
Vo G

bnm - b nm,QU 3 b - 310
vy + (@ ] Y= (3.10)

where v, is a constant reference pure spinor so that vy™v = 0 and v - A # 0. Here €,
which expression can be found in [20], depends on the non-minimal sector and the reference
Spinor v,.

We want to derive the integrated vertex operators Vopen by acting with bym —1 on the
unintegrated vertex operators Uspen = A*A,. This amounts into taking the first order poles
of the OPE between the bym-ghost and the vertex operator. For doing this computation
we will use the relation (3.10) and compute the OPE between the Oda-Tonin by-ghost with
the vertex operator.

Using the ten-dimensional identity [20]

1 1 1
— LBy A) (3 O)* = £ (BgA”)C® = BgA®CY — S("B) (A4 C)  (311)



where A%, By, CP are three spinors of different chirality. It follows from the usual Fierz
identities and the OPEs

N™(y) X%(z) ~ ] (Y™ A)*(0),

2(y — =
1
J(y) A%(2) ~ A%(2) (3.12)
y—z
and the equations of motion given in (3.4) and the Feynman gauge condition 9,,A™ = 0
we get
1 ~
%by(z) (A-A)(0) =00%Ay + T A,y + d W + ianNm" + [Qnm, Q] (3.13)

where (all the pieces should be normal ordered)

(VYma W) 1 (v-W)
2(v-N) (v-A) 37

(v-A)  (v-)) (v-A) 2 (v-A)

. (3.14)

The Q-exact part in eq. (3.13) contains all the dependence on the auxiliary constant
spinor v and is needed as well for generating the N,,, F"" piece of the vertex operators.
This gives for the action of the full non-minimal b,y,-ghost that

74 (baxnUspen + [Qums ) = Vapen (3.15)
z
where the Q-exact part assures that Vipen does not depend on the non-minimal sector.

3.1 Siegel gauge for open string

Within the pure spinor formalism, one can verify that the BRST cohomology at ghost
number one gives the superspace equations for ' = 1 D = 10 the super-Yang-Mills.
However, these equations are not enough to impose the primary field constraint on the
vertex operator. This situation is well-known for example in String Field theory where the
equations of motion are manifestly gauge invariant (see also [21]). In order to impose the
primary field condition, we impose the Siegel gauge condition.

For this we use the Oda-Tonin by-field given in (3.10). We define the zero mode of it
as by o = ¢ dz zby and we act on the vertex operator Uspen = A*44(z,6). Computing the
contributions of the double poles yield

Va\?

by o(U) = 250 (™) 0D, Ag
1

BT Ua)‘ﬁ(')’m)m< — DpOm Ay + (’Yp)ﬁ'yamAp)
1 1
_ 3 myay B mp\a
o )\)\ Dg(va(*y ) 8mA7) + o )\va)\ (YY) 50m Ap

_ va(Y")* Om Ay Lo mop
_Qnm< Y +v.)\(vv 0% A)@mAp

m\ay
= —Qum <”O‘(7 ) amA’*) L OMA, +
TEDN

5o <1)7mp)\) Fop (3.16)



and finally, using again the equation of motion 4 D, W# = (v™),8F,,, we have

(3.17)

m\ay A, —9 a
bYO(U) — amAm _ Qnm (Uoz(’y ) am Y Uon > )

RPN

Thanks to the relation (3.10) between the Oda-Tonin by-ghost and the non-minimal
bnm-ghost we deduce that as well by o(U) = 0™ A+ QnmS2. This leads to the usual gauge
fixing for the Maxwell field which has been derived from the Siegel gauge condition. As a
consequence of the Siegel gauge fixing, the Virasoro constraints must follow and the vertex
operator is primary. Indeed, we act with the BRST charge from the left on (3.17) and we get

Qum (bamo(0) ) = Quum (9™ A (3.18)

then using the relation [Qnm,bnmo] = Lo and QumU = 0 we finally obtain that

Lo(U) = Qum (amAm) (3.19)
Evaluating the right-hand-side

Qnm <6mAm) = \*9™ (DaAm) = \eom (am Aq + (Ym)a BWB)
= A0 Ao + A (™ )apOm W’ (3.20)

and choosing the gauge 9™ A,, = 0, using 9*A,, = 0 and the Dirac equation @W = 0, we end
up with the Virasoro constraint Lo(U) = 0 and the vertex operator is primary. Notice that
if it were that Lo(U) = pU where p is a proportionality constant, then U would not be in the
cohomology. In addition, it can be proved that, at least on the vertex U, byq is nilpotent.

3.2 Siegel-Zwiebach gauge for closed strings

In the case of closed strings, we have a left- and a right-moving by, -field that can be
used to impose the gauge fixing condition. In that case, on the contrary to the open
strings case, the BRST condition does not impose the Virasoro constraints and the level
matching condition. The level matching condition is obtained by imposing by;, — bpr on
the physical states (where L/R denote the holomorphic and the anti-holomorphic part).
See for example [22] for a discussion of these points. In the following we will show that
imposing the level matching condition leads also to the Virasoro constraints.
The closed unintegrated vertex operator U is given by the expression

U= X \Au4(2,0,0), (3.21)

where A% is the pure spinor for the right-moving part. The superfield A4 depends upon the
two supercoordinates # and 6. This superfield plays the role of the spinorial connection for
the supergravity multiplet. In order to relate this superfield to the conventional superfields
Apn (whose lowest component is the combination of the metric and of the NSNS two form)
one needs to derive a ladder of differential equations starting from

Do Agyy = (V") apAms » DAy = (™3 Aam - (3.22)



The complete set of equations were derived in [23]. Acting with the left- by, and right
byr Oda-Tonin by-fields on the vertex operator (3.21), we get

(bYL,O + bYR,O) ()‘a)‘dAad (x> 9’ é)) = AdamAmd + )‘aamAam + (Qan + Qan)(Q) (323)

where (2 is a polynomial obtained after Fierz rearrangements. As in the open string case,
these exact terms are irrelevant. Notice that since the right-hand-side involves explicitly
the ghost field A* and A%, this yields the gauge fixing condition

0" Apa =0, 0™ Agm =0. (3.24)

Using the equations

D(&Amg) = (r}/n)dBAmn’ D(oonz)m = (Wn)aﬁAnm : (325)
By separating the symmetric and antisymmetric part of A,,, these equations lead to

the usual De Donder gauge for the metric and Landau gauge for the NSNS two form

O™ Apn =0, Ay = 0. (3.26)

Finally, using

Do Amn — OmAan = (Vm)aﬁwﬁn ) DsAmn — OmAna = (Wm)dBWﬁna (3.27)
where W<, is the gravitino superfield. This implies the set of equations
Do Ay — P Ao =W, Dad™ A, — 0m0™ Aon = (V) apd" WP, (3.28)

Using Dirac equation OW®,, = 0 and the gauge fixing condition "W, = 0 we
obtain that 9?A,, = 0 and W%, = 0. In the same way, one can derive the gauge fixing
condition for the other gaugino. The Dirac equation for the gravitino using the present
framework was discussed in [23]. Notice that unlike the case of bosonic string, we naturally
impose both conditions on the vertex operator by o and by g since they depends upon
the independent left- and right-moving pure spinor ghosts that implies the independence
of the left- and right-moving b-fields. This means that besides the Virasoro constraints also
the level matching is automatically imposed.

4 Regulating the non-minimal pure spinor amplitudes

Because the non-minimal bym,-ghost has 1/()\ - \) pole and measure of integration over
the conjugated ghosts bring some inverse powers of A and A (see below for details) the
amplitudes can develop singularities [2, 3] from the tip of the pure spinor cone A, A ~ 0.

In order to understand the effect of the choice of the regulator on the amplitudes we
analyse the effect of the general regulator

- - 1Y g
W =20 (A X) = 5 > osL,orm+y s'o; (4.1)
I=1 I=1
for f is a real function. And O7"" and Oy are ghost number zero A- and L-gauge invariant

version of (2.13) that that will depend on the zero-modes conformal weight one fields and
will be discussed in section 4.4.

,10,



4.1 The vacuum of the pure spinor theory

The normalisation of the vacuum of the pure spinor theory |0) is defined by considering
its overlap with the highest ghost number state in the zero momentum cohomology |C) =

(Ay™0) (Ay"0) (AyP0) (0vmnpt)
0[C) = / 102415 / (AN [dX][dr] A (A™8) (Ay"0) AP 8) (Bypmp) €5 . (4.2)
with the measures of integrations given in (2.9) and

[dN][dr] = dXay A+ AdAay, X (?)Tal Ao AD

rall bl

(4.3)

The integration over the pure spinor cone requires that one regulates the integral. A
generic regulator

N =exp (—()\ A FOA) + TQMO‘QHB) (4.4)

where M%5 = §% f(A- A) + A%Xg f/(A - A). This quantity (4.2) gives the normalization
of the amplitudes and the prescription for evaluating the integration over the pure spinor
ghosts [1].

Two detailed evaluations of this integral are given in the appendix A. Setting h(\-\) =
(A= A)f(X- ) the amplitude takes the form

11 .
(0[C) = 1115! / [T dXdha, (- 2710 HOD p(x . )10 (X ) (4.5)
=1

This expression is proportional to

a=1

o (—B,)10 (_i <6—ah(oo) _ e—ah(O)))

We see that the value of the amplitude (4.2) is controlled by the value of the regulator

(0|C) o (—y)"° /000 dz e M@ P/ (1)

(4.6)

a=1

at the boundary of the pure spinor space A- A = oo and A- A = 0. Therefore any regulator
so that lim,_,o exp(—h(z)) = 0 and lim,_,gexp(—h(z)) = 0 is too strong and will lead to
a vanishing amplitude trivializing the theory.?

In the rest of this paper we will make the choice of a gauge fermion which is strongly
dumped at zero

b= (4.7)

and the regulator takes the form

F=ew |-y e (o ge 2&0-?6)3) | "9

2We thank Nathan Berkovits for an important discussion concerning this point.
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With this regulator any divergences from the tip of the cone A\-A ~ 0 will be regularized
by the exponential factor, and the region A - A — oo will be regulated by the powers of
1/(\ - ) coming from the r-zero mode contributions. For this regulator the amplitude
in (4.2) is a constant

(0]C) = 11115 (47)'0 . (4.9)

that determines the normalisation of the amplitudes.

4.2 Tree-level amplitudes
The prescription for N-point tree-level amplitude given in [2, 3] is
R N
AR = /dloxdmﬂ/[d)\] [dN][dr] IN T2 U (21)U (22)U (23) H V() e 5 (4.10)

Jj=4

with the measures of integrations given in (2.9) and (4.3).

The advantage of using the regulator (4.8) is that the amplitudes are less diverging at
for A ~ co than at A ~ 0. Because it is possible to generate 1/(\ - A)-poles of any order
by inserting enough bym-ghost (which happens at higher loop order [2, 4]), but by ghost
charge conservation because the bym-ghost has ghost charge —1 and the physical vertex
operators appear at ghost charge +1 or zero, the integrand of the amplitude divergence at
most like (A - A\)! for A - X — oo.

We show that with the regulator (4.8) the amplitudes will converge at the boundary
A - A ~ oo of the pure spinor cone.

By computing the tree-level amplitude with 3 unintegrated vertex operators and
N — 3 integrated vertex operators as in (4.10), the 11 r-zero modes must come from the
regulator. Therefore the integrand becomes dAdA/()\ - A\)? which converges for A - A — oo.
Using the representation with all unintegrated vertex operators and N — 3 bpy-ghost
insertions, from seven point N > 7 it is possible to saturate the 11 r-zero mode from the
bnm-ghost only and the integrand seems to behaves as dAd\/(\ - \) which corresponds to
a logarithmic singularity at infinity. But as remarked in [3] all the terms in the bym,-ghost
commute with the conserved charges

Q= j{ (ras® — X%wq); g2 = 7{ Aas®, (4.11)

which imply that the terms of the bym-ghost (3.6) have opposite r-charge and A-charge
and are invariant under the shift symmetry ér, = ¢ Ao where c is a constant. Therefore to
saturate all the 11 r-zero modes we need to pick 12 r from the bym-ghost or 11 r from the
bnm-ghost and one r from the regulator and contract the left over r-ghost with s-ghosts.
In either case this brings enough powers of 1/(\ - \) so that the integral converges for the
large values of the pure spinor ghost.

In the non-minimal formalism it is possible to construct the following quantity & =
A-0)/(A-X+7-0) so that Qum& = 1. If this state is allowed it will trivializes the
theory by making all physical state Q-exact, and all amplitude vanishing. By evaluating
the amplitude (0|¢) we see that the contribution with 11 r-zero mode lead to a logarithmic
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divergence at infinity. Because the terms in the expansion of the £ do not commute with
conserved charges ¢; and ¢o and the divergence is not protected by the symmetry dr, =
¢ M. Therefore the state £ is not allowed in the physical Hilbert space of the theory.

We can compare with the prescription given by Berkovits in [2] where the following
gauge fermion and regulator are used

U = \,0% Nzexp(—A-X—r@) . (4.12)
The regulator (4.8) takes the form given in (4.8) with
5a6 AO{S\B
p= 2 203
(A=) (A-A)
This matrix satisfies the property that M%g MP, = §% /(X - A)* that implies that
(M1 = (3~ X)* Ao

In the amplitude one can eliminate the dependence on this matrix in the regulator by

(67

(4.13)

performing the change of variable r, = 73(M ~1)8,. This induces a non-trivial Jacobian
factor depending only on the A and A pure spinor ghosts

[dN][dr] = dAay A -+ A dAagy A B5, A H M. . (4.14)

We should stress here that this transformation preserves the pure spinor conditions
since )wm)\ =0 and )\7 7 = 0. Because M“3 = (9)\5/(9)\ this Jacobian factor is exactly
the one for the transformation

~ Ao
>\a = NCE
(A-A)?

therefore the measure of integration over the pure spinor ghost with the regulator (4.8)

(4.15)

takes the form ) B _
/ (AN [dN[dr] e 0 TME / (AN [N [dF] > (4.16)

which is the original regulator (4.12) introduced by Berkovits in [2] expressed in terms of
the inverted variables. This shows that our regulator is making the pure spinor A massive
using \ instead of .

The massless vertex operators do not depend on the non-minimal variables. This shows
that the tree-level amplitudes defined with only three unintegrated vertex operators (4.10)
are the same with the regulator (4.8) and the regulator introduced in (4.12) in [2].

Remarking that

j\fyman_l? _ ()\ . 5\)2 (S\,Ymnp;:),,’:ﬁl,,’rﬁQ (M—l)ﬁl (o1 (M—1)52a2 5\@3}
= (A V) oy Ty A (4.17)

and introducing s® = §° M@ 3 the bnm-ghost transforms as the non-minimal bym,-ghost of
eq. (3.8) transforms as

!

bom = 38)\ +

-

A
T8 pges 1B peapy 4 TBTNTE papns (4.18)
(AN (A X)2 (A-2)3

b*b* = G* +
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Since the operators G, H*?, K% and L*%% do not depend on the non-minimal
sector, this shows that this expression is identical to the one in (3.8) and shows the
equivalence of the amplitudes with the insertion of the bym-ghost. It is important that
the bum-ghost keeps the same functional dependence in the 7, 3* and \, variables are in
the ro, s® and )\, variables.

Because we are not transforming the conjugated ghost w, and w® and because the A-
and L-gauge invariant measure of integration over these variables bring inverse powers of
the pure spinor ghost, we will show that this regulator provides divergence free amplitudes

that converge at A\, A ~ oo.

4.3 Regulating the higher-loop amplitudes

The prescription for a genus-g amplitude in this formalism is given by [2]

3(g—1

)
Al = / d3937< IT (uilbam) A Hv> . (4.19)
i=1

The integration over the world-sheet field [2™, pq, 0%, A%, Wa, Aa, WY, 7%, 84] is defined by

(o) = / 03419 / (dNaAar] [ / (dw!|[d!|[ds"] --- e=Sv (4.20)

The integration over the conjugated ghosts is given by

[dw!] = Mgglnf8ml0nlodjvm1"1 Lo anmiomolg gl o, - Oyas
10
s1] = H AN} e AT AT 0sr A s (4.21)
B 2:1 1"
where we set M%llmasmmnm = (7m1n1m2m3m4)((alw(7m5n5n2m6m7)a3a4(Vmsnsnsnemg)awe

e oman-me ) 278 and means that one considers the symmetrized y-traceless part.
r)/ onionganrng y ’y p
In order to regulate the integration over the zero mode of the conjugated ghosts we

make the following choice
O = (wry™AN)Or = (wrA) . (4.22)

The zero modes are defined by integration over the homology a-cycles ®! = faz ® for
1<I<g.

The associated regulator

N = €xp [Qnm7 \II]

B 1 r-6 A-0)(r-\)
_eXp[_)\-)\ CX OV YE ]
ex o g 1 Nlmn+JJI>
X exp ;<2Nmn
X exp [—Eg: %S A(dly m”A)+Sf(Adf)] (4.23)
I=1
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The third and fourth line are the A and L-gauge invariant version of the regulator
exp(—w - w —s-d).

4.4 Zero mode counting in the non-minimal formalism

For having a non vanishing massless n-point genus g amplitude one needs to satisfy the
fermionic zero modes constrains given by the following equations

11g = ngs + ngyy
11 = npg + Npgz + Npgo + 20,2 + 30,340
169 = nds + Ndvop + Npog + 2npq2 + N2y
3(9 = 1) = nggx + npog + Npgz + Npgo + N2 + 3o (4.24)

where ng, is the number of SAd contributions from the regulator, n,¢ is the number of r -6
contributions from the regulator, ng,., is the number of d contributions from the vertex
operators and ny5 and n,..g with (4,7) € {(0,1),(1,0),(1,2),(2,1),(3,0)} are the various
contribution from the byp,-ghost.

The d-zero mode constraint implies that
29 = Ngyop + Npgz — Nyp3go — 3 — 2n55 (4.25)

Since n,4;2 < 11 and n,3450 > 0 we deduce that this system of equation does not have a
solution after genus

1
g > 5 Ndvop +4. (426)

An n-point massless amplitude would vanish for all genus g > 5 + n/2 if there are no
singularities in the pure spinor integration.

With the 1/(\- ) regulator introduced in the previous section the integration over the
pure spinor ghost A and X\ behaves as

< dAdA 1 A-ON A 1
I, 5= _ — = XX 4.27
AA /0 )\.)\()\.)\)nr9<)\.)\> € ( )

the g1 and g2 invariance of the bym-ghost implies that n,¢ + n,55 > 1 and these integrals

are converging both at A\- A =0 and X -\ ~ oo.

This analysis shows that the b,m-ghost and the vertex operators do not provide enough
fermionic zero mode contributions for having non vanishing amplitudes at high enough
genus order, which is incompatible with unitarity.

Therefore unless there are extra sources of d-zero modes the theory cannot be unitary.

Before presenting a possible solution to this problem in section 4.5 we make a few
comments on the heat kernel regularisation.

The heat kernel regularisation [3, 14]. A heat kernel regularisation of the pure
spinor singularities was introduced in [3]. When the amplitude develops higher-order
divergences with 11n < m,9 < 11(n + 1) one should add [14] n sets of regulating pure
spinors (fa, %, 9%, §o) where f® and f, are bosonic constant pure spinors and g% and g
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are fermionic constant pure spinors. Each set of regulators is integrated over according
the prescription (see equations (3.20) and (3.29) of [14])

/dllfdllfdllgdllgezg—l (fYwq 149%da 1+ faDF+GasT) ’ (4.28)

Each extension can provide ng, extra s-zero mode and nyq extra d-zero modes contri-
butions to the counting in (4.24)

11g = ngs + Ngox T Ngs
169 = ngs + Navop + Npog + 2Npg2 + Nyp2g + Ngg (4.29)

leading to the d-zero mode counting
29 = Nqyop + Npgz — Np3go — 3 — 2N 55 + Ngd — Ngs (4.30)

Since ngs > 0 and ngyq < 11n, where n defined by the order of the A- X pole, we deduce
that this system of equation does not have a solution after genus

g > %ndwp +4+ 11771 . (4.31)

In particular with one set n = 1 of regulator the massless four-point amplitudes will
be vanishing after genus g > 12, which would not be compatible with unitarity if the
amplitudes did not had any divergences. In order that the massless four-point amplitude
does not vanish after some loop order one needs to have a degree of divergence that
increases with the genus order. Poles are generated by picking extra r-field from the
bnm-ghost. Because the number of r-zero mode is at most 11, these higher order pole
can only arise from the non-zero mode part of the r-field and their contraction with extra
s-fields provided by the regulator factor in (4.28). The same issue arises by increasing
the number of external legs at a given genus orderwhen using a representation of the
amplitudes with unintegrated vertex operators.

In order that the d-zero mode saturation can be satisfied to all orders in perturbation
one needs that ngq —ngs > 0 and that this quantity increases (may be not monotonically)
with the genus order and the number of punctures. As well, with the necessity of introduc-
ing many regulating set, one could be worry that the multi-dimensional integration over
the f, and f® pure spinors variables leads to extra poles at unphysical positions. In order
to avoid adding more and more regulators one can consider® introducing an infinite set
from which only a finite subset will contribute to the amplitudes at a given order. It would
be interesting to clarify these points.

It could be interesting to relate this approach to the one used in this present work,
and it is tempting to conjecture that the infinite set of regulators setup can be related to
the field redefinition introduced in (4.15).

3 We would like thank Nathan Berkovits and Yuri Aisaka for this suggestion.
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4.5 Adding d-zero mode contributions

In order to resolve the issue of the vanishing of the amplitudes because of the impossibility
of saturating all the d-zero modes after some genus order, we introduce the following piece
to the gauge fermion

UV=0+Va Y S, (dymrdl) P, (4.32)
1<1,J<g

which modifies the regulator as

N =N x Ny
Ny = exp [— Va! Z N™ (d ynpd”) Py

1<1,J<g

X €exp [— Vo Z ST (PsI ()‘VSande) P+ (dImeﬁs)‘) PsJPf?) (4.33)
1<I,J<g

With this addition to the regulator the d-zero mode counting in the n-point amplitude
at genus order g > 4 4+ n/2 can be satisfied by picking g — (4 + n/2) contributions of
N (dIande) Pﬁ)'

Under the change of variables A — i of eq. (4.15), the extension of the gauge fermion
in (4.32) transforms as

00 =—Vo' > S (d'ymrdl) By, (4.34)
I<I,J<g

where §£m = 7 y,mA. But only the second line of the regulator Ny is invariant. This
implies that this extension of the regulator makes a difference between the non-minimal
formalism regulated with a mass A - A introduced in [2] or the mass ) - A used here.

We could not justify this extension by a first principle derivation. The difficulty of
saturating d-zero mode at higher loop could be related to a background charge screening
constraint which is not immediately visible, except for the vanishing of certain class of
amplitudes, due to the gauge fixed definition of the pure spinor formalism.

5 Multigraviton amplitudes at higher-loop
The closed string massless vertex operators is defined as [2, 3]

V= /d% (GMN(X)aXMéxN + WP dydy + - ) (5.1)
where XM = (2™ 6%, /G\a), the symmetric part of G,/ is the graviton superfield and the

antisymmetric part Gy is the NS B-field superfield. WP (z, 6%, 6o ) is the dimension one
gauge-invariant superfield whose lowest component is the Ramond-Ramond field strength.
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The zero modes saturation of a ng.y-graviton amplitude at genus g > 2 leads to
39—3 9
Al = / d*9 37 <\ I1 (ui\bnm)/\/( vn>
i=1

~ /d39_37'<

X (;.HA) e <S)\d) e <]Vd2P) tar (aeA LB+ dW + NF)

< (s0) " (mma) "™ (3 a?)" " (3 vm) " (e2an ) (e ?) )

where we made use of the variables (3.7). We have schematically written down all possible

e~ xx 2=t NN (5.2)

Ngrav

terms coming from the regulator N and the bnm-ghost using the notations of eq. (3.7).
When n,¢ is non zero the contribution is given by an integrations over a subspace of the -
superspace but when n,g = 0 this is a full superspace integral. The various powers in (5.3)
satisfy the constraint

4
39 —-3=ne+ > ni, (5.3)
=0

that there are 3g — 3 insertions of the (left-moving) bym-ghost. The saturation of the 11g
s*-zero modes, the 16g dy-zero modes, and the 11 r,-zero mode gives

S 119 = Ng +nsd_ns,r
d: 16g = ngq + 2ngp + n,0q + 2ng2 + Np2g + Ngray
r: 11 =npg + Npgz + Nypgo + 21,24 + 30,350 — N - (5.4)

where ng, is the number of contractions between the s-ghost and the r-ghost.

5.1 The four-graviton amplitude at higher-genus ¢ <6

For the case of the four-graviton amplitude, with ng.,, = 4, the previous conditions have
the following solution valid until genus g < 6 [4]

neg =12 =29, nsgg=11g, npgz=29—1, nog=9—2

Ng = Nypgo = Ny2g = Ny3go = Ng2p = Ngp =0, (5.5)

which corresponds to the partial superspace integral when n,.g = 12 — 2g # 0 giving the
leading contribution to the low-energy limit of the string amplitude [3, 4]

Af ~ / d*%0dr%00"2 29912729 (W, 5)* x I9 ~ (/0?)IR* I9 + O(d'k?) . (5.6)

where 19 is a field theory integral which is the low-energy energy of the expression arising
from the integration over the moduli.

For this case the good convergence properties over the spinor variables allowed to
perform the change of variables A — X of eq. (4.15) and use the BRST invariance to set
Ny = 1. By using the same steps as in section 4.2 we can map our amplitude computation
to the one in [4] leading to identical results.
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For the solution (5.5) the form of the integrand is given by

3

4 ) 39
Ig:/dgg—g,rH/dQZieik;l.x(Zi /de,u yz H (57)
i=1

The expression involves 2(g —2) insertions of the supersymmetric loop momenta IT" ~
0x™ + (604™00)/2 flowing through the loops. The field theory limit of this amplitude in
ten dimensions has 3g — 3 + 4 = 3¢ + 1 propagators, and 2(g — 2) are loop momentum
contracted between themselves or to external polarisation or some of the explicit external
momenta in (5.6). The resulting integral has mass dimension (D — 4)g — 6 as it should
be by dimensional analysis. Such an expression displays the explicit superficial ultra-violet
behaviour of the amplitude.

5.2 The four-graviton amplitudes at higher-genus g > 7

At genus g > 7 the massless four-point amplitude can develop divergences in the pure
spinor integration at the tip of the cone A- A ~ 0 [4], and the change of variables A\ — A of
eq. (4.15) is not allowed. As well because of the potential divergences in the pure spinor
integration we cannot use the BRST invariance to set Ny = 1. We will see that this
extra contribution to the Ny regulator will bring extra d-zero mode allowing the saturate
the fermionic zero mode after ¢ > 7. Because the new contributions to the regulator
come with one power of o/ we want to minimize the number of terms coming from this
modification of the regulator to get the leading contribution to the low-energy limit of the
amplitude. This is accomplished by the solution parametrized

ns =1, nyoq = 39 — 14, Npg2 = 12, Npgo = Ny2g = Ny3go = 0,
nyg =0, ngg = 11g, ngep=9—=6. (5.8)

where we have taken n,.;2 > 11 r-zero mode from the bym-ghost as required by the invari-
ance under the charges (4.11).

This expression leads to a low-energy expansion of the four-graviton amplitude in ten
dimensions

A9 ~ (/)95 / AO9dG(Wos) x 19 ~ (/)90 R 9+ O(o/R?) . (5.9)

where now 9 is

19 = /d39 37 l—I/dQ,zZ ik T(z) /de,u Yi) II(y;) H% (5.10)
ar

because this expression contains 2g — 8 powers the supersymmetric loop momenta running

3g3

in the loop, this expression has mass dimension (D —2)g — 18 and taking into account the
dimension twenty operator 9'>R* multiplying the amplitude the total amplitude has mass
dimension (D — 2)g + 2. This confirms this is the leading contribution to low-energy limit
of the four-graviton amplitude in ten dimensions.
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In the extreme case that all the g — 6 powers of loop momenta from the regulators are
contracted with plane-wave factors, the amplitude with have an extra factor of 2(g — 6)

powers of external momenta and will behaves as

3g—3 9—2
Af = / &3 | ] / Pyply) [[ M) o702 R + O(('K)THRY)  (5.11)
- =1

For this contribution to be the leading low-energy limit of the g-loop four-graviton
amplitude at genus order g > 6 many cancellations within the integrals (5.10) beyond
the supersymmetric ones must take place. They could be the consequence of the extra
cancellations detailed in [11, 12] occurring in the on-shell colorless amplitudes.

5.3 Vanishing of N < 4-point amplitudes

Since the regulator (4.33) or the regularized be-ghost of [3] bring an arbitrary number of
d-zero modes one needs to make sure that all massless N-point amplitudes with N < 4
vanish to all order in perturbation. The vanishing of the N < 2-point amplitudes imply
by factorisation and the absence of unphysical singularities in the amplitude, the finiteness
of string perturbation [24-27]. The vanishing of the 3-point amplitude at higher genus is
not necessary for the finiteness of string perturbation but is a necessary but not sufficient
condition for the absence of infra-red singularities when taking the low-energy limit of the
four-point string amplitudes in ten dimensions.

It was shown in [1] that in the minimal pure spinor formalism all the N < 4-point
amplitudes vanish to all order in perturbation.

The vanishing of the vacuum diagram is ensured by the integration over the six-
teen left-moving and right-moving superspace variables. For the following argument
we will assume that all the vertex operators are unintegrated. The vanishing of the
1-point amplitude is a consequence of the on-shell relation. At most the integrand
can bring 11 powers of 6 and the amplitude takes the form [ |d'606 |2V, where
Vi = [N am(z) + OMY"0)(0vmx) + -+ |* is a massless vertex operators where the
ellipsis are for higher-derivative contributions. But one-point on-shell amplitudes have
k1 = 0 and all higher order term in V} drops out and the integral vanishes after integration
over the # variables. The vanishing of the two-point amplitude follows the same argument
that the integration over the superspace 6-variables leads to contributions that vanish
on-shell because there is only one on-shell independent momentum.

For the case of the massless three-point function we find that using the original regu-
lator (4.33) that the zero mode constraint can be satisfied for all genus from g > 3. But
we will show that because all the contribution have more than two-derivative (there is no
renormalisation of the Planck mass) the on-shell condition assure the vanishing of these am-
plitudes. For the massless three-point amplitude momentum conservation ki + ko + k3 = 0
and the on-shell conditions k} = k3 = kzg = 0 imply that k; - k; = 0 for all 4,5 = 1,2,3.
At genus 3 we have the contribution n, ;2 = 6, n.9g = 5 ngq = 33 and all the other integers
being zero and three d, W from the vertex operators. In the case one picks the 11 r-zero
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mode from the regulator one gets
/ |00 PViVaVs ~ K2R3 + - (5.12)

which means that one must distribute two momenta on three powers of linearized
Riemann tensor Rmnpq = ki Coj[p kg-  This vanishes by the on-shell conditions. In the
case where there is no contributions of r-zero mode from the regulator one get and
amplitudes of the type

/ |d*0)2 Vi VaVs ~ EBR + - - (5.13)

which has more powers of momenta to contract and this vanished after using the on-shell
conditions. The same conclusion is reached to the contribution involving the supersym-
metric partner of the graviton. This show that the massless 3-point amplitude vanish to
all order in perturbation.

We hope that our considerations help to a better understanding of this intricate and
interesting new field. Higher-loop and multileg computations are important for several
checks in string perturbation theory and beyond, but in addition, they are needed test of
the soundness of the formalism.
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A The tree-level amplitude
We consider the general form of the regulator
U =N\ 0%F (X N) (A.1)

where f is a real function. With this choice of gauge fermion we have the following regulator

~

N = exp (—(A ) FO )+ raMaﬁeﬁ) (A.2)

where M5 = 6% f(X - A) + A%Xg f/(A - A). With this regulator we evaluate the tree-
level integral

0jc) = / 059 / (NN [dr] AT (™ 8) My 8)(A?0) (94 ) (A3)
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By performing the integration over the 11 r variables and using that (\-6)? = 0 we get
<w»=/f%ﬂwmmAmAﬂme“Mm”uwwuwwmwmwmmx
XFA-A)100% 021007 (5970 F(A-X) + 11 A6 A /(A X)) . (A.4)
Performing the integration over the sixteen # variables leads to
<O‘C> - /[d)‘]d)‘al AR dj‘au e—(A')\)f(A')\) (Vm)‘)m ('Yn)‘)rz ('Yp)‘)rs ('Ymnp)r47"5 X
X F(N - A0 g maa0amiTs (SO £(A LX) 4 11 A, A% f/(X - X)) (A.5)
Using the properties of the pure spinor measure

[AA] (Y™ N) iy (V" A)ry (VP A) g ('Ymnp)mrs = €16 7’1---7’571---711d>‘y1 oo dATH
[ANNNINY N = d€16, oy AN - - - dATE N (T 1)V K56)

and the relation €y ... g€75 "¢ = 16! 05177716 we get that

ojcy = 11!5!/d>\‘“ Ao AAA dg, A Aday, e AN TN £ 31
+1116! 4/d)\0‘1 A A N, A A ddgy, e ONTON SOXF X)) F(A- X

ot (Tfl)ﬁ’ﬂs)sl-"ss T(aﬁﬁ/) SYLTYIL §O1° Q00T 1 TS (A7)

r1T5 Yopeerel CY10Y1181°085

Using that (7—1)(@fMr17s] — () we find that a1 = o in the last term, leading to
(o|c)y = 11'5'/Hd>\‘“d>\ e ONION LN (FO- N+ PN (A-N) (AR)
Setting A(A - A) = (A - A)f(\- \) this gives

(o|cy = 115! / HdA‘“dA AT B OB (AN (A.9)

> We give another derivation of the same result using some Fierz identities derived
in [28-30].
We use the following definition for the normalisations

/ 4159 / (AN [dA][dr] e MM FOD=TMONaNSNTE (1 ) — (NABXY foa (,6))  (A.10)
and the Fierz identity established in [30]

/ d'%9 / [d][dN][dr] e AN ON=rMONa\BATX fe o (x,6)

(A

(BN ) = (™) INN fes)) (A1D)
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The amplitude in (A.4) takes the form

i) = [ % [laiax|ar e ONIOD £33 19 x

< (F ) (- 0)(My™0) (A" 0) (MP0) (0 Ymanpt)
HIL(A - 0) (- ) f' (A (A" 0) (") (AY70) (0 1mnp0) ) (A.12)

The first identity (A.10) gives
(OIC) 1 = {(r- )™ FO - N (9™0) (X"8) (A7) (§Ymnpb)) (A.13)

the second identity ~(A.11) on the second line with  f5;
015 (7"0)a(7"0) 3(7P0) (0vmnpt) leads to

<0|C>2=§ (-0 FOG XL (- 2) (A N (™ 0) (A" 0) (MP0) (0mnp))

=S AR PR AR 05 XA (7)o (1" 0)3(170) (67mnp)
= (0" T NP0 R) - R (™8 (") (378) (B3 )
S0 FOR) O F AN OR) A 0) (7™ O) ") ) ) (A-14)

where we used that (Ays0)(AyP0)(67™"*0)(04mnpf) = 0. This expression can be reduced
further to

(0C)2 = (-0 FO- N F - X) (A 1™ 0) (") (APO) (0mnpt))  (A.15)

_%W 0L N X) (- M) (As8) (ry ) (M 0) (AP 0) (07mnp0))

DN |

Using the Fierz using that 3!16 6,05 = (Hvabcﬁ)('y“bc)ag one shows that
(ry"™0)(Ayst) = 4(r)(\y™0) + (Ay™0)(r0) (A.16)
And the total amplitude takes the form

(OIC) = {(r- )" F(A- NP ™0) (X" 0) (AP 0) (0mmpt)))
H{(r -0 FO NP X) (- X)) (A" ) (MP0) (0vmnpb))  (A1T)

which reproduces (A.9) after integration over the r and the 6 variables.
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