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1. Introduction

The theoretical construction of unification models for particle physics has led
to remarkable progress in the understanding of the fundamental interactions in-
volved in particle physics phenomena at accelerator energy scale, or in cosmo-
logical phenomena responsible for the formation of the visible matter of our uni-
verse. However a good understanding of quantum gravity effects at either short
distances or large (cosmological) scales is still lacking. It is expected that subtle
quantum gravity effects could be at work behind some of the outstanding fun-
damental problems of modern cosmology and particle physics models and their
ultra-violet completion (or may be the absence of constraints from the ultra-violet
completion). For instance, because of our poor understanding of the rules for a
correct quantisation of the gravitational forces one gets a landscape of vacua for
unification models coupled to gravity, as was explained by Nima Arkani-Hamed,
Frederik Denef and Michael Douglas at this school. Hopefully, the difficulties
of charting the physically relevant vacua of string theory (or any other consistent
theory of quantum gravity) would be resolved once the correct boundary condi-
tions and quantization rules for quantum gravity has been better understood.

It is a remarkable feature of the string setup to provide a consistent theory for
quantum gravity and its supersymmetric extensions [1–3]. String theory provides
a consistent framework for analysing perturbative and non-perturbative aspects of
quantum gravity. The low energy approximation of various compactifications of
string theory leads to the supergravity theories and their quantum corrections. In
string theory based models the various coupling constant depends on the moduli
of the theory which are acted on by the perturbative and non-perturbative sym-
metries of string theory. These symmetries are the U-dualities [4] connecting all
the different corners of the M-theory moduli space [5].

A typical amplitude computed within string theory is given by an integral
over the moduli space of the punctured Riemann surface used for the definition
of the amplitude [1,2,6]. This moduli space resums in a very compact expression
the contributions from the many Feynman graphs one has to sum in the usual
field theoretical analysis [7–10]. This compact formulation makes explicit some
cancellations that are not a priori obvious using the traditional Feynman rules
for constructing the amplitudes. Even if the maximal N = 8 supergravity is
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perturbatively ultra-violet finite, it will not be complete in the ultra-violet and the
inclusion of extra non-perturbative states will be needed for getting a consistent
theory. These extra states are charged under the U-dualities of M-theory and their
decoupling from the supergravity massless states is singular [11].

In these lecture notes we will describe the various lessons than one can draw
about the role of linearised on-shell supersymmetry and the string dualities in
the analysis of amplitude computations in the gravitational sector of string the-
ory and supergravity theories in various dimensions. We will review, in sec-
tion 2 the role of the on-shell linearised extended supersymmetry on the ultra-
violet behaviour of multi-graviton amplitudes. The pure spinor formalism of
N. Berkovits [12–15], has provided a new understanding of the role of super-
symmetry for the case of N = 8 supergravity in diverse dimensions, and al-
lowed to construct a new set of higher-derivative gravitational F-terms [16]. We
will then discuss, in section 3, some conditions for expecting that multi-graviton
amplitude in N = 8 supergravity in flat space could have a much better ultra-
violet behaviour and its relation with N = 4 super-Yang–Mills will be reviewed.
Then in section 4 we will discuss the construction of higher-loop amplitudes in
supergravity theory using the on-shell unitarity method [17]. In section 5 we
will apply the relation between the supergravity in eleven dimensions and pertur-
bative string theory provided by M-theory to get constraints on the low-energy
behaviour of multi-graviton amplitudes. In section 4.2 and 4.3 we analyse the
structure of the four-graviton one-loop and two-loop amplitudes in N = 8 super-
gravity, and in section 8 we describe various non-renormalisation conditions on
some gravitational couplings to the low-energy effective action of string theory.
In Appendix A we describe some of the structure of graviton amplitudes at the
tree-level, genus-one, genus two and higher-order in string theory.

2. Ultra-violet divergences . . .

A perturbative treatment of gravity [7, 8] in the background field method [9, 10],
by linearization of the Einstein-Hilbert actions

L =
1

κ2
(D)

∫
dDx

√
−g(D)R4[g] (2.1)

around a specific background gµν = g
(0)
µν + κ(D) hµν give rise to an infinite

set of effective vertices of two derivative nature. The Newton’s constant in D-
dimension has dimension κ2

(D) = (length)D−2 and an L-loop, n-graviton am-
plitude in D-dimension as mass dimension

[Mn;L] ∼ κ2(L−1)+n
(D) (mass)(D−2)L+2 . (2.2)
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One notices that the mass dimension of the amplitude is independent of the num-
ber of external legs n (except for the dependence on κ(D) from the normalisation
of the external states) due to the two derivative coupling nature of the interactions.

2.1. . . . in pure gravity

In pure gravity the one-loop four-graviton amplitude has dimension

[M
(4)
4;1 ] ∼ κ4

(4)(mass)
4 (2.3)

and has a logarithmically ultra-violet divergence which requires the introduction
of a counter-term of dimension four

δ1M
(4)
4;1 = α (κ2

(4)Rmnpq)
2 + β (κ2

(4)Rmn)2 + γ (κ2
(4)R)2 (2.4)

given by a precise linear combination of the square of the Riemann tensor, the
Ricci tensor and the Ricci scalar. But for pure gravity this quantity vanishes on-
shell and the divergence is accidentally zero [9]. This not true when the theory
is coupled to matter and there a divergence at one-loop. At two-loop order the
four-graviton amplitude has dimension

[M
(4)
4;2 ] ∼ κ6

(4) (mass)6 (2.5)

which requires the introduction of a counter-term of dimension six constructed
from three powers of the Riemann tensor Rmnpq , the Ricci tensor Rmn and the
Ricci scalar R, symbolically represented as

δ2M
(4)
4;2 = (κ2

(4)Rmnpq)
3 (2.6)

and the theory of pure gravity is divergent at two-loop [18–20].

From the formula (2.2) one can read off the critical dimension for the appear-
ance of ultra-violet divergences

D ≥ Dc = 2 +
2

L
. (2.7)

This formula indicates that pure gravity is finite only in two dimensions.

2.2. . . . in extended supergravity

For at least N = 1 linearly realised on-shell supersymmetry in four dimen-
sions R3

mnpq cannot be supersymmetrised [21, 22]. Therefore the two-loop four-
graviton amplitude in four dimensions is finite for N ≥ 1 supergravity.
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In a four dimensionalN extended supersymmetric theory the on-shell counter-
terms have to correspond to an integral over full superspace (a D-term) of the
form [23–26]

δL = κd+2N−4
(4)

∫
d4xd4Nθ det(E)L(R,T) (2.8)

where det(E) is the determinant of the super-vielbein and L(R,T) is a super-
space density of length dimension −d expressed in terms of the super-curvature
R and the supertorsion T. The superspace variables have the following dimen-
sions [x] = length and [θ] = (length)1/2.

The Bianchi identities for the superspace formalism with N on-shell linearly
realised supersymmetry are expressed in term of a scalar superfield ϕ and in
terms of the chiral superfield of spin 2−N/2 for N ≤ 4 [24–28].
• For 1 ≤ N ≤ 3 the superfield ϕ has the Weyl tensor1 Cαβγδ appearing at the

order θN

ϕ(βN+1···β4) = φ(βN+1···β4) + · · ·+ 1

N !
θβ1
a1 · · · θ

βN
aN ε

a1···aN Cβ1···β4
+ · · · (2.9)

where ai are indices for the SU(N) R-symmetry. This superfield has length
dimension−(2−N/2) and the first possible counter-term allowed by supersym-
metry is

δL = κ4
(4)

∫
d4xd4Nθ (ϕα1···α4 ϕ̄

α̇1···α̇4)2 ∼ 1

κ4
(4)

∫
d4x (κ2

(4) C)4 (2.10)

which is a three-loop contribution to the four-graviton amplitude. In this case be-
cause the dimension of the superfield depends on the number of linearly realised
supersymmetries, its dimension balances the one from the fermionic measure and
the order of the appearance of the counter-term is always three-loop.
• For 4 ≤ N ≤ 8 the Bianchi identities are solved in terms of the scalar super-

field of dimension 0 where the Weyl tensor appears at the order θ4

ϕ[a1···a4] = φ[a1···a4] + · · ·+ θβ1
a1 · · · θ

β4
a4Cβ1···β4

+ · · · (2.11)

and the first possible counter-term allowed by linearized supersymmetry is

δL = κ2N−4
(4)

∫
d4xd4Nθ (ϕa1···a4 ϕ̄

a1···a4)
N
2 ∼ 1

κ4
(4)

∫
d2x (κ2

(4) C)N

(2.12)
1In four dimensions we use the spinorial notation for the Riemann and Weyl tensors



Non-renormalisation theorems in Superstring and Supergravity Theories 311

spin/dimension 2 3/2 1 1/2 0

superfield Wαβγδ W i
αβγ W ij

αβ χijkα ϕijkl

SU(8)R rep. 1 8 28 56 70

Table 1
Basic superfields of linearized N = 8 supergravity. The lowest-component of these superfields are
respectively given by the Weyl tensor Cαβγδ , the 8 gravitino curvatures, 28 (Ramond-Ramond) field
strengths, 56 Weyl spinors and 70 scalars.

In this case, because the superfield has dimension 0, the order at which the
counter-term can appear is controlled by the dimension of the superspace in-
tegration. The linearized superspace integrals correspond to a three loop contri-
bution to the four-graviton amplitude for N = 4, a four loop contribution to the
four-graviton amplitude for N = 5, a five-loop contribution to the six-graviton
amplitude for N = 6, a six-loop contribution to the seven-graviton amplitude for
N = 7 and a seven-loop contribution to the eight-graviton amplitude for N = 8.

The absence of a three-loop divergence in four-graviton amplitude in four
dimensions for N = 8 supergravity [29] indicates that more than sixteen on-
shell linearized supersymmetries are controlling the perturbative computations
of N = 8 supergravity. The precise number of supersymmetries is still unknown
and we will describe below various constraints from string theory and dualities
that can shed some light on this issue.

For the particular case of N = 8 supergravity the three-loop counter-term
was constructed using the scalar superfield of the superspace formalism in four
dimensions [27], but this superfield is not invariant under the U-duality symme-
tries of the theory which are expected to play an important role [11]. So we will
be considering the construction of on-shell counter-terms that are invariant under
the local SU(8) R-symmetry and global E7 of N = 8 supergravity [30].

• With increasing mass dimensions the first superfield invariant under the local
SU(8) R-symmetry and global E7 of N = 8 supergravity is the dilatino super-
field of length dimension −1/2 given in table 1

χijkα = Dα,lϕ
ijkl (2.13)

from which one can construct an eight loop counter-term [23]

δL = κ14
(4)

∫
d4xd32θ det(E) (χαijkχ̄

ijk
α )2 ∼ 1

κ4
(4)

∫
d4xκ18

(4)D
10C4 . (2.14)

This superfield is invariant under the local SU(8) R-symmetry of N = 8 su-
pergravity [23] unlike the scalar superfield discussed. All the Bianchi identities
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of N = 8 supergravity can be expressed in terms of this spinor superfield [27].
But bearing in mind the properties of the maximal supergravity theories with
32 supercharges in every dimension where they can be defined, but the dimen-
sion 1/2 superfield does not appear in the N=1 D = 11 formulation. We are
considering gravity amplitudes, so one wants to construct counter-term using
only Lorentz invariant quantities expressed in terms of the curvature of the (su-
per)graviton. In ten dimensions the dimension 1/2 superfield starts with the di-
latino field χα = λα + θβFαβ + · · · (from which the four dimensional χijkα is
the dimensional reduction) and SO(1, 9) Lorentz invariance.

• The integrated graviton vertex operators in the pure spinor formalism for per-
turbative string theory were constructed by Berkovits [12–15]

V =

∫
d2z

(
GMN∂x

M ∂̄xN +Wαβ,+−d
α
+d

β
− + · · ·

)
(2.15)

from the superfield Wαβ,+− with dimension (length)−1 has the Weyl tensor at
order θ2

Wαβ,a1a2 = Fαβ,a1a2 + · · ·+ θγa1θ
δ
a2 Cαβγδ + · · · (2.16)

The lowest component of this superfield are the Ramond-Ramond field-strengths.
In ten-dimensional type IIb supergravity this superfield arises by taking two
fermionic derivatives on the scalar superfield dilaton Φ = τ + · · · + θ2(R +
∂F5) + · · · [31], and in type IIa supergravity this superfield is readily obtained
by a dimensional reduction from the mass dimension one, four-form superfield
of eleven dimensional supergravity [32]

(Γm1···m3D)αWm1···m4
= 0 (2.17)

which has the following (schematic) expansion

Wm1···m4 = Fm1···m4 + · · ·+ θ2C + · · · (2.18)

starting with the field-strength for the three-form potential F4 = dC3 and having
the Weyl tensor at θ2 order. By dimensional reduction of this superfield gives the
ten dimensional and four dimensional superfields discussed above.
• In four dimensions this superfield is obtained by dimensional reduction of the

superfields of N = 8 supergravity. Using this “string favoured” building block
in four dimensions one can construct the following nine loop counter-term [33]

δL = κ16
(4)

∫
d4xd32θ det(E) (Wαβ)4 ∼ 1

κ4
(4)

∫
d4xκ20

(4)D
12C4 . (2.19)
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3. Critical dimension for (logarithmic) ultra-violet divergences

In order to determine the critical dimension for logarithmic ultra-violet diver-
gences of gravity amplitudes one needs to know precisely how the loop integral
diverges. On general grounds aL-loop n-point gravity amplitude inD-dimension
will be decomposed as

Mn;L =
∑
i

ti I
(D)
n;L (i)[`

ν ] , (3.1)

where ti is some tensor constructed from the polarisations and the momenta of
the external states, and I(D)

n;L [`ν ] is an n-point L-loop integral defined in dimen-
sion D with ν powers of loop momenta in the numerators. Each individual inte-
gral can have a worse ultra-violet behaviour than the total amplitudeMn;L where
subtle cancellations are expected to occur.

If Λ is momentum cut-off, the low-energy expansion of the four-graviton am-
plitude at L loops and D dimensions will behaves as

M4;L ∼ ΛδL OkL + · · · (3.2)

where OkL is an operator of dimension (length)−kL . The dimension of this
operator can change with the loop order. The leading degree of ultra-violet diver-
gence is

δL = (D − 2)L+ 2 + kL (3.3)

so that the total dimension of the loop amplitude is (D − 2)L + 2. The ellip-
sis in the eq. (3.2) are for the sub-leading ultra-violet divergences. Ultra-violet
divergences occur when δL ≥ 0

D ≥ Dc = 2 +
2 + kL
L

. (3.4)

For N = 8 supergravity all the four-graviton amplitudes have at least a factor
of R̂4 (see eq. (4.9)) but more derivatives can be factorised and the low energy
expansion starts contributing with an operator of dimension 8 + 2βL

OkL = D2βL R4 . (3.5)

In this case the critical dimension for the appearance of ultra-violet logarithmic
divergences is

Dc = 2 +
6 + 2βL

L
. (3.6)
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Explicit results for the four-graviton amplitude give that β1 = 0 at one-loop [34],
and β2 = 2 at two loops [12,35–39], and βL = 3 at three loops2 [29]. Assuming
that βL = 3 for L ≥ 3 one concludes that the critical dimension for ultra-violet
divergence is

Dc = 2 +
12

L
for L ≥ 3 . (3.7)

Predicting a first divergence for N = 8 supergravity in four dimension at L = 6
loop. This formula predicts as well that the four-loop four-graviton amplitude
diverges logarithmically in D = 5.

In ten dimensions using the non-minimal pure spinor formalism Berkovits
showed in [16] up to L = 6 the four-graviton amplitudes are F-term satisfying
the rule βL = L. This result which only makes use of the fermionic zero mode
saturation does not involve any massive string excitations and makes only use of
the fact that the vertex operators are constructed using the mass dimension one
superfield Wαβ of eq. (2.16).

Since this superfield exists for all the formulations of the maximal (N = 8)
supergravity in every dimensions, it was argued in [41] that this leads to the
following critical dimension

D ≥ Dc = 2 +
18

L
for L ≥ 6 . (3.8)

And the first divergence of N = 8 supergravity in four dimensions is expected at
nine loops.

All these formulæ give that only D = 2 supergravity is finite (for any number of
supersymmetries). As long 2 + kL in eq. (3.4) or 6 + 2βL in eq. (3.6) is bounded
when the loop order L increases the equation Dc = 4 will always have a solution
at some loop order and an ultra-violet divergence will occurs in four dimensions.
It was proposed in [33,41] that at each loop order two extra powers of the external
momenta factors out the low energy limit of the L-loop amplitude, so that

βL = L for L ≥ 2 (3.9)

giving the critical dimension

D ≥ Dc = 4 +
6

L
for L ≥ 2 . (3.10)

2Notice that βL is the leading power of the amplitude in the low-energy expansion, and not all
the various diagrams composing the L = 3 have an overall power ofD6R4 in the solution presented
in [29]. The string based analysis presented in [16] assures that there is representation of the L = 3
amplitude with an explicit power of D6R4. The field theory result of [29] can be rewritten in such a
form as well [40].
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kµ

φ
4 2

+EMφ

Fig. 1. Effective interactions that could be giving an ultra-violet behaviour with the critical dimension
Dc = 4 + 6/L

Since the critical dimension is always bigger than 4, then N = 8 supergravity
would be finite in four dimensions.

When the condition βL = L holds the constant piece in Dc has changed its
value from 2 to 4. This means that at each loop order the mass dimension of the
loop integral increases by a factor of (mass)D−2 typical of ϕ4 scalar interactions
or cubic derivative interactions of figure 1. These vertices are the elementary
one of N = 4 super-Yang-Mills. The ϕ4 vertex are needed from four-loop or-
der [42,43]. These vertex appear in the construction of the multiloop amplitudes
so that no triangle sub-graph are generated. Supersymmetry cannot be respon-
sible for such reduction which are due to extra cancellations from pure gravity
interactions [44–46] accounted for the general coordinate gauge invariance in
one-loop amplitudes and the sum over all the permutation of the external legs in
a theory without color ordering [47].

In four dimensions the loop amplitude has negative mass dimension −6

[M
(4)
4;L] ∼ (mass)−6D2LR4 , (3.11)

which means that the amplitude has no ultra-violet divergences but only IR di-
vergences. At one-loop order, the amplitude is given by R4 times the scalar box
amplitude I4 which has dimension (mass)−4 in four dimension [34], at two-loop
order the amplitude is given by D4R4 times the planar and non-planar double-
box [35] of dimension (mass)−6 [48, 49]. For more details on the structure of
four-graviton loop amplitude we refer to section 4.

3.1. Is N = 8 equal to (N = 4)2?

The formula (3.8) is the same critical formula as N = 4 super-Yang–Mills indi-
cating a very close relation betweenN = 8 supergravity andN = 4 super-Yang–
Mills. The relation is that the basis of integrals on which N = 8 supergravity
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amplitudes are expressed is the same as the one of N = 4 super-Yang-Mills am-
plitudes once all the planar and non-planar contributions are included. We will
see this in practice at the one-loop L = 1 and two-loop order L = 2 in section 4.

The n-point L-loop amplitude in D dimensions for N = 4 super-Yang–Mills
has the following mass dimension

[An;L] ∼ g2(L−1)+n
YM (mass)(D−4)L (3.12)

with a coupling constant g2
YM of dimensions (length)D−4. In four dimensions

the theory is logarithmic divergent. For N = 4 super-Yang–Mills supersymmet-
ric the finiteness in four dimensions is only a consequence of supersymmetry [50]
and the supersymmetric cancellations give that the low-energy expansion of the
amplitude is given by (for L ≥ 2) [50]

A4;L ∼ Λ(D−4)L−6D2F 4 + · · · (3.13)

which is enough for the perturbative ultra-violet finiteness of the theory in four
dimensions. This leads to the critical dimension for super-Yang–Mills amplitudes

D ≥ Dc = 4 +
6

L
. (3.14)

his formula indicates that the dimension six operator D2F 4 factorises at higher
loops which is enough for assuring that the theory is perturbatively finite and
does not have logarithmic divergences. It is important to remark here that the
dimension of the operator that is factorised does not depend on the loop order.

The KLT [51] relation express the supergravity tree-level amplitudes as sum
of square of Yang–Mills amplitudes

M tree
n =

∑
σ∈Sn

p
(i)
n−3(sij)A

tree
n (1, 2, · · · , n)Atreen (σ(1), σ(2), · · · , σ(n)) .

(3.15)
In this expression σ is a permutation of the external legs and p(i)

n−3(sij) are poly-
nomials of order n − 3 in the kinematic invariants sij = (ki + kj)

2 needed to
cancel the spurious poles appearing when multiplying the two gauge theory am-
plitudes [52–54]. For instance the tree-level four gauge boson (colour stripped)
amplitude is

Atree4 (s, t) =
1

s t
t8F

4 (3.16)

which squared gives the tree-level four-graviton amplitude

M tree
4 (s, t) = sAtree4 (s, t)Atree4 (s, u) =

1

stu
t8t8R

4 . (3.17)
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These tree-level relations have some important implications at the loop level
structure where the amplitude is developed on the same basis [17, 35, 47, 55] of
integrals as for N = 4 super-Yang–Mills with for coefficients tensorial structure
that are ‘square’ of the N = 4 super-Yang–Mills tree coefficients from the KLT
relation [51]. These relations are specific to the on-shell amplitude computations
and are not properties of the effective action of supergravity theories but are nev-
ertheless a useful guide for constructing some higher derivative superinvariants
for the ten- and eleven-dimensional supergravity effective action in [56] under
linearized supersymmetry.

One important difference between the gravity and Yang–Mills is the absence
of colours. At one-loop order the sum over all the external legs for a colorless the-
ory played was needed for cancelling the triangle contributions [47]. At higher-
loop order this requires that one sums over all the planar and non-planar contri-
butions to a specific amplitude, and any good ultra-violet properties of N = 8
supergravity must rely on subtle cancellations between the planar and non planar
sector. We will see examples of this when discussing the explicit example of
higher-loop contributions in the next section.

In the context of N = 4 supergravity one expects βL = L/2 giving a critical
dimension

Dc = 3 +
6

L
(3.18)

and a first divergence at L = 6 in four dimensions, which is higher than the three
loop divergence prediction based on the linearized N = 4 supersymmetry.

In the following we will describe a construction of the higher-loop amplitude
four-graviton amplitude in N = 8 supergravity and their regularisation using
the string theory induced scheme [57, 58]. This construction will give a set of
non renormalisation theorems for the higher derivative gravitational interactions.
Since all the possible counter-term from the superspace formalism have a contri-
bution to the four-graviton amplitude, we will be able to confront the predictions
from supersymmetry and dualities for the ultra-violet behaviour of the multiloop
amplitudes in supergravity in various dimensions.

4. Higher loop amplitudes in supergravity theories

For computing higher-loop amplitude in eleven dimensions one could envisage
using background field method linearizing the eleven dimensions supergravity
action of [59] around a specific background and making use of Feynman rules.
This has been used to extract information about one- and two-loop amplitudes
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in gravity [10, 18–20] and some of the structure of the higher order corrections
to M-theory [60, 61]. The method is very cumbersome an obscures many of the
properties of the gravitational interactions (see [17] and a presentation of these
points).

In the following we will describe how to construct the four-graviton L-loop
amplitude of N = 1 supergravity in eleven dimensions using on the on-shell uni-
tarity method for supergravity developed by Zvi Bern and his collaborators [62].

4.1. Cut construction of the loop amplitudes

We construct the scattering Sif -matrix between initial state i and final state f
from its discontinuities across the branch cuts in the complex energy plane (the
Mandelstam plane). Because in an unitary local quantum field theory the S-
matrix Sij = δif + i Tif the S-matrix satisfies SS† = I the transition matrix T
satisfies the relation

2i (T − T †)if =
∑
k

TikT
†
kf . (4.1)

where the sum on the right hand side is over all possible intermediate states.
Perturbatively the states k are the one running in the loops. In the context of
supergravity theories the sum will be over the massless supergravity multiplet.

This relation is valid for any unitary quantum field theory independently of
any perturbative expansion.

A perturbative expansion relation (4.1) relates the value of the discontinuity of
the scatting matrix across a branch cuts at a given loop order L to the integration
over the intermediate states exchanged between lower loops order amplitude.

Unfortunately there are various ambiguities in reconstructing the real part of
the S-matrix associated with the fact that the dispersion relations give rise to
diverging expressions which need to be regularised and introduce some ambi-
guities in the rational part of the amplitude, and one has to use the dispersion
relation for obtaining the real part of the amplitude [63]. The only ambiguity
with a physical meaning are the one associated with the usual ultra-violet and
infra-red divergences of the amplitude. A traditional way of dealing with this
problem is to consider the unitarity method in the context of the dimensional
regularisation [64, 65]. The application of this method in the context of the he-
licity formalism proved to be a very powerful tool for constructing higher-loop
amplitude in gauge and supergravity theories [17, 66–68].

In some particular cases the amplitudes do not contain rational terms and can
therefore be completely reconstructed by considering the behaviour of the S-
matrix across the branch cuts.

The appearance of rational terms in the amplitude is connected to the num-
ber of loop momenta in the Feynman integrals (and therefore the ultra-violet
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behaviour) of the amplitude by various steps of the Passarino-Veltman reduc-
tion [69].
Consider an n-point one-loop amplitude in D dimensions with ϕ3 vertices

I(D)
n;ν (k1, · · · , kn) =

∫
dD`

Pν(`)

`21 · · · `2n
(4.2)

where `2i = (`− k1 − · · · − ki)2 are the various propagators along the loop and
Pν(`) in the numerator is a polynomial of degree ν in the loop momentum `.

The dimension of the integral in eq. (4.2) is

[I(D)
n;ν ] ∼ (mass)D+ν−2nOν(h, k) (4.3)

the superficial degree of divergence δ1,n = D + ν − 2n is a function of the
dimension D, the number of external states and the order ν of the polynomial.
The amplitude is ultra-violet finite when 2n ≥ D+ ν, therefore by analysing the
ultra-violet behaviour of the integral in arbitrary dimensions and with an increas-
ing number of external legs one can determine the power of ν of loop momenta
in the numerators of the amplitudes.

For on-shell massless external states using the identity

2` · k1

`2 (`− k1)2
=

1

(`− k1)2
− 1

`2
(4.4)

one reduces [69] the integral In in eq. (4.2) into the difference of two n−1-point
loop amplitude with a numerator of degree ν − 1

I(D)
n;ν (k1, · · · , kn) = I

(D)
n−1,ν−1(k1 + k2, · · · , kn)− I(D)

n−1;ν−1(k2, · · · , kn + k1)
(4.5)

On the right hand side one sees the two massive external legs with momentum
k1 + kn and k1 + k2 due to the cancellation of the propagators with the iden-
tity (4.4).

For gravity or gauge theories the higher power of loop momenta in Pν(`) is
given by the cubic vertex, which means that Pν(`) ≤ n for gauge theories and
Pν(`) ≤ 2n for gravity. For N = 4 super-Yang–Mills a vertex brings a power of
the loop momenta, and the saturation of eight fermionic zero modes (needed by
the N = 4 supersymmetry) cancels four loops momenta leading to ν ≤ n − 4.
In gravity each vertices bring two powers of loop momenta, and for supergravity
theories with N supersymmetries it is conjectured that [45]

ν ≤ 2n−N − (n− 4) , (4.6)
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(a) (b)

Fig. 2. The one-loop four-graviton amplitudes in N = 8 supergravity is given by the box diagram in
figure (a). In D ≤ 8 the amplitude has a ultra-violet divergence which is subtracted by the counter-
term represented in figure (b).

where supersymmetry only guarantees that ν ≤ 2n −N . Therefore n − 4 extra
cancellations of loop momentum are needed.

One remarks that there is a special case where the extra n−4 cancellations are
not needed. This is the case of the amplitudes with more than four external states
the one-loop amplitude which contains at most n− 4 powers of propagators `i in
the numerator and reduce directly to a massive boxes

∫
dD`

`25 · · · `4n
`21 · · · `2n

=

∫
dD`

1

`21 · · · `24
. (4.7)

In this case one concludes that
• Clearly theories with ν < n are one-loop cut constructable since no rational

terms can be obtained by a succession of Passarino-Veltman reductions.
• N = 4 super-Yang–Mills does not have rational term and is cut-constructable.
• ForN = 8 supergravity it is conjectured that ν ≤ n−4 < n, which means that

one-loop n-graviton amplitudes under a Passarino-Veltman reduction but do not
contain integral functions more singular than (massive) boxes and in particular
do not contain triangles or bubble functions [45, 70]. At one-loop order this fact
has been linked to gauge invariance and the summation over all permutations of
the external legs for a colorless theory [47]. Because of the absence of colors
in gravity on has to sum over all planar and non-planar contributions at higher-
loop order. This plays an essential role in the cancellation of various unwanted
contributions that would bring a worst ultra-violet behaviour.

When using the on-shell unitarity method for constructing the higher-loop
amplitude in N = 8 supergravity, one has to sum over all the 256 massless states
of the graviton supermultiplet. These states are the same in every dimensions and
the construction of the amplitudes are valid in every dimensions where N = 8
supergravity can be defined.
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4.2. The one-loop amplitude

The amplitude between four massless state of the supergravity multiplet of N =
8 supergravity inD dimensions can be constructed completely from its 2-particle
cut with the result [62]

M4;1(k1, · · · , k4) =
κ4

(D)

(2π)D
R̂4 [I

(D)
4 (S, T ) + I

(D)
4 (S,U) + I

(D)
4 (T,U)] (4.8)

where R̂4 is kinematic factor for four massless external states defined in [1]

R̂4 = hAA
′

1 hBB
′

2 hCC
′

3 hDD
′

4 KABCDK̃A′B′C′D′ , (4.9)

the indices A,B on the superheliticty run over both vector and spinor values and
span the 256 states of the massless N = 8 gravity supermultiplet. I(D)

4 is the
D-dimension massless box integral ( I(D)

4;0 in the notations of eq. (4.2)) given by

I
(D)
4 (S, T ) =

∫ ∞
Λ−2

dt

t
t4−

D
2

∫ 1

0

4∏
i=1

dνi e
πtQ4(ki) (4.10)

where

Qn(k1, · · · , kn) =
∑

1≤i<j≤n

ki · kj (ν2
ij − |νij |) . (4.11)

The absolute value in Qn forces the breaking of the integral into three differ-
ent physical regions where the integral converges [71, 72]. The (s, t)-region for
TST = {0 ≤ ν1 ≤ ν2 ≤ ν3 ≤ ν4 ≤ 1}, the (s, u)-region for TSU = {0 ≤ ν2 ≤
ν1 ≤ ν3 ≤ ν4 ≤ 1} and the (t, u)-region for TTU = {0 ≤ ν1 ≤ ν3 ≤ ν2 ≤
ν4 ≤ 1}. The integral is to be evaluated with s, t < 0 where it converges and
then analytically continued to the physical region.

The expression (4.8) for the amplitude for four massless N = 8 states of the
supergravity multiplet has been constructed using the on-shell unitarity method
and is valid in any dimensionsD ≤ 11. In dimensionD ≤ 10 this expression has
been obtained by Green et al. [34] by compactifying the genus-one string loop
amplitude and decoupling the massive string modes, Kaluza–Klein and winding
modes.3

3The string one-loop amplitude is of course ultra-violet finite, and gives a resulting total amplitude
which also ultra-violet finite because the residue of the 1/ε in 5 ≤ D ≤ 10 and 1

ε2
pole in D = 4 is

proportional to s+ t+ u = 0 and vanishes on-shell.



322 P. Vanhove

(a) (b) (c) (d)

Fig. 3. The two-loop four-graviton amplitudes in N = 8 supergravity is given by the double box
diagrams in figure (a) and (b). Figure (c) represents the contribution induces by the one-loop counter-
term of figure 2(b). Figure (d) represents the new primitives ultra-violet divergences arising for
D ≥ 7.

The lower bound on the integral is an ultra-violet cut-off 4 and the amplitude
M1;4 has the leading ultra-violet behaviour

[M4;1] ∼
κ4

(D)

(2π)D
R̂4 (mass)D−8 (4.12)

and the superficial degree of divergence of the 4 graviton amplitude is given by
the behaviour of the scalar box in D dimensions

δ4;1 = D − 8 . (4.13)

In D = 11 this amplitude has a cubic divergence which will be regulated by the
addition of a local counter-term

δ1M4;1 = c4
κ4

(11)

(2π)11

π3

2
`3P R̂

4 . (4.14)

The precise renormalisation scheme will be described in section 6.

4.3. Two-loop amplitude

The on-shell unitarity method [62] gives that the two-loop four-graviton ampli-
tude for N = 8 supergravity in D-dimension is expressed as a the sum of scalar
double-box amplitude represented in figure 3 and given by

M4;2 = i
κ6

(D)

(2π)2D
R̂4
[
S2I(S) + T 2I(T ) + U2I(U)

]
(4.15)

which is given by a sum of contributions from the S, T and U -channel with

I(S) =
1

2

(
IP (S, T ) + IP (S,U) + INP (S, T ) + INP (S,U)

)
, (4.16)

4InD ≤ 4 the amplitude develops infra-red (IR) divergences which will not be discussed in here.
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with analogous expressions for I(T ) and I(U). The loop integral IP (S, T ) is the
planar two-loop ϕ3 contribution

IP (S, T ) =

∫
dDpdDq

p2(p− k1)2(p− k12)2(q − k12)2(q − k4)2q2(p+ q)2
(4.17)

and INP (S, T ) is the non-planar two-loop ϕ3 contribution

INP (S, T ) =

∫
dDpdDq

p2(p− k1)2(p− k12)2(q − k4)2q2(p+ q)2(p+ q − k3)2
.

(4.18)
At this order we see the appearance of a non-planar contribution to the am-

plitude. In the case of gravity there is no colour and the planar and non-planar
contributions have to be summed in the total amplitude. The two-loop string am-
plitude is given by a single expression in eq. (A. 17) expressed as the integral
over the moduli space genus two Riemann surfaces [36, 37]. At this order the
field theory limit has a remaining ‘modular’ symmetry putting together planar
and the non-planar contribution in a single contribution [58, 73].

Finally because there are no diagrams with three external legs on the same
loop proper-time, the two loop amplitude does not contain any triangle. This
is a consequence of the vanishing of the factor |Ys|2 in eq. (A. 19) when three
external legs are on the same loop proper-time in the integrand of the field theory
limit of the genus two [73].

In eleven dimensions the one-loop counter-term in eq. (4.14) induces the fol-
lowing contribution at two-loop order

δ2aM4;2 = ic4
π3

2
`3P

κ6
(D)

(2π)2D
R̂4 I

(D)
3;1 , (4.19)

regulating the one-loop ultraviolet sub-divergence of the amplitude.
In eleven dimension a new set of primitive divergences arise at two-loop order

M4;2 ∼ Λ8D4R̂4 + Λ6D6R̂4 + Λ4D8R̂4 + Λ2D10R̂4 + log(Λ)D12R̂4. (4.20)

these divergences are subtracted by local counter-term

δ2bM4;2 =
κ6

(11)

(2π)22

6∑
k=2

ck D2k R̂4 , (4.21)

the value of this counter-term will be determined in section 7 in the context of the
duality compatible renormalisation scheme we use for regulating the ultraviolet
divergences of the supergravity amplitudes.
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L1
L2

L3

L4 L5

L6

(b)(a)

Fig. 4. The vacuum diagrams for the three-loop four-graviton amplitudes in N = 8 supergravity has
two different topologies depicted in figure (a) and (b). The vacuum diagram in figure (a) leads to the
class of scalar ϕ3 triple ladder and cross-ladder boxes. They have a prefactor ofD8R4. The vacuum
diagram in figure (b) leads to various diagrams that are no purely scalar ϕ3.

4.4. Higher-loop amplitudes

The four-graviton three-loop amplitude in N = 8 supergravity has been con-
structed in ref. [29] and has the two classes of vacuum diagram represented in
figure 4. It was shown in ref. [29] that the low-energy limit of this amplitude is
given by

M4;3 ∼ Λ3(D−4)−6D6R̂4 + · · · (4.22)

One class of diagrams is given by all the scalar ϕ3 planar and non-planar triple-
box diagrams one obtains by putting the legs external legs on the vacuum diagram
of figure 4(a) without generating diagrams containing triangles. These diagrams
have an explicit factor ofD8R4 and are much too ultraviolet convergent to be the
leading contribution to the low-energy limit of the L = 3 amplitude. At this order
appears a new class of diagrams which are not purely scalar ϕ3 diagrams but
with some powers of the loop momenta in the numerator of the integrals. They
arise from the vacuum diagram of figure 4(b). Although the solution presented
in [29] did not have an explicit factor of D6R4 (some of the diagrams only have
an explicit D4R̂4 factor in front of the loop integrals) the structure of the genus
3 amplitude derived in [16] guarantees that there is an expression of the three
loop result ith an explicit D6R4 in front the loop integrals, with loop integrals
obtained by putting the external legs on the diagram in figure 4(b). The resulting
four-point loop integrals must have a maximun of two powers of loop propagators
in the numerators to have the dimension [I

(D)
4;3 ] = (mass)15.

The construction of the gravitational F-terms by Berkovits in [16] guaran-
tees that up to six loops the four-graviton amplitude will start contributing from
D2LR4 in the low energy limit.

The construction of the higher loop amplitude in supergravity is a difficult
task essentially because one has to sum over all the permutations of the exter-



Non-renormalisation theorems in Superstring and Supergravity Theories 325

nal states and include both planar and non-planar contributions. It was found
in [58] that the L = 2 amplitude has an hidden modular symmetry inherited
from the symmetries of the string theory genus two moduli space. This symme-
try puts together the planar and non-planar contributions in a single an compact
expression [58, 73]. One wonder about the existence of some remnant of the
higher-genus string amplitude modular symmetries organising the field theory
contributions by putting together planar and non-planar contributions and facili-
tating the construction of the higher loop contributions.

5. Duality constraints

5.1. The M-theory conjecture

The eleven dimensional supergravity [59] has a Lagrangian of the form

S(11)
CJS =

1

2κ2
(11)

∫
d11x

√
−G

[
R(11) +

1

2
|G4|2 +

1

6
C3 ∧G4 ∧G4 + fermions

]
(5.1)

where R(11) is the Ricci scalar in eleven dimensions and G4 = dC3 the four
form-field strength. The coupling constant κ2

(11) = (2π)8 `9P .
This Lagrangian can be seen as a consequence of the κ-symmetry invariance

of the M2-brane [74] and has an on-shell superspace description in eleven dimen-
sions [32].

The M-theory conjecture states that this Lagrangian is the kinetic part of the
effective action a fundamental theory. The microscopic degrees of freedom of
M-theory are not known so far.

Even if the cancellations described in the previous section occur to all orders
the eleven dimensional supergravity will have ultraviolet divergences, and needs
to be regulated. We will regulate the theory by adding local counter-terms to the
eleven dimension supergravity effective action

δSCJS =
1

2κ2
(11)

∫
d11x

√
−G

∑
k

ck `
2(k−1)
P Rk + · · · (5.2)

where Ri represents an higher dimensional operators composed by powers of
Riemann tensors, or derivatives on the Riemann tensorDmRn with n+2m = k.
(There are of course counter-terms depending on the four-form field-strength but
they will not be discussed here.) The knowledge of the microscopic degrees
of freedom of M-theory and its symmetries would dictates the infinite series of
counter-terms to add to the theory for making it ultraviolet finite and determine
the values of the constants ck in eq. (5.2). This cutoff should be determined
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by the microscopic degree of freedom of M-theory and related to the tension
of the M2-brane TM2 ∼ 1/`3P or the M5-brane TM5 ∼ 1/`6P . The N = 8
supersymmetric cancellations of loop momenta in one-loop amplitudes assure
that the higher power of one-loop sub-divergences is given by Λ3. Therefore one
only expects in eleven dimensions primitive divergences of the type Λ3n. These
divergences are subtracted by the following infinite set of counter-term to the
M-theory action

SM−theory =
1

`9P

∫
d11x

R(11) +
∑
k≥0

ck `
6k+6
P R3k+4

 . (5.3)

The infinite set of coefficients is constraints by the duality symmetries of M-
theory, and have been determined up to order k = 2 in [57, 58, 73, 75]

SM−theory =
1

`9P

∫
d11x

[
R(11) + 4ζ(2)R4 + 2ζ(4)D6R4

+
196

142
ζ(6)D12R4 + · · ·

] (5.4)

For instance the first non-zero correction, the `6P R4 term in (5.2) can be seen
as originating from membrane effects [56,76–80] induced for instance by world-
sheet higher-loop effects on the world-volume of the M2-brane. It would be
interesting to test if the pattern of the higher-derivative corrections appearing
in δS determined in the references [57, 58, 73] and reviewed in the section 6
and 7 can be reproduced from the infinite dimensional group of symmetries of
M-theory considered in [81–83].

In the following we will use a renormalisation scheme for regulating the loop
amplitudes by matching the result to perturbative string data5 which will allow
us to derive a set of counter-terms to the effective action.

Taking this theory on a circle of radius6 R11 `P the theory is identified with
type IIa string theory if the masses are measured with the following metric [5,84]

GMN

`2P
dxMdxN =

1

R 11

gAµν
`2s

dxµdxν +R2
11(dx11 − Cµdxµ)2 (5.5)

where M = 0, . . . , 10, µ = 0, . . . , 9, gAµν is the type IIa sigma model metric, and
Cµ is the 1-form RR-potential carrying the D0-brane charge. The radius R11 is

5Considering this theory on a circle of finite value of R11 the S-matrix S(R11, `P ) can be ex-
panded in powers of R11 (there are as well exp(−1/R11) effects which are D-branes which will be
commented on below) which will be matched with corresponding quantities from string perturbation.

6We always take the radii as dimensionless quantities.
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related to the string coupling constant by the relation

R3
11 = (gAs )2 (5.6)

which together with the following relation between the eleven dimensional Planck
length and the string scale

`P = (gAs )
1
3 `s, (5.7)

gives the dictionary between M-theory variables and string variables. These re-
lations relate the strong coupling limit gs → ∞ of type IIa string to the eleven
dimensional theory R11 →∞.

Plugging these relations into eq. (5.1) the Einstein-Hilbert term transform into
[5]

S(IIa) =
1

2κ2
(10)

∫
d10x

√
−gA 1

(gAs )2
[R(10) + · · · ] (5.8)

the Einstein-Hilbert term in ten dimensions in the string frame, and the ellipsis
are for the various non-gravitational contributions arising from the reduction of
the action (5.1) leading to the type IIa supergravity action in ten dimensions. We
have 2κ2

(10) = (2π)7 α′4.
Because of the specific dependence on R11 in the metric (5.5) the massless

supergraviton multiplet in eleven dimensions gives the ten dimensional super-
graviton multiplets as well as Ramond 1-form carrying D0-brane charges.

The type IIb theory in ten dimensions can be obtained as well by considering
the M-theory on a torus of vanishing volume V → 0 and fixed complex structure
Ω [85, 86]. The complex structure Ω = Ω1 + iΩ2 with Ω2 = R10/R11 becomes
the complexified coupling constant of the type IIb superstring τ = C(0) + i/gBs
where C(0) is the RR 0-form potential which couples to D-instantons. For exter-
nal states without momenta in the internal directions the resulting amplitude will
be invariant under the Sl(2,Z) symmetry inherited by large diffeomorphism of
the compactification torus. This (geometric) symmetry becomes in the type IIb
limit the non-perturbative S-duality symmetry of the theory.

Under this reduction the higher derivative corrections in eq. (5.2) to the effec-
tive action in eleven dimensions transforms as

`2k−2
P

2κ2
(11)

∫
d11x
√
−GckRk →

`2k−2
s

2κ2
(10)

∫
d10x

√
−gA ck (gAs )

2(k−4)
3 Rk

(5.9)
giving contributions to be interpreted as string perturbative contributions to the
type IIa string effective action only if [87]

k = 4 + 3m with m ≥ 0 . (5.10)
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When the condition (5.10) is not satisfied the coefficient ck is set to zero and
give is the same condition as in (5.3). And when this condition is satisfied an
higher derivative correction to the classical action of M-theory is expected. The
precise value for this coefficient will be determined by matching the value of the
perturbative string genus m+ 1 contribution for this operator.

The contributions in eq. (5.2) will contribute to higher-loop amplitude compu-
tations as counter-term to the ultraviolet divergences of the graviton amplitudes.

For instance theR4 term

δ(4)S =
1

2κ2
(11)

∫
d11x
√
−Gc4

κ2
(11)

`3P
R4 (5.11)

will be a one-loop L = 1 counter-term for the Λ3 ∼ 1/`3P divergence in the
four-graviton amplitude. The contributions that do not match the condition in
eq. (5.10) have a zero coefficient ck = 0 which means that a primitive ultraviolet
divergence of higher-loops amplitudes in eleven dimensions is subtracted with a
zero remainder. One interesting case that occurs in the dimension 20 operators
D12R4.7 Its contribution to the effective action of M-theory can be understood as
a counter-term to the logarithmic divergence of the two-loop L = 2 four-graviton
amplitude in eleven dimensions

δ(10)S =
1

2κ2
(11)

∫
d11x
√
−Gc10 κ

4
(11)D

12R4 , (5.12)

which is the counter-term to a superficial Λ9 ∼ 1/`9P divergence of the three-loop
L = 3 four-graviton amplitude in eleven dimensions

δ(10)S =
1

2κ2
(11)

∫
d11x
√
−Gc10

κ6
(11)

`9P
D12R4 . (5.13)

Both of these points of view will be discussed in the section 7.

5.2. An all order argument for βL = L

The general structure of an L-loop amplitude in eleven dimensions is

M4;L =
∑
i

D2niR̂4 I
(11)
4;L(i) , (5.14)

7On-shell there are two types of couplings [72, 73] given by (S2 + T 2 + U2)3R4 and (S3 +
T 3+U3)2R4. Each coupling receives distinct contribution in string theory at tree-level order (A. 6)
and at loop order (A. 12).
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where I(11)
4;L(i) is a Feynman loop integral (not necessarily of scalar type forL ≥ 3)

so that the low-energy expansion is given by

M4;L ∼ D2βLR̂4 Λ9L−6−2βL + · · · , (5.15)

where the ellipsis are for sub-leading ultraviolet divergences. After compact-
ification on a circle of radius R11 `P , there are Kaluza–Klein states of mass
n2/(R11 `P )2 running in the loops, and the low-energy expansion of the loop
amplitude becomes [33]

M4;L ∼
∑
n≥0

9L−6−2βL∑
ν=0

Λ9L−6−2βL−ν(R11`P )−ν (R11 `PD)2nD2βLR̂4 + · · ·

(5.16)
converting this expression to the string frame using the metric of eq. (5.5) and the
relation R3

11 = (gAs )2 we get that the amplitude contributes in ten dimensions to

M
(11→10)
4;L ∼

∑
n≥0

9L−6−2βL∑
ν=0

(Λ`P )9L−6−2βL−ν (gAs )2(h−1)D2(βL+n)R4 + · · ·

(5.17)
with

h = n+
βL − ν

3
. (5.18)

The quantity h is the highest genus order at which the higher derivative contribu-
tion D2(βL+n)R4 can occur in string perturbation in ten dimensions.

Since ν ≥ 0 we have that h ≤ n + βL/3 ≤ n + βL. We have seen in
section 4 that the four-graviton one-loop amplitude has β1 = 0 and that βL ≥ 2
for L ≥ 2, therefore only the Kaluza–Klein contributions from the L = 1 loop
contribution gives the maximal genus contribution h = k for the operatorD2kR4

which implies that the low-energy limit of the supergravity and string theory
amplitudes statisfy the rule8

βL = L . (5.19)

This argument indicates that the operator D2kR4 to string effective action in
ten dimensions receives a perturbative contributions until genus k.

8Infra-red singularities could reduce the derivative order to which the amplitude contributes in the
low-energy limit. We are assuming that no infra-red singularities are encountered when taking the
low-energy limit of the loop amplitude. The issue of infra-red singularities in the low-energy of the
amplitude does not arise in ten dimensions but could be a problem for the compactified cases [11].
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The same argument implies that the operators D2kR4 r−2n
A to the type IIa

string effective action in nine dimensions receives perturbative contributions until
genus k + n.

We will see in the next section how the duality symmetries of M-theory relate
the higher-order Kaluza–Klein contributions of the L = 1 loop amplitude to the
contributions from higher-loop orders.

6. The contributions from the one-loop amplitude

We consider the reduction on a d dimensional torus Td of the four-gravitonL = 1
loop amplitude M1;4 given in eq. (4.8). The result is given by the sum of the
scalar integrals for each channels in eq. (4.10)

I
(11−d)
4 (S, T ) =

π
11−d

2

`dP V

∫ ∞
Λ−2

dt

t
t
d−3
2

∫
TST

4∏
r=1

dνr
∑
{m}∈Zd

e−π tG
IJmImJ+π tQ4 .

(6.1)
The masses of the Kaluza–Klein state running in the loop is denoted GIJmImJ

and the volume of the torus is `dP Vd. This expression contains a non-analytic
contribution from the massless supergravity states in dimensions 11 − d, and
analytic terms. The non-analytic part is the usual field theory contribution from
the massless states given by

I
(11−d)
4,nonana(S, T ) ∼

∫ 1

0

3∏
r=1

dνr (Q4)
d−3
2 . (6.2)

For d = 0 this is the eleven dimensional supergravity contribution M4;1 ∼
(−S)3/2, for d = 1 this is the ten dimension supergravity contribution M (10)

4;1 ∼
S log(−S) of eq. (A. 13), and for d = 2 this is the nine dimensional contribu-
tion M (9)

4;1 ∼ (−S)−1/2 (see [33, 57, 58] for a detailed discussion on the relation
between these various contributions by considering the decompactification limits
d = 2→ d = 1 and d = 1→ d = 0).

The expression for I(11−d)
4 has the same leading ultraviolet divergence Λ3 as

the parent integral M4;1, with Λ an ultraviolet cut-off measured in eleven dimen-
sional Planck units. The ultraviolet divergences arise from the momentum inde-
pendent part for small values of the proper time t = Λ−2 ∼ 0, and correspond to
a local ultraviolet divergence in eleven dimensions.
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In order to isolate the divergences one must perform a Poisson resummation
over the Kaluza–Klein modes mI to get [57, 58]

I(11−d)
o (S, T ) = π

11−d
2

∫ Λ2

0

dt̂ t̂
1
2

∑
{m̂}∈Zd

e−πt̂GIJm̂
Im̂J

= Λ3 +
1

V3

∑
{m̂}∈Zd

{m̂}6=(0,··· ,0)

1

(m̂I ĜIJ m̂J)
3
2

,
(6.3)

where GIJ = V ĜIJ is the metric of the d-torus and det ĜIJ = 1. The ultravi-
olet divergence is now localised in the zero winding sector m̂I = 0. The finite
part is the contribution from the non zero winding modes given by

Es(GIJ) ≡
∑
{m̂}∈Zd

{m̂}6=(0,··· ,0)

1

(m̂I ĜIJ m̂J)s
. (6.4)

This expression is invariant under the large diffeomorphism Sl(d,Z) of the d
dimensional torus. The higher order terms in the external momenta expansion
gives

Ĩ
(11−d)
4 (S, T ) = 2π7−d−n (`dPV)n+ d−5

2
GnST
n!

Γ

(
d− 3

2
+ n

)
E d−3

2 +n(ĜIJ)

(6.5)
where

GnST ≡
∫
TST

4∏
i=1

dνi (Q4)n . (6.6)

The superficial divergence of the one-loop amplitude is subtracted by adding
to the eleven dimensional action the local counter-term of equation (5.11) which
contributes to the one-loop amplitude by the following contribution

δ1M
(11)
4;1 = c4

κ4
(11)

(2π)11

π3

2
`3P R̂

4 . (6.7)

We now determine the value of c4 by matching the total one-loop amplitude with
corresponding string theory expressions reviewed in section Appendix A.

6.1. The circle compactification

For the case of a circle compactification T1 = S1 of radius R11 one gets [57,58]

M4;1 + δ1M4;1 =
κ4

(11)

`3P
R̂4 [(Λ `P )3 + c4 +

2ζ3
R3

11

] + · · · (6.8)
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where the ellipsis are for higher derivative contributions discussed in eq. (6.13)
and eq. (6.15) that are independent of the cut-off. Using the dictionary in eq. (5.5)
the amplitude translates into the ten dimensional expression

M4;1 + δ1M4;1 ∼ κ2
(10) R̂

4 [(`PΛ)3 + c4 +
2ζ3

(gAs )2
] + · · · (6.9)

where we recognise tree-level and one-loop string contributions. Comparing with
the value of the R̂4 contribution at genus-one in string theory in eq. (A. 12) we
deduce that

(`PΛ)3 + c4 =
2π2

3
. (6.10)

Another equivalent way of formulating the same regularisation scheme is to use
the T-duality properties of the perturbative string amplitudes, which we discuss
now.

6.2. The torus compactification

The T2 torus compactification of the one-loop four-point amplitude M1;4 gives
the following perturbative contributions [57, 58]

M4;1 + δ1M4;1 ∼ κ2
(10) R̂

4

[
1

rA

(
(`P Λ)3 + c4

)
+ rA

(
2ζ3

(gAs )2
+ 4ζ2

)
+ ·
]
,

(6.11)
where we used that rA = R10

√
R11. The T-duality invariance of the four-

graviton amplitude at tree-level and genus-one in string theory requires that the
above expression is invariant under the transformation rB → rA = 1/rB . Al-
though the tree-level contribution is invariant thanks to the transformation rules
of the ten dimensional dilaton or as consequence of the M-theory dictionary given
in eq. (5.5)

rA
(gAs )2

=
R10

√
R11

R3
11

=

(
R10

R11

)2
1

R10

√
R11

=
rB

(gBs )2
, (6.12)

the one-loop contribution is invariant only if the condition (6.10) is satisfied.

The rest of the higher order derivative contributions to string genus-one am-
plitude in (6.9) give ultraviolet finite contributions which read in the type IIa
frame

M4;1 + δ1M4;1 ∼ · · ·+κ2
(10) 8π

3
2

∞∑
n=2

Γ(n− 1
2 )ζ2n−1

n!
r2n−1
A (`sD2nR̂4) + · · · ,

(6.13)
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and in the type IIb frame

M4;1+δ1M4;1 ∼ · · ·+κ2
(10) 8π

3
2

∞∑
n=2

Γ(n− 1
2 )ζ2n−1

n!
r−2n+1
B (`sD2nR̂4)+· · · ,

(6.14)
where D2n = GnST + GnTU + GnSU . The ellipsis represent the contributions given
in eq. (6.9) and in eq. (6.15). These expressions match the corresponding contri-
butions to the derivative expansion of the genus-one amplitude compactified to
nine dimensions on a circle of radius rA or rB derived in [72], but they are not in-
variant under the T-duality symmetry rA → rB = 1/rA. We will see below that
the missing contributions are provided by the higher loop L ≥ 2 contributions in
eleven dimensions.

Finally the last piece from L = 1 amplitude are the higher-derivative contri-
butions that give higher string genus contributions in the type IIa frame

M4;1+δ1M4;1 ∼ · · ·+κ2
(10) 8π2 rA

∞∑
n=2

Γ(n− 1)ζ2n−2

n!
(gAs )2n−2 (`sD2nR̂4) ,

(6.15)
and in the type IIb frame

M4;1 + δ1M4;1 ∼ · · ·+ κ2
(10) 8π2

∞∑
n=2

Γ(n− 1)ζ2n−2

n!

(gBs )2n−2

r2n+1
B

(`sD2nR̂4) .

(6.16)
These contributions are genus n contributions to the operator D2nR4, satisfying
the relation βn = n derived in section 5.2. The value of the coefficient for the
D4R̂4 term matches the genus two contributions derived from string theory in
eq. (A. 17) [58, 88].

We will return to these contributions in section 8 when we will discuss non
renormalisation theorems in string theory and supergravity.

6.3. The three-torus compactification

Taking the amplitude on a three-torus T3 one gets for the R̂4 term in the type IIa
variables

M4;1 + δ1M4;1 ∼ κ2
(10)

(
[(`PΛ)3 + c1]U2 + E 3

2
(ĜIJ)

)
R̂4 (6.17)

where E3/2(Ĝ) is the Sl(3,Z) modular form defined in eq. (6.4), which has the
perturbative expansion [89, 90]

E 3
2
(Ĝ) = 2ζ3

T2

(gAs )2
− π log(T2|η(T )|2)− 4π

3
log(T 2

2 /g
A
s ) + n.p. (6.18)
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where the first term corresponds to the tree-level contribution for the type IIa
string on two torus of volume T2, the second term gives the contributions from
the wrapped F-string on the two torus and contains the genus-one perturbative
contributions, the third term is a logarithmic term expressed in terms of the the
eight dimensional dilaton exp(−2φ(8)) = T2 exp(−2φ(10)). This contribution
arises from the massless threshold R̂4 log(s) in eight dimensions after perform-
ing a Weyl rescaling to get to the Einstein frame. The non perturbative effects are
the D-instanton effects and the (p, q)-string wrapped around the two-torus.

The Sl(3,Z) invariance of the coupling, inherited from the large diffeomor-
phism of the torus, is part of the eight dimensional U-duality group Sl(3,Z) ×
Sl(2,Z)U whereU is the complex structure of the two torus on which the type IIa
string is compactified. As for the case of the compactification to nine dimensions
the string perturbative answer has to be invariant under the T-duality sub-group
Sl(2,Z)T × Sl(2,Z)U , and symmetric under the exchange between T and U .
The perturbative part of eq. (6.17) is invariant only if the condition (6.10) is satis-
fied and the dependence on the complex structure U is given by log(U2|η(U)|2).
These requirements allow the determination of the U-duality invariant coupling
uniquely and reproduce the result given by [89]∫

d9x
√
−g(8)

(
E 3

2
(M)− π log(U2|η(U)|2)

)
R̂4 , (6.19)

with the Sl(3,Z) modular forms defined by

Es(M) =
∑

(m1,m2,m3) 6=(0,0,0)

ν
− s

3
8(

|m1+m2Ω+m3B|2
Ω2

+
m2

3

ν8

)s (6.20)

where 1/
√
ν8 = V 2/`2P = g

−1/2
S T2 is the dimensionless compactification vol-

ume measured in Planck length unit, and B = BR + ΩBNS is the combinaison
of the RR and NS B-field. The dependence on the B-field is needed in order to
consider wrapped M2-branes along the internal directions which are not included
in the construction from the multiloop amplitude we have described. The total
eight dimensional coupling

E(8d)
(0,0) = E 3

2
(M)− 2π log(U2|η(U)|2) (6.21)

is a zero mode of the SO(3)\Sl(3,Z) × SO(2)\Sl(2,Z) Laplacian associated
with the U-duality group in eight dimensions [89]

∆Sl(3)×Sl(2) E
(8d)
(0,0) = 8π . (6.22)
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The D4R̂4 contribution from eq. (6.5) gives the coupling [90]

(T2 (gAs )2)
1
3 E2(Ĝ−1)D4R̂4 ∼

[
ζ4 (gAs )2 + 90π T2E2(U) + n.p.

]
R̂4 (6.23)

where Es(U) are the usual Sl(2,Z) Eisenstein series depending on the complex
structure of the torus on which type IIa string is compactified. We recognise
the genus two contributions given in eq. (6.15) and the genus-one contribution
depending on the moduli T and U of the torus on which type IIa string is com-
pactified. This expression fails to be invariant under T-duality but this symmetry
will be recovered once the L = 2 contribution has been added.

7. The contributions from the two-loop amplitude

In this section we describe the contributions from the L = 2 amplitude compact-
ified on a circle and on a torus. The analysis of the two loop amplitude brings
new technical difficulties which we will not comment on and refer to the pa-
pers [58, 73, 75] for details. We only describe its consequences on the M-theory
and string theory low energy effective action.

• The D4R̂4 term is the leading contribution to the low-energy limit of the L =
2 amplitude of eq. (4.15).
Taking the two-loop amplitude on a circle of radius R11 `P one gets at this order

I1 ∼
(

(`PΛ)8 + c2;0 + π5ζ5 [(`PΛ)3 + c4]
1

R5
11

)
D4R̂4 . (7.1)

We have included the contribution from the new counter-term c2;0 of eq. (4.21)
needed to regulate the new primitive divergence at this order, and the contribu-
tions from the triangle diagram with the one-loop counter-term of figure 3(c).
Converted into string variables using the relation between the M-theory parame-
ters and the string variables given in eq. (5.5) one gets

I1 ∼
(

[(Λ `P )8 + c2;0] (gAs )
10
3 + π5ζ5 [(Λ `P )3 + c4]

1

(gAs )2

)
D4R̂4 . (7.2)

The first term does not have any meaning in string perturbation theory, therefore
the leading divergence has to be subtracted with no finite remainder

(Λ `P )8 + c2;0 = 0 . (7.3)

The second term is a string three loop contribution, which contribution which is
determined by the regulated one-loop divergence in eq. (6.10) giving the correct
value of the tree-level contribution to the D4R̂4 term [58].
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Taking the amplitude on a torus one gets

I1 ∼

(
[(Λ `P )8 + c2;0] +

π5

2
[(Λ, `P )3 + c4]

E 5
2
(Ω)

V 5
2

+
2π4ζ3ζ4
V4

)
D4R̂4 .

(7.4)
The second term in this expression decompactifies to a finiteE5/2(Ω)D4R̂4 con-
tribution to the ten dimensional type IIb limit V → 0 with Ω kept constant. The
last term in this expression gives a genus 1 contribution to the effective action of
type II string in nine dimensions. This contribution together with theD4R̂4 from
the L = 1 amplitude in eq. (6.13) gives the complete contribution to the string
genus-one amplitude at this order [71, 72]

δI1 ∼
ζ3
15

(r3
A +

1

r3
A

)D4R̂4 . (7.5)

One notices that the L = 2 contribution provided by the genus-one 1/r3
AD4R̂4

missing in eq. (6.13) for the T-duality symmetry rA → rB = 1/rA of the nine
dimensional contribution to the low energy expansion of the genus-one string
amplitude on a circle.
This is the manifestation of a generic phenomena where the compactification of
the higher-loop four-graviton amplitudes will gives genus one contributions to
the higher-derivative operators D2kR̂4 completing the expression in eq. (6.13) in
a T-duality invariant expression.

The complete D4 R̂4 in type IIb variables is given in the Einstein frame by [73]∫
d9x

√
−g(9) E(9d)

(1,0)D
4 R̂4 . (7.6)

with

E(9d)
(1,0) = ν

− 3
7

9 E 3
2
(Ω) +

2π2

3
ν

4
7
9 , (7.7)

where ν1/2
9 = rB/g

1/4
s is the radius of the circle measures Planck length unit.

This coupling satisfies the differential equation [73]

[∆Ω +
7

4
ν9(∂ν9ν9∂ν9) +

1

2
ν9∂ν9 ] E(9d)

(1,0) =
30

7
E(9d)

(1,0) . (7.8)

Considering the amplitude on T3 we obtain

E 5
2
(G) = 2

(
T2

(gAs )2

) 5
3

ζ5 +
4

3

(
(gAs )2

T2

) 1
3

E2(T )
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which added to the L = 1 contribution in eq. (6.18) gives an expression invariant
under the exchange of T and U moduli. The complete U-duality Sl(3,Z) ×
Sl(2,Z) invariant expression has been derived in [90] with the result in the string
frame being∫

d8x
√
−g(8) g

− 4
3

s T
− 2

3
2

(
E 5

2
(M)− 8E− 1

2
(M)E2(U)

)
D4R4 . (7.9)

where Es(M) are the Sl(3,Z) modular forms defined in eq. (6.20). The total
eight dimensional coupling

E(8d)
(1,0) = E 5

2
(M)− 8E− 1

2
(M)E2(U) , (7.10)

is an eigenfunction of the Sl(3,Z)× Sl(2,Z) Laplacian [73]

∆Sl(3)×Sl(2) E
(8d)
(1,0) =

10

3
E(8d)

(1,0) . (7.11)

• Expanding the L = 2 loop to the next order, we obtain for the D6R̂4 term on
a circle [73, 75]

I2 ∼
(

[(Λ `P )6 + c2;1] + [(Λ `P )3 + c2;1]
πζ3

3R3
11

+
ζ2
3

2R6
11

)
D6R̂4 . (7.12)

Converted to string variables and using the relation (6.10) we have

I2 ∼
(

[(Λ `P )6 + c2;1] (gAs )2 + ζ2ζ3 +
ζ2
3

2(gAs )2

)
D6R̂4 . (7.13)

where we recognise a genus two, genus-one and tree-level string contribution.
In order to determine the precise value for the new counter-term c2;1 one would
need to know the value of the genus 2 contribution to the D6R̂4 in ten dimen-
sions. Since this value is not known it will be determined later using the duality
relations. The finite remainder after subtracting the divergence will provide a
new corrections to the M-theory effective action of eq. (5.2) in agreement with
the considerations of section 5.2 and the reference [87].

Taking the amplitude on a torus one gets [73, 75]

I2 ∼

(
[(Λ `P )6 + c2;1] + [(Λ `P )3 + c2;1]

E 3
2
(Ω)

V 3
2

+
E( 3

2 ,
3
2 )(Ω)

V3

)
D6R̂4 .

(7.14)
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The contribution to the D6R̂4 to the ten dimensional effective action for the
type IIb string E(3/2,3/2) has been determined in [75] and has the following weak-
coupling expansion

E( 3
2 ,

3
2 )(Ω) = 4ζ2

3Ω3
2 + 8ζ2ζ3 Ω2 +

48

5
ζ2
2Ω−1

2 +
8

9
ζ6Ω−3

2 +O(e−2πΩ2) . (7.15)

Converting eq. (7.14) into type IIa string variables and using the relation (6.10)
we have

I2 ∼
(
4ζ2

3

rA
(gAs )2

+ 8ζ2ζ3 (rA +
1

rA
)

+ 16ζ2
2

(gAs )2

rA
+ [(Λ `P )6 + c2;1] rA (gAs )2 +

48

5
ζ2
2

(gAs )2

r3
A

+
8

9
ζ6

(gAs )4

r5
A

)
D6R̂4 .

(7.16)

The first line gives the string tree-level and the genus-one contributions in nine
dimensions to D6R̂4 couplings. The value of these couplings match the results
extracted from string perturbation theory (see the appendix Appendix A and [71,
72]). Again we stress the fact that the genus-one contribution is invariant under
the T-duality transformation rA → rB = 1/rA thanks to the relation in eq. (6.10)
determining the one-loop counter-term.
The second line of this expression gives string genus two contributions. Counting
the number of fermionic zero modes involved in the gravity amplitude, the genus
two type IIa and type IIb string contributions are the same at theD6R̂4 order9 and
the second line in eq. (7.16) should be invariant under the T-duality symmetry
rA → rB = 1/rA. The first term in this expression is invariant thanks to the
transformation rules of the eight-dimensional dilaton in eq. (6.12). The second
and the third terms are exchanged only if

(Λ `P )6 + c2;1 =
48

5
ζ2
2 , (7.17)

which determines the value of the D6R̂4 in the M-theory effective action (5.2).
The third line in eq. (7.16) is a genus three contribution. This expression is
invariant under T-duality once summed with the three loop contribution from the

9In the RNS formalism, the chirality dependence of the gravity amplitudes enters from the
odd/odd spin structure contributions. Because string perturbations has 2(g − 1) odd moduli at
genus g, the four-graviton amplitude in type II superstring can get contributions from the odd/odd
spin structure sector from genus three. Using the non-minimal pure spinor formalism Berkovits
showed that the chirality dependences arises from genus five [16].
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(b)

Λ
3

Λ
3

(a)

Fig. 5. Sub-divergences of the L = 3 amplitude constructed from figure 4(b). Diagram (a) and (b)
contribute to a Λ3/V6D6 R̂4. The arrow indicates the quadratic dependence on the loop momenta
in the numerator of the expression for the two-loop integrals.

L = 1 contribution in eq. (6.15) to give

8

9
ζ6

(
rA +

1

r5
A

)
(gAs )4D6R̂4 . (7.18)

The L = 3 three-loop supergravity amplitude in eleven dimensions will con-
tribute to the D6R̂4 coupling only from the class of diagrams constructed from
the vacuum diagram given in figure 4(b) because the diagrams obtained from fig-
ure 4(a) all have a prefactor of D8 R̂4 [29]. This amplitude satisfies the β3 = 3
rule and has mass dimension

[M4,3] ∼ (mass)15D6R̂4 . (7.19)

The sub-divergence in figure 5(a,b) can respectively contribute to a term of the
type

Λ3

V6
D6 R̂4 , (7.20)

contributing to a genus-one term completing the genus-one term r5
Aζ5D6R̂4

from the L = 1 amplitude given in eq. (6.13) into a T-duality invariant expression

ζ(5)

(
r5
A +

1

r5
A

)
D6R̂4 . (7.21)

This amplitude can only contribute to the ten dimensional type IIb effective action
from a contribution of the type [73]

I3 ∼
Λ9

V3
f(Ω) , (7.22)

but a simple dimensional analysis on the various diagrams entering the L = 3
amplitude shows that no such contributions can be found in the solution given
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in [29] and the coupling to the ten dimensional type IIb effective action given by
the eq. (7.15) is not renormalised.

The complete D6 R̂4 coupling in nine dimensions in the Einstein frame is
given by [73] ∫

d9x
√
−g(9) E(9d)

(0,1)D
6 R̂4 , (7.23)

with

E(9d)
(0,1) = ν

− 6
7

9 E(0,1) + 4ζ(2) ν
1
7
9 E 3

2
+

12ζ(2)

63
ν

15
7

9 E 5
2

+
24ζ(2)ζ(5)

63
ν
− 20

7
9 +

48ζ(2)2

5
ν

8
7
9 .

(7.24)

satisfying the Laplace equation

[∆Ω +
7

4
ν9(∂ν9ν9∂ν9) +

1

2
ν9∂ν9 ] E(9d)

(0,1) = 12 E(9d)
(0,1) − 6

(
E(9d)

(0,0)

)2

, (7.25)

where E(9d)
(0,0) is the nine dimensional R̂4 coupling

E(9d)
(0,0) = ν

− 3
7

9 E 3
2
(Ω) + 4ζ2 ν

4
7
9 . (7.26)

The D6 R̂4 coupling in eight dimensions is given in the string frame [91]∫
d8x

√
−g(8)

g2
s

T2
E(8d)

(0,1)D
6 R̂4 (7.27)

with

E(8d)
(0,1) = E( 3

2 ,
3
2 )(M)+

20

3
E− 3

2
(M)E3(U)+

1

2
E 3

2
(M)E1(U)+f(U, Ū) (7.28)

where the Sl(3,Z) modular forms E(3/2,3/2)(M) is defined by

∆Sl(3) E( 3
2 ,

3
2 )(M) = 12 E( 3

2 ,
3
2 )(M)− 3

2
E2

3
2
(M) . (7.29)

and the function f(U, Ū) is defined by the differential equation with a source
term [91]

∆Uf(U, Ū) = 12 f(U, Ū)− 6E2
1(U) . (7.30)

The total eight dimensional coupling satisfies the Laplace equation with for source
term the R̂4 the eight dimensional coupling given in eq. (6.21)

∆Sl(3)×Sl(2) E
(8d)
(0,1) = 12 E(8d)

(0,1) +
3

2

(
E(8d)

(0,0)

)2

. (7.31)
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8. Non-renormalisation theorems

We have described the structure of gravity amplitudes in supergravity and super-
string theory, and in particular formulated various constraints that these ampli-
tudes should satisfy in maximal supergravity.

For the case of maximal supergravity theories with N = 8 supersymmetry
one expects that the low-energy limit of an L-loop four-graviton amplitude will
start contributing from D2LR4, summarised by the rule βL = L. In section 4.4
we gave an argument based on supersymmetry for the validity of this rule up-to
L = 6 and in section 5.2 we gave a argument based on dimensional analysis and
the duality relations of M-theory for an all order confirmation of this rule.

When one applies the rule βL = L one deduces important non renormalisa-
tion theorems that the couplings to the low-energy effective action of superstring
theories have to satisfy. At the level of amplitude computations in supergravity
such conditions imply that the ratio of the four-graviton L-loop amplitude to the
tree-amplitude would behave as[

M4;L

M4;tree

]
= D2L stu (mass)(D−4)L−6 , (8.1)

indicating that in four dimensions, the L-loop amplitude would have to be the
sum of an L-loop dimensionless Feynman integral times a power of the external
momenta D2L increasing with the loop order. Up to genus three it has been
shown that the polarisation dependence of the four-graviton amplitude is the same
as the tree amplitude [1, 6, 36, 37, 92] and that the structure of the amplitude has
the above mentioned structure.

The conjectured S-duality invariance of the type IIb effective action implies
that the higher-derivative terms of the type D2k R̂4 must have coefficients that
are modular functions fk(Ω) under the action of Sl(2,Z) on the complexified
coupling constant Ω = C(0) + i/gs where C(0) is the Ramond-Ramond 0-form
potential. This conjecture can hold only if the polarisation dependence of the
four-graviton amplitude at all orders in the genus expansion is the same.

The non renormalisation conditions for the R4 couplings to the ten dimen-
sional type IIa and IIb effective action [57, 93] beyond one-loop is guaranteed
by the fact that higher-loop amplitudes in N = 8 supergravity have βL ≥ 2 for
L ≥ 2.

The exactness of the type IIbE5/2(Ω)D4R4 coupling extracted from the two-
loop amplitude in eleven dimensions in [58] (see section 7 of this text as well)
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is assured by the fact that the rule βL ≥ 3 for L ≥ 3 is satisfied by the four-
graviton amplitudes in N = 8 supergravity [29] and the higher genus (F-terms)
computation by Berkovits in [16].10

The dimensional analysis argument of section 5.2 implies that the higher-
derivative operatorsD2kR4 do not receive perturbative corrections beyond genus
k in string perturbation theory. This fact has been confirmed up to k ≤ 5
for the analysis of superstring amplitudes in [16] and supergravity computation
in [33, 73].

One important consequence of the structure of the L = 1 and the L = 2 loop
amplitudes and the relation between the eleven dimensional M-theory and string
theory is that the higher-order couplings satisfy some differential equations.

The R4 and D4R4 couplings to the ten dimensional type IIb effective action
in ten dimensions satisfy the differential equation

∆ f 3
2 +p(Ω) =

(3 + 2p)(1 + 2p)

4
f 3

2 +p(Ω) (8.2)

where ∆ = 4Ω2
2∂Ω∂̄Ω̄ is the Sl(2,Z) laplacian and with respectively p = 0 and

p = 1 as a trivial consequence of the structure11 of the L = 1 [57] and the L = 2
loop amplitudes [58, 73]. This equation together with the boundary condition

lim
Ω2→∞

Ω
1
2−p
2 f 3

2 +p(Ω) = Cste (8.3)

with the constant given by the expansion of the tree-level amplitude given in
eq. (A. 6), determine uniquely the couplings.

At higher-order in the derivative expansion the supersymmetry constraints on
the couplings will change their structure with the appearance of source terms
[75]. The D6R4 coupling to the type IIb effective action in ten dimensions satis-
fies the equation

∆ f3(Ω) = 12 f3(Ω)− 6E 3
2
(Ω)2 (8.4)

with the boundary condition

lim
Ω2→∞

Ω−1
2 f3(Ω) = 4ζ2

3 , (8.5)

has a unique solution the function f3(Ω) = E(3/2,3/2)(Ω) found in [75] which
has the weak coupling expansion given in eq. (7.15). For compactification of

10The issue of infra-red singularities in the low-energy of the amplitude does not arise in ten di-
mensions but could be a problem for the compactified cases [11].

11These equations have been shown to be a consequence of the on-shell supersymmetry of the
type IIb supergravity in ten dimensions in [94, 95].
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string theory to lower dimensions these couplings satisfy equivalent differen-
tial equations for the Laplacian associated with the U-duality group. In eight
dimensions the U-duality group is Sl(3,Z) × Sl(2,Z) and the action of the
SO(3)\Sl(3) × SO(2)\Sl(2) Laplacian on the previous coupling is given by
[73, 89–91]

∆Sl(3)×Sl(2) E
(8d)
(p,0) =

(3 + 2p)2p

3
E(8d)

(p,0) (8.6)

for theR4 (p = 0) and the D4R4 (p = 1) and

∆Sl(3)×Sl(2) E
(8d)
(0,1) = 12 E(8d)

(0,1) −
3

2

(
E(8d)

(0,0)(M)
)2

, (8.7)

for the D6R̂4 term.
The structure of the differential equations for the R̂4 coupling in eq. (6.22),

for the D4 R̂4 in eqs. (7.8) and (7.11) and for the D6 R̂4 in eqs. (7.25) and (7.31)
have the same structure as the one for the ten dimensional type IIb theory. These
equations that are expected to be a consequence of N = 8 supersymmetry which
is preserved by the torus compactification we have considered.

The presence of the source term in (8.4) can be motivated from the structure
of the on-shell supersymmetry for the type IIb effective actions as follows. The
on-shell supersymmetry variations of the α′ corrections to the effective action of
the type IIb superstring

S = S(0) + α′
3
S(3) + α′

5
S(5) + α′

6
S(6) + · · · , (8.8)

requires the modification of the on-shell supersymmetry transformations [56] at
each order

δε = δ(0)
ε + α′

3
δ(3)
ε + α′

5
δ(5)
ε + α′

6
δ(6)
ε + · · · , (8.9)

according to the following pattern

δ(0)
ε S(0) = 0

δ(0)
ε S(3) = δ(3)

ε S(0)

δ(0)
ε S(5) = δ(5)

ε S(0)

δ(0)
ε S(6) + δ(3)

ε S(3) = δ(6)
ε S(0)

(8.10)

At the order α′6 for the first time, the lowest order modifications to the on-shell
supersymmetry transformations enter in the equations giving rise to the source
term in eq. (8.4). The structure of the differential equations at higher order is
expected to follow a similar pattern where coupling are given by a finite sum of
modular functions E(i)

s (Ω) =
∑ns

i=1 e
(i)
s (Ω) with each function e(i)

s (Ω) satisfy-
ing a differential equation with a source as in eq. (8.4) [73].
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Appendix A. The string S-matrix

In this appendix we collect various data from perturbative string calculations that
are needed for comparison with the predictions from the L = 1 and L = 2
amplitudes of eleven dimensional supergravity on a circle and a torus.

The unitary string theory S-matrix for four-graviton scattering has the follow-
ing perturbative expansion [1, 71, 72, 88]

S(σ̂2, σ̂3) = κ2
(10) g

4
s

(
1

g2
s

Atree(σ̂2, σ̂3) + 2πAg=1

+ +π g2
s A

g=2 + · · ·
)
,

(A. 1)

where Atree, Ag=1 and Ag=2 are respectively the tree-level, genus-one and genus
two amplitudes for four massless states (s+t+u = 0) described in the following
section.

Appendix A.1. The tree-amplitude

The tree-level amplitude is given by

Atree =
Γ(−α′s)Γ(−α′t)Γ(−α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R̂4 (A. 2)

where R̂4 defined in eq. (4.9).
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Separating the supergravity contribution from the effect of massive string
modes

Atree =

(
1

σ̂3
+ T

)
R̂4 (A. 3)

We introduce the symmetric polynomials of the Mandelstam variables

σ̂n ≡
(
α′

4

)n
(sn + tn + un) (A. 4)

= n
∑

2p+3q=n

(p+ q − 1)!

p!q!

(
σ̂2

2

)p (
σ̂3

3

)q
,

which for n ≥ 4 are all expressible as polynomials in σ̂2 and σ̂3 because of the
on-shell condition s+ t+ u = 0 [71]. The α′ expansion of the dynamical factor
T takes the form

T =

∞∑
p,q=0

T(p,q)σ̂
p
2 σ̂

q
3 , (A. 5)

so that [1, 71, 72]

T = 2ζ3 + ζ5 σ̂2 +
2

3
ζ2
3 σ̂3 +

1

2
ζ7 σ̂

2
2 +

2

3
ζ3ζ5 σ̂2σ̂3

+
1

4
ζ9 σ̂

3
2 +

2

27

(
2ζ3

3 + ζ9
)
σ̂2

3 + · · · .
(A. 6)

One remark here is that this expansion satisfies a transcendentality principle by
giving a weight n to the Riemann zeta value ζn, the tree-level coefficient of the
operator of order α′n+3D2nR̂4 is given by a polynomials in the odd zeta value
of total weight n+ 3.

Appendix A.2. The genus-one amplitude

The genus-one amplitude is given by

Ag=1 = R̂4

∫
F(1)

d2τ

τ2
2

∫
T(1)

3∏
i=1

d2ν(i)

τ2
eD(1) (A. 7)

where the integrations are performed over the domains

F(1) = {|τ1| ≤ 1/2, |τ |2 ≥ 1} (A. 8)

T(1) = {−1

2
≤ ν1 <

1

2
, 0 ≤ ν2 < τ2}
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and

D(1) =
α′

2

∑
1≤i<j≤4

ki · kj P(1)(ν
(ij)|τ) , (A. 9)

where P(1)(ν
(ij)|τ) is the two dimensional propagator which can be written as

[71]

P(1)(ν|τ) =
1

4π

∑
(m,n)6=(0,0)

τ2
|mτ + n|2

exp

[
2πi

τ2
=m((mτ + n)ν̄)

]
+ C(τ, τ̄) .

(A. 10)
The piece C(τ, τ̄) cancels out of the Sl(2,Z)-invariant combination in (A. 9) due
to the on-shell condition s+ t+ u = 0.

The low-energy expansion ofAg=1 is complicated by the presence of massless
thresholds giving rise to non-analytic contributions. Separating the analytic and
the non-analytic pieces as

Ag=1 = (Ag=1
ana +Ag=1

nonana) R̂
4 , (A. 11)

one finds for the analytic contributions [71, 72]

Ag=1
ana (σ̂2, σ̂3) =

2ζ2
π

(
1 +

ζ3
3
σ̂3 + 0 σ̂2

2 +
97

7776
ζ5 σ̂2σ̂3

+
1

30
ζ2
3 σ̂

3
2 +

61

10801
ζ2
3 σ̂

2
3 + · · ·

) (A. 12)

The non-analytic contributions take the following form (see [71, 72] for details)

Ag=1
nonana(σ̂2, σ̂3) =

π

240

(α′ s)(s+ 3t)

u
log(−α′ s) +

4πζ3
45

(α′ s/4)4 log(−α
′ s

µ4
)

+
π ζ5

2520 · 46
(87 (α′ s)6 + (α′ s)4 (α′t− α′u)2) log(−α

′ s

µ6
) + · · · .

(A. 13)

The unitarity relation of the string S-matrix implies that the 2-particle s-channel
discontinuity takes the form

DiscsA
g=1(p1, p2, p3, p4) = −i

κ2
(10)

α′
π

2

∫
d10k

(2π)10
δ(+)(k2) δ(+)((q − k)2)∑

{hr,hs}

Atree(p1, p2, (−k)hr , (k − q)hs)Atree(p3, p4, (k)−hr , (q − k)−hs) ,

(A. 14)
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where the sum inside the cut is over all states within the supergraviton mulitplet
and δ(+)(p2) = δ(10)(p2)θ(p0) imposes the mass-shell condition on each inter-
mediate state. The sum over all the helicities is performed easily thanks to the
recycling identity for the R̂4 factor of eq. (4.9) derived in [62]∑
{hr,hs}

R̂4((p1)h1 , (p2)h2 , (k − q)hr , (−k)hs)

× R̂4((k)−hr , (q − k)−hs , (p3)h3 , (p4)h4) (A. 15)

= s4 R̂4((p1)h1 , (p2)h2 , (p3)h3 , (p4)h4) .

The first contribution in eq. (A. 13) corresponds to the supergravity massless
threshold obtained by injecting in the unitarity relation the R̂4/σ̂3 of eq. (A. 3) for
each tree-level factor, the higher-order α′ corrections arise by the α′ corrections
from the factor T in eq. (A. 13).

Giving a transcendentality weight 1 to π and log(x), the analytic contribu-
tion to the operators α′n+3D2nR̂4 in eq. (A. 12) have a total weight n + 1.
The coefficients are of the form of the volume of the fundamental domain [96]
vol(F(1)) = 2ζ2/π defined in eq. (A. 8), times a polynomials in the odd zeta val-
ues of total weight n. The non-analytic contributions α′n+3

sn log(−α′ s) R̂4 in
eq. (A. 13) have a total weight coefficient n and are of the form vol(F(1)) times
a polynomial in the odd zeta values of total weight n− 1.

At each order in the α′ expansion of the genus one amplitude one brings down
an extra factor of the two dimensional propagator P(1) of eq. (A. 10) which is a
modular form of weight one. The fact that the coefficients are only polynomi-
als in odd zeta values is a consequence of the unitarity relation (A. 14) and the
structure of the tree-level amplitude in eq. (A. 6).

The analytic contribution to the genus-one four-graviton amplitude in type II
superstring compactified on a circle of radius `s r is given by [72]

I(d=9)
an (r; s, t) =

π

3

[
r + r−1 + σ̂2

(ζ(3)

15
r3 +

ζ(3)

15
r−3
)

+ σ̂3

(ζ(5)

63
r5 +

ζ(3)

3
r +

ζ(3)

3
r−1 +

ζ(5)

63
r−5
)

(A. 16)

+ σ̂2
2

(ζ(7)

315
r7 +

2ζ(3)

15
r log(r2 λ4) +

ζ(5)

36
r−3 +

ζ(3)2

315
r−5 +

ζ(7)

1050
r−7
)

+O(r−3)
)

+O(e−r)

]
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Appendix A.3. The genus two amplitude

The genus two amplitude is given by [36–39, 88]

Ag=2 = R̂4

∫
F(2)

d3Ω ∧ d3Ω̄

(det =mΩ)3

∫
T(2)

|YS |2

(det =mΩ)2
eD(2) (A. 17)

with

D(2) =
α′

2

∑
1≤i<j≤4

ki · kj P(2)(ν
(ij)|Ω) (A. 18)

where P(2)(ν
(ij)|Ω) is the genus two propagator given in [36,37,88] and YS is a

(2, 0)-form given by

Ys = (t− u) ∆(1, 2)∆(3, 4) + (s− t) ∆(1, 3)∆(4, 2) + (u− s) ∆(1, 4)∆(2, 3)
(A. 19)

expressed in term of anti-symmetric combination of the Abelian differentials
∆(i, j) = ω1(zi)ω2(zj) − ω1(zj)ω2(zi). Finally Ω is the genus two period
matrix, where the domains of integration F(2) and T(2) are defined in [36,37,88].
The leading term in the low energy expansion of this genus two amplitude is
given by

Ag=2 =
4

3π
ζ4 σ̂

2
2R̂

4 +O(α′) (A. 20)

where we used the fact that the value of the volume of the genus two moduli
space domain is given by vol(F(2)) = ζ4/(3π) [96].

Appendix A.4. Higher genus contributions

At higher genus order using the non-minimal pure spinor formalism [13, 14, 16]
Berkovits showed that the leading behaviour of the low-energy expansion of the
four graviton amplitude is given by F-terms of the schematic form

Ag =

∫
d16θLd

16θR θ
12−2g
L θ12−2g

R W 4
αβ

∫
Σg

(· · · ) +O(α′) (A. 21)

∝ D2g R̂4 +O(α′) . (A. 22)

where Wαβ is the dimension 1 superfield introduced in eq. (2.16) appearing in
the graviton vertex operators, and the ellipsis (· · · ) is for the contributions from
the other fields but do not contain any dependence on the superspace fermionic
coordinates θL and θR integrated over the genus g Riemann surface.

This expression is valid up to genus 6, and at genus 6 the zero mode factor
gives the D-term contribution discussed in section 2.2.



Non-renormalisation theorems in Superstring and Supergravity Theories 349

References

[1] M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory," Cambridge, Uk: Univ. Pr. (
1987) ( Cambridge Monographs On Mathematical Physics)

[2] J. Polchinski, “String theory. Vol. 1: An introduction to the bosonic string,” Cambridge, UK:
Univ. Pr. (1998) 402 p “String theory. Vol. 2: Superstring theory and beyond,” Cambridge, UK:
Univ. Pr. (1998) 531 p

[3] E. Kiritsis, “String theory in a nutshell,” Princeton, USA: Univ. Pr. (2007) 588 p
[4] C. M. Hull and P. K. Townsend, “Unity of superstring dualities,” Nucl. Phys. B 438 (1995) 109

[arXiv:hep-th/9410167].
[5] E. Witten, “String theory dynamics in various dimensions,” Nucl. Phys. B 443, 85 (1995)

[arXiv:hep-th/9503124].
[6] E. D’Hoker and D. H. Phong, “The Geometry of String Perturbation Theory,” Rev. Mod. Phys.

60 (1988) 917.
[7] R. P. Feynman, “Quantum theory of gravitation,” Acta Phys. Polon. 24 (1963) 697.
[8] B. S. DeWitt, “Quantum Theory of Gravity. 1. The Canonical Theory,” Phys. Rev. 160 (1967)

1113. “Quantum theory of gravity. II. The manifestly covariant theory,” Phys. Rev. 162 (1967)
1195. “Quantum theory of gravity. III. Applications of the covariant theory,” Phys. Rev. 162
(1967) 1239.

[9] G. ’t Hooft and M. J. G. Veltman, “One loop divergencies in the theory of gravitation,” Annales
Poincare Phys. Theor. A 20, 69 (1974).

[10] M. J. G. Veltman, “Quantum Theory Of Gravitation,” In *Les Houches 1975, Proceedings,
Methods In Field Theory*, Amsterdam 1976, 265-327

[11] M. B. Green, H. Ooguri and J. H. Schwarz, “Nondecoupling of maximal supergravity from the
superstring,” Phys. Rev. Lett. 99, 041601 (2007).

[12] N. Berkovits, “Multiloop amplitudes and vanishing theorems using the pure spinor formalism
for the superstring,” JHEP 0409, 047 (2004) [arXiv:hep-th/0406055].

[13] N. Berkovits, “Pure spinor formalism as an N = 2 topological string,” JHEP 0510 (2005) 089
[arXiv:hep-th/0509120].

[14] N. Berkovits and N. Nekrasov, “Multiloop superstring amplitudes from non-minimal pure
spinor formalism,” JHEP 0612 (2006) 029 [arXiv:hep-th/0609012].

[15] N. Berkovits, “Explaining the Pure Spinor Formalism for the Superstring,” arXiv:0712.0324
[hep-th].

[16] N. Berkovits, “New higher-derivative R4 theorems,” Phys. Rev. Lett. 98 (2007) 211601
[arXiv:hep-th/0609006].

[17] Z. Bern, “Perturbative quantum gravity and its relation to gauge theory,” Living Rev. Rel. 5
(2002) 5 [arXiv:gr-qc/0206071].

[18] M. H. Goroff and A. Sagnotti, “Quantum Gravity At Two Loops,” Phys. Lett. B 160 (1985) 81.
[19] M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior Of Einstein Gravity,” Nucl. Phys. B

266 (1986) 709.
[20] A. E. M. van de Ven, “Two loop quantum gravity,” Nucl. Phys. B 378, 309 (1992).
[21] M. T. Grisaru, “Two Loop Renormalizability Of Supergravity,” Phys. Lett. B 66 (1977) 75.
[22] E. Tomboulis, “On The Two Loop Divergences Of Supersymmetric Gravitation,” Phys. Lett. B

67 (1977) 417.
[23] R. E. Kallosh, “Counterterms in extended supergravities,” Phys. Lett. B 99 (1981) 122.
[24] P. S. Howe and U. Lindstrom, “Higher Order Invariants In Extended Supergravity,” Nucl. Phys.

B 181 (1981) 487.



350 P. Vanhove

[25] S. Deser, J. H. Kay and K. S. Stelle, “Renormalizability Properties Of Supergravity,” Phys. Rev.
Lett. 38, 527 (1977).

[26] S. Deser and J. H. Kay, “Three Loop Counterterms For Extended Supergravity,” Phys. Lett. B
76, 400 (1978).

[27] L. Brink and P. S. Howe, “The N=8 Supergravity In Superspace,” Phys. Lett. B 88 (1979) 268.
“Eleven-Dimensional Supergravity On The Mass-Shell In Superspace,” Phys. Lett. B 91 (1980)
384.

[28] P. S. Howe, “R4 terms in supergravity and M-theory,” arXiv:hep-th/0408177.
[29] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, D. A. Kosower and R. Roiban, “Three-

Loop Superfiniteness of N=8 Supergravity,” Phys. Rev. Lett. 98 (2007) 161303 [arXiv:hep-
th/0702112].

[30] E. Cremmer and B. Julia, “The N=8 Supergravity Theory. 1. The Lagrangian,” Phys. Lett. B 80
(1978) 48.

[31] P. S. Howe and P. C. West, “The Complete N=2, D=10 Supergravity,” Nucl. Phys. B 238, 181
(1984).

[32] E. Cremmer and S. Ferrara, “Formulation Of Eleven-Dimensional Supergravity In Superspace,”
Phys. Lett. B 91 (1980) 61.

[33] M. B. Green, J. G. Russo and P. Vanhove, “Non-renormalisation conditions in type II string
theory and maximal supergravity,” JHEP 0702 (2007) 099

[34] M. B. Green, J. H. Schwarz and L. Brink, “N=4 Yang-Mills And N=8 Supergravity As Limits
Of String Theories,” Nucl. Phys. B 198 (1982) 474.

[35] Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, “Multi-leg one-loop gravity amplitudes
from gauge theory,” Nucl. Phys. B 546, 423 (1999) [arXiv:hep-th/9811140].

[36] E. D’Hoker and D. H. Phong, “Lectures on two-loop superstrings,” arXiv:hep-th/0211111.
[37] E. D’Hoker and D. H. Phong, “Two-Loop Superstrings VI: Non-Renormalization Theorems

and the 4-Point Function,” Nucl. Phys. B 715 (2005) 3 [arXiv:hep-th/0501197]. “Two-Loop
Superstrings V: Gauge Slice Independence of the N-Point Function,” Nucl. Phys. B 715 (2005)
91 [arXiv:hep-th/0501196]. “Two-Loop Superstrings IV, The Cosmological Constant and Mod-
ular Forms,” Nucl. Phys. B 639 (2002) 129 [arXiv:hep-th/0111040]. “Two-Loop Superstrings
III, Slice Independence and Absence of Ambiguities,” Nucl. Phys. B 636 (2002) 61 [arXiv:hep-
th/0111016]. “Two-Loop Superstrings II, The Chiral Measure on Moduli Space,” Nucl. Phys. B
636 (2002) 3 [arXiv:hep-th/0110283]. “Two-Loop Superstrings I, Main Formulas,” Phys. Lett.
B 529 (2002) 241 [arXiv:hep-th/0110247].

[38] N. Berkovits, “Super-Poincare covariant two-loop superstring amplitudes,” JHEP 0601 (2006)
005 [arXiv:hep-th/0503197].

[39] N. Berkovits and C. R. Mafra, “Equivalence of two-loop superstring amplitudes in the pure
spinor and RNS formalisms,” Phys. Rev. Lett. 96 (2006) 011602 [arXiv:hep-th/0509234].

[40] Z. Bern, private discussion
[41] M. B. Green, J. G. Russo and P. Vanhove, “Ultraviolet properties of maximal supergravity,”

Phys. Rev. Lett. 98 (2007) 131602 [arXiv:hep-th/0611273].
[42] Z. Bern, L. J. Dixon and V. A. Smirnov, “Iteration of planar amplitudes in maximally super-

symmetric Yang-Mills theory at three loops and beyond,” Phys. Rev. D 72, 085001 (2005)
[arXiv:hep-th/0505205].

[43] F. Cachazo and D. Skinner, “On the structure of scattering amplitudes in N=4 super Yang-Mills
and N=8 supergravity,” arXiv:0801.4574 [hep-th].

[44] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, “Taming tree amplitudes in general rela-
tivity,” arXiv:hep-th/0702032.



Non-renormalisation theorems in Superstring and Supergravity Theories 351

[45] Z. Bern, J. J. Carrasco, D. Forde, H. Ita and H. Johansson, “Unexpected Cancellations in Gravity
Theories,” arXiv:0707.1035 [hep-th].

[46] N. Arkani-Hamed and J. Kaplan, “On Tree Amplitudes in Gauge Theory and Gravity,”
arXiv:0801.2385 [hep-th].

[47] N. E. J. Bjerrum-Bohr and P. Vanhove, “Explicit Cancellation of Triangles in One-loop Gravity
Amplitudes,” arXiv:0802.0868 [hep-th].

[48] V. A. Smirnov, “Analytical result for dimensionally regularized massless on-shell double box,”
Phys. Lett. B 460 (1999) 397 [arXiv:hep-ph/9905323].

[49] J. B. Tausk, “Non-planar massless two-loop Feynman diagrams with four on-shell legs,” Phys.
Lett. B 469 (1999) 225 [arXiv:hep-ph/9909506].

[50] P. S. Howe, K. S. Stelle and P. K. Townsend, “Miraculous Ultraviolet Cancellations In Super-
symmetry Made Manifest,” Nucl. Phys. B 236 (1984) 125.

[51] H. Kawai, D. C. Lewellen and S. H. H. Tye, “A Relation Between Tree Amplitudes Of Closed
And Open Strings,” Nucl. Phys. B 269 (1986) 1.

[52] F. A. Berends, W. T. Giele and H. Kuijf, “On relations between multi - gluon and multigraviton
scattering,” Phys. Lett. B 211, 91 (1988).

[53] J. Bedford, A. Brandhuber, B. J. Spence and G. Travaglini, “A recursion relation for gravity
amplitudes,” Nucl. Phys. B 721, 98 (2005) [arXiv:hep-th/0502146].

[54] H. Elvang and D. Z. Freedman, “Note on graviton MHV amplitudes,” arXiv:0710.1270 [hep-
th].

[55] A. Brandhuber, S. McNamara, B. Spence and G. Travaglini, “Recursion relations for one-loop
gravity amplitudes,” JHEP 0703, 029 (2007) [arXiv:hep-th/0701187].

[56] K. Peeters, P. Vanhove and A. Westerberg, “Supersymmetric higher-derivative actions in ten and
eleven dimensions, the associated superalgebras and their formulation in superspace,” Class.
Quant. Grav. 18 (2001) 843 [arXiv:hep-th/0010167].

[57] M. B. Green, M. Gutperle and P. Vanhove, “One loop in eleven dimensions,” Phys. Lett. B 409
(1997) 177 [arXiv:hep-th/9706175].

[58] M. B. Green, H. h. Kwon and P. Vanhove, “Two loops in eleven dimensions,” Phys. Rev. D 61
(2000) 104010 [arXiv:hep-th/9910055].

[59] E. Cremmer, B. Julia and J. Scherk, “Supergravity theory in 11 dimensions,” Phys. Lett. B 76
(1978) 409.

[60] S. Deser and D. Seminara, “Tree amplitudes and two-loop counterterms in D = 11 supergravity,”
Phys. Rev. D 62 (2000) 084010 [arXiv:hep-th/0002241].

[61] S. Deser and D. Seminara, “Graviton-form invariants in D = 11 supergravity,” Phys. Rev. D 72
(2005) 027701 [arXiv:hep-th/0506073].

[62] Z. Bern, L. J. Dixon, D. C. Dunbar, M. Perelstein and J. S. Rozowsky, “On the relationship
between Yang-Mills theory and gravity and its implication for ultraviolet divergences,” Nucl.
Phys. B 530 (1998) 401

[63] Eden, R. J., Landshoff, P. V., Olive, D. I., & Polkinghorne, J. C. 2002, The Analytic S-Matrix,
by R. J. Eden and P. V. Landshoff and D. I. Olive and J. C. Polkinghorne, pp. 295. ISBN
0521523362. Cambridge, UK: Cambridge University Press, April 2002.,

[64] G. ’t Hooft and M. J. G. Veltman, “Regularization And Renormalization Of Gauge Fields,”
Nucl. Phys. B 44 (1972) 189.

[65] W. L. van Neerven, “Dimensional Regularization Of Mass And Infrared Singularities In Two
Loop On-Shell Vertex Functions,” Nucl. Phys. B 268, 453 (1986).

[66] Z. Bern, L. J. Dixon and D. A. Kosower, “Progress in one-loop QCD computations,” Ann. Rev.
Nucl. Part. Sci. 46 (1996) 109 [arXiv:hep-ph/9602280].



352 P. Vanhove

[67] Z. Bern, L. J. Dixon and D. A. Kosower, “N = 4 super-Yang-Mills theory, QCD and collider
physics,” Comptes Rendus Physique 5 (2004) 955 [arXiv:hep-th/0410021].

[68] Z. Bern, L. J. Dixon and D. A. Kosower, “On-Shell Methods in Perturbative QCD,” Annals
Phys. 322 (2007) 1587 [arXiv:0704.2798 [hep-ph]].

[69] G. Passarino and M. J. G. Veltman, “One Loop Corrections For e+e− Annihilation Into µ+µ−

In The Weinberg Model,” Nucl. Phys. B 160 (1979) 151.
[70] N. E. J. Bjerrum-Bohr, D. C. Dunbar, H. Ita, W. B. Perkins and K. Risager, “The no-triangle

hypothesis for N = 8 supergravity,” JHEP 0612 (2006) 072 [arXiv:hep-th/0610043].
[71] M. B. Green and P. Vanhove, “The low energy expansion of the one-loop type II superstring

amplitude,” Phys. Rev. D 61 (2000) 104011 [arXiv:hep-th/9910056].
[72] M. B. Green, J. G. Russo and P. Vanhove, “Low energy expansion of the four-particle genus-one

amplitude in type II superstring theory”, arxiv:0801.0322 [hep-th]
[73] M.B. Green, J. Russo and P. Vanhove, “Connections between four-graviton scattering in two-

loop maximal supergravity and superstring theory”, in preparation.
[74] E. Bergshoeff, E. Sezgin and P. K. Townsend, “Properties of the Eleven-Dimensional Super

Membrane Theory,” Annals Phys. 185 (1988) 330.
[75] M. B. Green and P. Vanhove, “Duality and higher derivative terms in M theory,” JHEP 0601

(2006) 093 [arXiv:hep-th/0510027].
[76] M. Cederwall, U. Gran, M. Nielsen and B. E. W. Nilsson, “Manifestly supersymmetric M-

theory,” JHEP 0010 (2000) 041 [arXiv:hep-th/0007035].
[77] M. Cederwall, U. Gran, B. E. W. Nilsson and D. Tsimpis, “Supersymmetric corrections to

eleven-dimensional supergravity,” JHEP 0505 (2005) 052 [arXiv:hep-th/0409107].
[78] P. S. Howe and D. Tsimpis, “On higher-order corrections in M theory,” JHEP 0309 (2003) 038

[arXiv:hep-th/0305129].
[79] N. Lambert and P. West, “Duality groups, automorphic forms and higher derivative corrections,”

Phys. Rev. D 75, 066002 (2007) [arXiv:hep-th/0611318].
[80] N. Lambert and P. West, “Enhanced coset symmetries and higher derivative corrections,” Phys.

Rev. D 74, 065002 (2006) [arXiv:hep-th/0603255].
[81] T. Damour, M. Henneaux and H. Nicolai, “E10 and a ’small tension expansion’ of M theory,”

Phys. Rev. Lett. 89 (2002) 221601 [arXiv:hep-th/0207267].
[82] P. C. West, “E11 and M theory,” Class. Quant. Grav. 18 (2001) 4443 [arXiv:hep-th/0104081].
[83] F. Riccioni and P. West, “TheE11 origin of all maximal supergravities,” JHEP 0707 (2007) 063

[arXiv:0705.0752 [hep-th]].
[84] P. K. Townsend, “The eleven-dimensional supermembrane revisited,” Phys. Lett. B 350, 184

(1995) [arXiv:hep-th/9501068].
[85] P. S. Aspinwall, “Some relationships between dualities in string theory,” Nucl. Phys. Proc.

Suppl. 46, 30 (1996) [arXiv:hep-th/9508154].
[86] J. H. Schwarz, “An SL(2,Z) multiplet of type IIB superstrings,” Phys. Lett. B 360, 13 (1995)

[Erratum-ibid. B 364, 252 (1995)] [arXiv:hep-th/9508143].
[87] J. G. Russo and A. A. Tseytlin, “One-loop four-graviton amplitude in eleven-dimensional su-

pergravity,” Nucl. Phys. B 508 (1997) 245 [arXiv:hep-th/9707134].
[88] E. D’Hoker, M. Gutperle and D. H. Phong, “Two-loop superstrings and S-duality,” Nucl. Phys.

B 722 (2005) 81 [arXiv:hep-th/0503180].
[89] E. Kiritsis and B. Pioline, “On R4 threshold corrections in type IIB string theory and (p,q)

string instantons,” Nucl. Phys. B 508 (1997) 509 [arXiv:hep-th/9707018].
[90] A. Basu, “The D4R4 term in type IIB string theory on T 2 and U-duality,” arXiv:0708.2950

[hep-th].



Non-renormalisation theorems in Superstring and Supergravity Theories 353

[91] A. Basu, “The D6R4 term in type IIB string theory on T 2 and U-duality,” arXiv:0712.1252
[hep-th].

[92] C. R. Mafra, “Pure Spinor Superspace Identities for Massless Four-point Kinematic Factors,”
arXiv:0801.0580 [hep-th].

[93] M. B. Green and M. Gutperle, “Effects of D-instantons,” Nucl. Phys. B 498 (1997) 195
[arXiv:hep-th/9701093].

[94] M. B. Green and S. Sethi, “Supersymmetry constraints on type IIB supergravity,” Phys. Rev. D
59 (1999) 046006 [arXiv:hep-th/9808061].
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