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Spiral Model: a cellular automaton with a
discontinuous glass transition

Cristina Toninelli∗and Giulio Biroli†

Abstract

We introduce a new class of two-dimensional cellular automata
with a bootstrap percolation-like dynamics. Each site can be either
empty or occupied by a single particle and the dynamics follows a
deterministic updating rule at discrete times which allows only emp-
tying sites. We prove that the threshold density ρc for convergence to
a completely empty configuration is non trivial, 0 < ρc < 1, contrary
to standard bootstrap percolation. Furthermore we prove that in the
subcritical regime, ρ < ρc, emptying always occurs exponentially fast
and that ρc coincides with the critical density for two-dimensional ori-
ented site percolation on Z

2. This is known to occur also for some
cellular automata with oriented rules for which the transition is con-
tinuous in the value of the asymptotic density and the crossover length
determining finite size effects diverges as a power law when the criti-
cal density is approached from below. Instead for our model we prove
that the transition is discontinuous and at the same time the crossover
length diverges faster than any power law. The proofs of the discon-
tinuity and the lower bound on the crossover length use a conjecture
on the critical behaviour for oriented percolation. The latter is sup-
ported by several numerical simulations and by analytical (though non
rigorous) works through renormalization techniques. Finally, we will
discuss why, due to the peculiar mixed critical/first order character of
this transition, the model is particularly relevant to study glassy and
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†Service de Physique Théorique, CEA/Saclay-Orme des Merisiers, F-91191 Gif-sur-
Yvette Cedex, FRANCE; email: giulio.biroli@cea.fr

1

http://arXiv.org/abs/0709.0378v1


jamming transitions. Indeed, we will show that it leads to a dynamical
glass transition for a Kinetically Constrained Spin Model. Most of the
results that we present are the rigorous proofs of physical arguments
developed in a joint work with D.S.Fisher.
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1 Introduction

We introduce a new class of two-dimensional cellular automata, i.e. sys-
tems of particles on Z

2 with the constraint that on each site there is at most
one particle at a given time. A configuration at time t is therefore defined by
giving for each x ∈ Z

2 the occupation variable ηt(x) ∈ {0, 1} representing an
empty or occupied site, respectively. At time t = 0 sites are independently
occupied with probability ρ and empty with probability 1 − ρ. Dynamics is
given by a deterministic updating rule at discrete times with the following
properties: it allows only emptying sites; it is local in time and space, namely
ηt+1 is completely determined by ηt and ηt+1(x) depends only on the value
of ηt on a finite set of sites around x.

We will be primarily interested in the configuration which is reached in
the infinite time limit. We will first identify the value of the critical density
ρc, namely the supremum over the initial densities which lead almost surely to
an empty configuration. In particular we will prove that ρc = pOP

c , where pOP
c

is the critical probability for oriented site percolation on Z
2. Furthermore, we

will analyze the speed at which the system is emptied in the subcritical regime
and prove that emptying always occurs exponentially fast for ρ < pOP

c . Then,
we will determine upper and lower bounds for the crossover length below
which finite size effects are relevant when ρ ր ρc. These bounds establish
that the crossover length diverges as the critical density is approached from
below and divergence is faster than power law. Finally, we will analyze the
behaviour around criticality of the final density of occupied sites, ρ∞. We
will prove that the transition is discontinuous: ρ∞(ρ) is zero if ρ < ρc and
ρ∞(ρc) > 0. We underline that both discontinuity and the lower bound on
the crossover length are proved modulo a conjecture (Conjecture 3.1) for
the critical behaviour of oriented site percolation (actually, for the proof of
discontinuity we will only need a milder version of Conjecture 3.1 which is
stated as Conjecture 3.2). This conjecture states a property which is due to
the anisotropic character of oriented percolation and it is widely accepted
in physical literature, where it has been verified both by analytical works
through renormalization techniques and numerical simulations. However, we
are not aware of a rigorous mathematical proof.

One of the main interests of this new model relies on the peculiar feature
of its transition: there is a diverging lengthscale as for standard continuous
critical transitions, but at the same time the density of the final cluster
ρ∞(ρ), that plays the role of the order parameter, is discontinuous. This
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discontinuous/critical character, to our knowledge, has never been found so
far in any cellular automaton or in other type of phase transitions for short
range finite dimensional lattices 1.

Among the most studied cellular automata we recall bootstrap percola-
tion [1] and oriented cellular automata [15]. In bootstrap percolation the
updating rule is defined as follows2: a site can be emptied only if the num-
ber of its occupied nearest neighbours is smaller than a threshold, l. In this
case, it has been proved [1, 15] that on Z

d, the critical density is either 1 or
0 depending on l: ρc = 0 for l < d, ρc = 1 for l ≥ d. On the other hand,
oriented cellular automata on Z

d are defined as follows: site x can be emptied
only if (x + e1, . . . , x + ed) are all empty, where ei are the coordinate unit
vectors. In this case it has been proven [15] that the critical density coincides
with the critical probability for oriented site percolation and the transition
is continuous, namely ρ∞(ρc) = 0.
Our model shows a behaviour that is different from both bootstrap and ori-
ented cellular automata, since the transition occurs at a finite density and it
is discontinuous. Models with such a critical/first order transition have long
been quested in physical literature since they are considered to be relevant
for the study of the liquid/glass and more general jamming transitions. In
the last section we will discuss the behavior of a Kinetically Constrained Spin
Model, the so called Spiral Model (SM) [18], which has a stochastic evolu-
tion with dynamical rules related to those of our cellular automaton. We
will show that the present results for the cellular automaton imply that SM
has a dynamical transition with the basic properties expected for glass and
jamming transitions. For a more detailed discussion of the physical problem
we refer to our joint work with D.S.Fisher [17, 18]. Most of the results that
we present are the rigorous proofs of physical arguments developed in [17,18]
for several jamming percolation models. The cellular automaton we consider
in this paper (and the related Spiral Model [18]) is one of the simplest in
this class. Originally, in [17], we focused on the so called Knight models for
which some of our physical arguments cannot be turned into rigorous ones

1On the other hand such type of transition is found in some problems on non-finite
dimensional lattices, e.g. the k-core problem [13] or bootstrap percolation on random
graphs [6]. It has also been established for long-range systems in one dimension [2].

2Note that the model is usually defined in this way in physical literature, while in
mathematical literature the role of empty and filled sites is exchanged: dynamics allows
only filling sites and a site can be filled only if the number of its neighbours is greater than
l. The same is true for oriented models defined below.
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as pointed out in [19]. In particular our original conjecture [17] that the
transition for Knights occurs at pOP

c should not be correct [18,19]. However,
as discussed in [18], numerical simulations suggest that the physical behavior
of the Knight models around its transition (which is located before pOP

c ) is
the same of SM.

2 Setting and notation

2.1 The model

The model is defined on the 2–dimensional square lattice, Z
2. We denote

by e1 and e2 the coordinate unit vectors, by x, y, z the sites of Z
2 and by

|x − y| the Euclidean distance between x and y. The configuration space is
Ω = {0, 1}Z

2

, i.e. any configuration η ∈ Ω is a collection {η(x)}x∈Z2, with
η(x) ∈ (0, 1), where 0 and 1 represent an empty or occupied site, respectively.
At time t = 0 the system is started from a configuration η0 ∈ Ω chosen at
random according to Bernoulli product measure µρ, namely η0(x) are i.i.d.
variables and µρ(η0(x) = 1) = ρ. Therefore ρ will be called the initial density.
The evolution is then given by a deterministic process at discrete time steps
t = 0, 1, 2, . . . and the configuration at time t, ηt, is completely determined
by the configuration at time t − 1 according to the updating rule

ηt = Tηt−1 (2.1)

with the evolution operator T : Ω → Ω defined as

Tη(x) :=





0 if η(x) = 0
0 if η(x) = 1 and η ∈ Ax

1 if η(x) = 1 and η 6∈ Ax

(2.2)

with
Ax := (ENE−SW

x ∩ ENW−SE
x ) (2.3)

where
ENE−SW

x = VNEx
∪ VSWx

ENW−SE
x = VNWx

∪ VSEx
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and, for any A ⊂ Z
2, we denote by VA the event that all sites in A are empty,

VA : (η : η(x) = 0 ∀x ∈ A), and the sets NEx, SWx, NWx and SEx are
defined as

NEx := (x + e2, x + e1 + e2),

SWx := (x − e2, x − e1 − e2),

NWx := (x − e1, x − e1 + e2),

SEx := (x + e1, x + e1 − e2).

In words the updating rule defined by (2.1) and (2.2) can be described as
follows. Let the North-East (NEx), South-West (SWx), North-West (NWx)
and South-East (SEx) neighbours of x be the couples depicted in Figure
1. If x is empty at time t − 1, it will be also empty at time t (and at any
subsequent time). Otherwise, if x is occupied at time t− 1, it will be empty
at time t if and only if at time t−1 the following local constraint is satisfied:
both its North-East or both its South-West neighbours are empty and both
its North-West or both its South-East neighbours are empty too. See Figure
1(a) (Figure 1(b) ) for an example in which the constraint is (is not) satisfied.
As it will become clear in the proofs of Theorems 3.4 and 3.5, the fact that
in order to empty x we necessarily have to satisfy a requirement in the NE-
SW and an (independent) requirement in the NW-SE direction is the key
ingredient which makes the behaviour of this model quantitatively different
from the oriented cellular automata in [15].

One can also give the following alternative equivalent definition of the
dynamics. Let Ix be the collection of the four subsets of Z

2 each containing
two adjacent couples of the above defined neighbours of x, namely

Ix := {NEx ∪ SEx; SEx ∪ SWx; SWx ∪ NWx; NWx ∪ NEx}.

With this notation it is immediate to verify that definition (2.3) is equivalent
to requiring that at least one of the sets A ∈ Ix is completely empty, namely

Ax := ∪A∈Ix
VA.

The following properties can be readily verified. The dynamics is attrac-
tive with respect to the partial order η1 ≺ η2 if η1(x) ≤ η2(x) ∀ x ∈ Z

2.
Attractiveness here means that if we start the process from two different
configurations η1

0 and η2
0 with η1

0 ≤ η2
0 at each subsequent time the partial

order will be preserved. The updating rule is short-range, indeed Ax depends
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only on the value of η on the first and second neighbours of x. Furthermore
it is both invariant under translations and under rotations of 90 degrees
(and multiples). Indeed, if for all y ∈ Z

2 we define the translation operator
τy : Ω → Ω as (τyη)z = ηy+z, it is immediate to verify that τyη ∈ ( 6∈)Ax+y if
and only if η ∈ ( 6∈)Ax. On the other hand, if we let f−90 : Z

2 → Z
2 be the

operator which acts as f−90(x1e1 + x2e2) := −x2e1 + x1e2 and we define the
rotation operator R90 : Ω → Ω which acts as (R90η)(x) = η(f−90(x)), it is
immediate to verify that R90η ∈ ( 6∈)Af−90(x) if and only if η ∈ ( 6∈)Ax.

For future purposes it is also useful to define the model on a finite volume
Λ ⊂ Z

2, i.e. to define an evolution operator TΛ : ΩΛ → ΩΛ where ΩΛ is the
configuration space ΩΛ := {0, 1}Λ. A natural way to do this is to fix a
configuration ω ∈ ΩZ2\Λ and to consider the evolution operator TΛ,ω with
fixed boundary condition ω, i.e. for each x ∈ Λ we let

TΛ,ωη(x) := T (η · ω)(x) (2.4)

where η · ω ∈ Ω is the configuration which equals η inside Λ and ω outside.
Note that TΛ,ω depends only on the value of ω on the sites y ∈ Z \ Λ such
that y ∈ (NEx ∪ SEx ∪ SEx ∪ NWx) for at least one x ∈ Λ. Note also that
the configuration reached under Tω,Λ after |Λ| steps is stationary, namely

T
|Λ|
ω,Λη = T

|Λ|+n
ω,Λ η (2.5)

for any n ≥ 0 (this trivially follows from the fact that we are evolving deter-
ministically on a finite region and that only emptying of sites is allowed). A
choice which we will often consider is the case of filled boundary conditions,
namely ω(x) = 1 for all x ∈ Z\Λ, and we will denote by T f

Λ the corresponding
evolution operator.

2.2 Main issues

Before presenting our results, let us informally introduce the main issues
that we will address. We underline once more that these are akin to those
examined in previous works for bootstrap percolation and oriented models
[5, 15]. However, the answers will be qualitatively different.

• We will determine the critical density ρc such that, a.s. with respect
to the initial distribution µρ, if ρ < ρc all the lattice gets eventually
emptied under the updating rule, while for ρ > ρc this does not occur.

7



(a) (b)NENE

SWSW

SESE

NWNW
xx

Figure 1: Site x and the four couples of its North-East (NE), South-East
(SE), North-West (NW) and South-West (SW) neighbours. (a) If x is occu-
pied it will be empty at next time step. Indeed its NE and NW neighbours
are all empty, thus η ∈ VNE ⊂ ENE−SW and η ∈ VNW ⊂ ENW−SE. Therefore
η ∈ Ax. (b) If x is occupied it will remains occupied at next time step.
Indeed neither the NE nor the SW neighbours are completely empty, thus
η 6∈ ENE−SW and therefore η 6∈ Ax.

The precise definition of ρc follows. Consider on {0, 1} the discrete
topology and on Ω the Borel σ-algebra Σ. Let M be the set of measures
on (Ω, Σ) and µρ

t be the evoluted of the initial distribution µρ
0 = µρ

according to the above deterministic rules. Due to attractiveness it
is immediate to conclude that µρ

t converges weakly to a probability
distribution µρ

∞ ∈ M. Following [15] we can indeed define a partial
order among µ, ν ∈ M as µ ≤ ν if

∫
f(η) dµ(η) ≤

∫
f(η)dν(η), ∀f :

Ω → R and f increasing. The fact that 0’s are stable implies that µρ
0 ≥

µρ
1 ≥ . . . . This, together with the compactness of Ω and M, assures

the weak convergence of µρ
t to a probability distribution µρ

∞ ∈ M. We
can therefore define the critical density ρc as

ρc := sup (ρ : ρ∞(ρ) = 0) (2.6)

where ρ∞(ρ), henceforth referred to as the final density, is defined as

ρ∞(ρ) := µρ
∞(η(0)) (2.7)

• We will analyze the speed at which the system is emptied in the sub-
critical regime, ρ < ρc. Let tE be the first time at which the origin gets
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emptied
tE := inf (t ≥ 0 : ηt(0) = 0). (2.8)

Following notation in [15] we let Pρ(·) be the probability measure on
({0, 1}Z

2,{0,1,2,...}, Σ1), where Σ1 is the Borel σ-algebra on {0, 1}Z
2,{0,1,2,...}.

With this notation we define the speed γ as

γ(ρ) := sup (β ≥ 0 : ∃C < ∞ s.t. Pρ(tE > t) ≤ Ce−βt) (2.9)

and the corresponding critical density as

ρ̃c = sup (ρ : γ(ρ) > 0) (2.10)

It is immediate from above definitions to check that ρ̃c ≤ ρc. We will
prove that the equality is verified, namely emptying always occurs ex-
ponentially fast in the subcritical regime ρ < ρc.

• We will analyze the final density at criticality and establish that the
transition is discontinuous (ρ∞(ρc) > 0).

• We will analyze the finite size scaling. Let Λ2L ⊂ Z
2 and ΛL/2 ⊂ ΛL

be two square regions centered around the origin and of linear size 2L
and L/2, respectively. We denote by ηs(η) the stationary configura-
tion which is reached after (2L)2 steps when we evolve from η with
filled boundary conditions on Λ2L, ηs(η) := (T f

Λ2L
)4L2

η. Finally, we let
E(L, ρ) be the probability that ΛL/2 is empty in ηs

E(L, ρ) = µρ(ηs(x) = 0 ∀x ∈ ΛL/2) (2.11)

As we shall show limL→∞ E(L, ρ) = 1 for ρ < ρc and limρրρc
E(L, ρ) 6=

1 when L is kept fixed to any finite value. We will therefore study the
scaling as ρ ր ρc of the crossover length Ξ(ρ) defined as

Ξ(ρ) := inf(L : E(L, ρ) ≥ 1/2) (2.12)

Another possible definition of the crossover length would have corre-
sponded to defining E(L, ρ) as the probability that the origin is empty
in ηs. This requirement, less stringent than the previous one, leads to
the same results for Ξ(ρ) at leading order, see Section 6.
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3 Results

Let us first recall some definitions and results for oriented site percolation
on Z

2 which we will be used in the following. We say that (x1, x2, . . . xn) is
an oriented path in Z

2 if xi+1 − xi ∈ (e1, e2) and, given a configuration
η ∈ {0, 1}Z

2

, we let x → y if there exists an oriented path connecting x and
y (i.e. with x1 = x and xn = y) such that all its sites are occupied (η(xi) = 1
for all i = 1, . . . , n). For a given x ∈ Z

2, we define its occupied oriented
cluster to be the random set

COP
x (η) := (y ∈ Z

2 : x → y) (3.13)

Finally, for each n, we define the random set Γn
x as

Γn
x := (y ∈ Z

2 : x → y and ∃m s.t. y − x = me1 + ne2) (3.14)

With the above notation the percolation probability α(p)OP is defined as
α(p)OP := µp(η : | COP

0 | = ∞). As it has been proven, see [7], α(p)OP is zero
at small p and strictly positive at high enough p: the system undergoes a
phase transition. The critical density, defined as pOP

c := inf(p : α(p)OP > 0),
has been proven to be non trivial, 0 < pOP

c < 1, see [7] for some upper
and lower bounds. We also recall that extensive numerical simulations lead
to pOP

c ∼ 0.705489(4) [11]. Furthermore the transition is continuous in the
percolation probability, namely α(pOP

c ) = 0 [8] and in the subcritical regime
an exponential bound has been proven [7]: at any ρ < pOP

c there exists
ξOP (ρ) < ∞ such that for n → ∞ the following holds

µρ(Γn
x 6= ∅) ≤ e−n/ξOP . (3.15)

Finally, we recall the conjecture for the critical behavior. Let Λa,b be a
rectangular region with two sides (∂R1 and ∂R2) of length a parallel to
e1 +e2, and two sides (∂R3 and ∂R4) of length b parallel to −e1 +e2. Let also
µρ

N,z be the Bernoulli measure on ΛN,Nz conditioned by having both sides
of length N , ∂R1 and ∂R2, completely empty. The following properties are
expected to hold for the probability of finding an occupied oriented path
crossing the rectangle in the direction parallel to e1 + e2, i.e. connecting the
two non empty borders ∂R3 and ∂R4
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Conjecture 3.1. There exists z, cu
OP , cl

OP and ξ(ρ) with 0 < z < 1, 0 <
cu
OP < 1, 0 < cl

OP < 1, ξ(ρ) < ∞ for ρ < pOP
c and limρրpOP

c
ξ = ∞ s.t.

lim
L→∞

µ
pOP

c

L,z ( ∃ x ∈ ∂R3 and y ∈ ∂R4 s.t. x → y) = cu
OP (3.16)

lim
ρրpOP

c

µρ
ξ,z(∃ x ∈ ∂R3 and y ∈ ∂R4 s.t. x → y) = cl

OP (3.17)

The above conjecture is given for granted in physical literature, where
it has been verified both by numerical simulations and by analytical works
based on renormalization techniques (see [11] for a review). The physical
arguments supporting this conjecture are based on finite size scaling and the
anisotropy of oriented percolation that gives rise to two different correlation
lengths in the parallel and perpendicular direction w.r.t. the orientation of
the lattice, namely in the e1 + e2 and −e1 + e2 directions. This explains why
in finite size effects an anisotropy critical exponent z emerges such that at
ρ = pOP

c the probability of finding a spanning cluster on a system of finite
size L×Lz converges to a constant which is bounded away from zero and one
when L → ∞. To our knowledge, a rigorous proof of Conjecture 3.1 has not
yet been provided. However, in [7] it has been proven that the opening edge
of the percolating cluster is zero at criticality, which implies anisotropy of the
percolating clusters. Our results, unless where explicitly stated (Theorem 3.4
and 3.5 (ii)), do not rely on the above Conjecture.

Finally, we recall that the minimal ξOP and ξ for which (3.15) and (3.16)
hold, namely the parallel correlation length, is expected to diverges when
p ր pOP

c as (ρ − pOP
c )α with α ≃ 1.73. The lowest value of z for which

the result of Conjecture 3.1 is expected to hold, i.e. the anisotropy critical
exponent, is z ≃ 0.63.

Before stating our results, let us give a milder version of Conjecture 3.1
which will be sufficient to prove discontinuity of the transition (the stronger
version 3.1 will be used only to prove the upper bound for the correlation
length).

Fix ℓ0 > 0 and consider the sequence of increasing rectangles Ri :=
Λℓi,1/12ℓi

with ℓi = 2ℓi−1 and denote the two short sides parallel to the −e1+e2

direction by ∂Ri
3 and ∂Ri

4. Let Si be the event that Ri is crossed in the
parallel direction, namely

Si := (η : ∃ x ∈ ∂Ri
3 and y ∈ ∂Ri

4 s.t. x → y) (3.18)
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Conjecture 3.2.
∑∞

i=1 | log(µρ(Si))| < ∞ at ρ = pOP
c .

The fact that 3.1 implies 3.2 follows immediately by cutting Ri into
O(ℓ1−z

i ) slices of size ℓi × ℓz
i and using (3.16) to bound the probability that

each slice is not spanned by a cluster.
We are now ready to state our results. We have proved that the critical

densities defined in (2.6) and (2.10) are equal and furthermore they coincide
with the critical probability for oriented site percolation (and therefore also
of oriented cellular automata [15]) on Z

2, namely

Theorem 3.3. ρc = ρ̃c = pOP
c

However the critical properties are different from oriented percolation:
the transition is here discontinuous in the final density and the crossover
length diverges faster than any power law at criticality. More precisely

Theorem 3.4. If Conjecture 3.2 holds, ρ∞(ρc) > 0.

Theorem 3.5. i) limρրρc
ξOP (ρ)−2−ǫ log Ξ(ρ) = 0 for any ǫ > 0.

ii) If Conjecture 3.1 holds, Ξ(ρ) ≥ c1ξ exp[c2 ξ(ρ)1−z]
with c1 = 1/(2

√
2) and c2 = | log(1 − cl

OP )|/2

where ξOP (ρ) is the smallest constant for which (3.15) holds and z, ξ are
the smallest constant which satisfy (3.17). Note that, if the conjectured
power law behavior for ξ and ξOP holds then our bounds imply a faster than
power law divergence for Ξ. This property, as well as the discontinuity of
the final density, makes the character of this transition completely different
from the one of oriented percolation and oriented cellular automata.

4 Critical density: proof of Theorem 3.3

Proof of Theorem 3.3 The proof follows from the inequality ρ̃c ≤ ρc (which
can be readily verified from definition 2.6 and 2.10) and the following Lemma
4.1 and 4.2. �

Lemma 4.1. ρc ≤ pOP
c

Lemma 4.2. γ(ρ) > 0 for ρ < pOP
c . Therefore ρ̃c ≥ pOP

c .
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4.1 Upper bound for ρc: proof of Lemma 4.1

In order to establish an upper bound for ρc we first identify a set of config-
urations in which the origin is occupied and it can be never emptied at any
finite time because it belongs to a proper infinite cluster of occupied sites. In
this case we will say that the origin is frozen. Then we prove that a cluster
which makes the origin frozen exists with finite probability under the initial
distribution µρ

0 = µρ for ρ > pOP
c . This follows from the fact that the origin

can be frozen via two infinite independent clusters which, under a proper
geometrical transformation, can be put into a one to one correspondence
with infinite occupied clusters of oriented percolation. We stress that these
clusters, which are sufficient to prove the desired upper bound for the critical
density, are not the only possible clusters which can freeze the origin, as will
become clear in the proof of Theorem 3.4.

Let us start by introducing some additional notation.
We say that (x1, x2, . . . xn) is a North-East (NE) path in Z

2 if xi+1 ∈ NExi

for all i ∈ (1, . . . , n − 1), and we let x
NE−→ y if there is a NE path of sites

connecting x and y (i.e. with x1 = x and xn = y) such that each site in
the path is occupied (η(xi) = 1 for all i = 1, . . . , n). Also, we define the
North-East occupied cluster of site x to be the random set

CNE
x := (y ∈ Z

2 : x
NE−→ y)

and, for each n, we also define the random set ΓNE,n
x as

ΓNE,n
x := (y ∈ Z

2 : x
NE−→ y and ∃m s.t. y − x = me1 + ne2) (4.19)

We make analogous definitions for the South-West , North-West and
South-East paths, the correspondent occupied clusters CSW

x , CNW
x and CSE

x

and for the random sets ΓNW,n
x , ΓSW,n

x and ΓSE,n
x . Note that if x is empty its

occupied cluster in all the directions is empty, instead if x is occupied each
occupied cluster contains at least x. In Figure 2 we depict as an example the
North-East (inside the dashed line) and South-West (inside the continuous
line) occupied clusters of a given occupied site x. With this notation we
define

FNE−SW
x := (η : | CNE

x | = ∞ and | CSW
x | = ∞) (4.20)

and it is immediate to verify that the origin is frozen on any configuration
η ∈ FNE−SW

x , namely
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w

y

0

Figure 2: Sites inside the continuous (dashed) line form the South-West
(North-East) occupied cluster for the origin, 0. It is immediate to check that
in order to empty 0 we have (at least) to destroy either the NE occupied
path connecting 0 to y or the SW occupied path connecting 0 to w (sites
indicated by the dotted line). This requires a number of steps which is at
least the minimum of the lengths of these two paths (each path have to be
emptied sequentially from its external border unless the other one has been
already emptied).

Lemma 4.3. ρ∞(ρ) ≥ µρ(FNE−SW
0 )

Proof. The result follows immediately once we prove that, for any given
τ > 0, the inequality tE > τ holds, where tE is the first time at which the
origin gets emptied, see definition (2.8). Since for hypothesis |CNE

0 | = ∞ and
|CSW

0 | = ∞, there exist y and w such that y ∈ CNE
0 , w ∈ CSW

0 , the length
Ly of the minimal NE occupied path x1 = 0, . . . , xLy

= y connecting 0 to
y verifies Ly > τ + 1 and the length Lw of the minimal SW occupied path
x̃1 = 0, . . . , x̃Lw

= w connecting 0 to w verifies Lw > τ + 1. Let x̄2 be the
site which is emptied first among x2 and x̃2. It is immediate to verify (see
Figure 2) that tE > inf(t ≥ 0 : ηt(x̄2) = 0) ≥ min(Lw, Ly) − 1 > τ , which
concludes the proof. �

By definition of NE and SW neighbours, it is easy to verify that (except
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for x itself) there do not exist sites that can be connected to x both by a NE
and a SW path, thus it follows immediately that

µρ(FNE−SW
0 ) ≥ µρ(| CNE

0 | = ∞) µρ(| CSW
0 | = ∞) (4.21)

We will now prove that the probabilities of such infinite NE or SW occupied
clusters can be rewritten in terms of the probability of infinite clusters for
oriented percolation, namely

Lemma 4.4. µρ(| CNE
0 | = ∞) = µρ(| CSW

0 | = ∞) = µ(|COP
0 | = ∞)

Proof. Let v1 = e1+e2 and v2 = e2, each x ∈ Z
2 can be written in a unique

way as x = mv1 + nv2. We can therefore define the operator RNE : Ω → Ω
which acts as (RNEη)(me1 + ne2) = η(mv1 + nv2). It is immediate to verify
that µρ(η) = µρ(RNEη) and that |CNE

0 (η)| = |COP
0 (RNEη)| for any η. Thus

µρ(| CNE
0 | = ∞) = µ(|COP

0 (η)| = ∞). The result µρ(| CSW
0 | = ∞) =

µ(|COP
0 | = ∞) can be proved analogously. �

We are now ready to conclude the proof of the upper bound for ρc.
Proof of Lemma 4.1 The result follows from Lemma 4.3, equation (4.21),
Lemma 4.4 and the definition of pOP

c which implies µ(|COP
0 (η)| = ∞) > 0 for

ρ > pOP
c . �

4.2 Lower bound for ρ̃c: proof of Lemma 4.2

The central result of this section is Lemma 4.7. This contains a lower bound
for the probability that a certain finite region can be emptied (except for some
special sets at its corners) when evolution occurs with fixed filled boundary
conditions and ρ < pOP

c . Since this lower bound can be made arbitrarily near
to one provided the size of the region is taken sufficiently large, the result
ρc ≥ pOP

c will easily follow (Corollary 4.8). Some additional work involving
a renormalization technique in the same spirit of the one used for bootstrap
percolation in [15] will be used to prove the stronger result ρ̃c ≥ pOP

c (Lemma
4.2).

Let Sa be a segment of length a with left vertex in the origin,

Sa := ∪a−1
x=0ie1

and Ra,b be the quadrangular region with two sides parallel to the e1 direction
and two sides parallel to the e1 + e2 direction which is obtained by shifting
b times Sa of e1 + e2 depicted in Figure 3, namely

Ra,b := ∪b−1
i=0 [Sa + i(e1 + e2)]
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(a) (b)

Figure 3: (a) The region Ra,b (here a = 7, b = 6) and (inside the continuous
line) the boundary region ∂Ra,b which guarantees that we can empty Ra,b

(Proposition 4.5) . (b) The alternative choice of boundary conditions which
is described in Remark 4.6

where for each x ∈ Z
2 and A ⊂ Z

2 we let x + A ⊂ Z
2 be x + A := (y : y =

x+z with z ∈ A). As it is immediate to verify, if we impose empty boundary
conditions on the first external segment parallel to the bottom border and
on the first two segments parallel to the right border (empty sites inside the
continuous line in 3(a)), Ra,b is completely emptied in (at most) |Ra,b| = ab
steps. More precisely, if we define the bottom right border as

∂Ra,b := (Sa−e2−e1)∪[ae1 + (b − 1)(e1 + e2)]∪b
i=1[S2 + ae1 + (i − 2)(e1 + e2)]

and we recall that, for each A ⊂ Z
2, VA is the set of configurations which are

empty on all sites in A, the following holds

Proposition 4.5. If η ∈ V∂Ra,b
, then T abη ∈ VRa,b

.

Proof. Starting from the bottom right corner of Ra,b we can erase all
particles in Sa from right to left, thanks to the fact that their SE and SW
neighbours are empty. Then we can erase all particles in Sa +e2 +e1 starting
again from the rightmost site and so on until emptying the whole region. �

Remark 4.6. Analogously, it is easy to verify that an alternative choice of
boundary conditions which guarantees that we can empty Ra,b is to impose
empty sites on the external segment parallel to the top border and on to the
two external segments parallel to the left border (see Figure 3(b)), namely on

(Sa + L(e1 + e2)) ∪ (−e1) ∪b
i=1 [S2 − 2e1 + i(e1 + e2)]

With a slight abuse of notation we denote the region with the shape of
RL,L which is centered around the origin and its corresponding border by
RL and ∂RL:

RL := RL,L − L/2e1 − L/2e2
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∂RL := ∂RL,L − L/2e1 − L/2e2

namely RL is the region delimited by vertexes A,B,C,D in Figure 7 (here
and in the following, without lack of generality, we choose L such that L/4

is integer). Then we denote by R̃L the region inside the bold dashed line in
Figure 7, which is obtained from RL by subtracting at the bottom left and
top right corners two regions, Rbl and Rtr, which have the shape of RL/4,
namely

R̃L := RL \ (Rbl ∪Rtr)

with
Rtr := RL/4,L/4 + L/4(e1 + e2)

Rbl := RL/4,L/4 − Le1 − L/2e2

Let η be a configuration on RL and denote by ηs the stationary configuration
reached upon evolving η with fixed filled boundary conditions on RL, ηs :=
(T f

RL
)L2

η. We say that η is good if R̃L is completely empty on ηs, and we
denote by GL the set of good configurations, i.e.

GL := (η ∈ ΩRL
: ηs ∈ V eRL

).

Given a configuration η on Z
2 we denote by ηRL

its restriction to RL. If ηRL

is good, then the evolution on the infinite lattice also empties in at most L2

steps the region R̃L, namely TL2

η ∈ V eRL
, as can be easily proved by using

attractiveness of the dynamics.
The following holds on the probability that a region is good

Lemma 4.7. For any ρ < pOP
c and for any ǫ > 0 there exists L(ρ, ǫ) < ∞

such that for L = L(ρ, ǫ)
µρ(GL) > 1 − ǫ

We postpone the proof of this main Lemma 4.7 and derive its conse-
quences for ρc and ρ̃c.

Corollary 4.8. ρc ≥ pOP
c , thus ρc = pOP

c .

Proof. Since the origin belongs to R̃L, if RL is good then the origin is
certainly empty at time L2, which implies

µρ(TL2

η(0) = 0) ≥ µρ(GL) (4.22)
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This, together with the definition (2.7) and the result of Lemma 4.7, guar-
antees that if ρ < pOP

c for any given ǫ > 0 we can choose L > L(ρ, ǫ) such
that

1 − µρ
∞(η(0)) ≥ µρ(TL2

η(0) = 0) > 1 − ǫ (4.23)

Thus for any ǫ we have 0 ≤ µρ
∞(η(0)) ≤ ǫ and therefore µρ

∞(η(0)) = 0, which
implies ρc ≥ pOP

c (recall definition (2.6) for ρc). The identification of ρc with
pOP

c immediately follows from the latter result and Lemma 4.1. �

In order to prove the stronger result of Lemma 4.2 we now have to intro-
duce a renormalization procedure in the same spirit of [15]. Fix an integer
scale L and let Z

2(L) ≡ LZ
2. We consider a partition of Z

2 into disjoint
regions Rz

L := RL + z, z ∈ Z
2(L). In the following we will refer to Z

2(L) as
the renormalized lattice and, given configuration η ∈ ΩZ2 , we will say that a
site z ∈ Z

2(L) is good if the configuration ηRz
L

restricted to the tile Rz
L ⊂ Z

2

corresponding to z is good. Note that the events that two different sites z
and z′ are good are independent.

Let z be site of the renormalized lattice. If its South, SouthEast and East
neighbours, i.e. z − e2, z + e1 − e2 and z + e1, are good then after (at most)
2|RL|+ |RL/4| = L233/16 steps the region corresponding to z on the original
lattice, Rz

L, is completely empty. More precisely

Proposition 4.9. If ηRz+e1
L

∈ GL, ηRz+e1−e2
L

∈ GL and ηRz−e2
L

∈ GL then

TCL2

η ∈ VRz
L

for C = 33/16.

Proof. From the definition of good configurations it follows that at time
L2 all sites belonging to R̃z+e1

L ∪ R̃z−e2

L ∪ R̃z+e1−e2

L are empty, i.e.

TL2

η ∈ VA with A := R̃z+e1

L ∪ R̃z−e2

L ∪ R̃z+e1−e2

L (4.24)

If we denote by Rz−e2

tr (Rz+e1

bl ) the top right (bottom left) region of linear size
L/4 which belongs to Rz−e2

L (Rz+e1

L ) and by ∂Rz−e2

tr (∂Rz+e1

bl ) the correspond-
ing bottom right borders, it is immediate to verify that (4.24) implies that
at time L2 both ∂Rz−e2

tr and ∂Rz+e1

bl are completely empty. This, together
with Proposition 4.5, implies that at time L2 +(L/4)2 both Rz−e2

tr and Rz+e1

bl

will be empty. The latter result, together with (4.24), guarantees that the
bottom right border of Rz

L, ∂Rz
L, is empty at time L2 + (L/4)2. By using

again Proposition 4.5 it follows that at time L2 +L2/16+L2 the entire region
Rz

L will also be empty. �
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Figure 4: The renormalized lattice: black and white circles stand for bad and
good sites, respectively. Inside the continuous line we depict the S-SE-E bad
cluster of the origin, Cb. For this configuration the range of the bad cluster
verifies Rb = 7.

We say that (x1, x2, . . . xn) with xi ∈ Z
2(L) is a South-SouthEast-East

(S-SE-E) path if xi+1 ∈ (e1, e1−e2,−e2) for all i ∈ (1, . . . , n−1). For a given

configuration η let x
S−SE−E−→ y if there is a S-SE-E path of sites connecting

x and y (i.e. with x1 = x and xn = y) such that each site in the path is not
good. Also, we define the S-SE-E bad cluster of the origin to be the random
set

Cb := (y ∈ Z
2(L) : 0

S−SE−E−→ y)

Finally, we define the range of the bad cluster of the origin, Rb, as

Rb := sup(k : Cb ∩ (Dk ∪ Dk+1) 6= ∅)

where
Dk = (y : y = a(e1 + e2) − ke2 with a ∈ (0, . . . , k))

(and we let sup(∅) = −∞). See figure 4 for an example of Cb and Rb.
Proof of Lemma 4.2.
Let τ be the renormalized time defined by the following relation

t(τ) := 33/16L2τ (4.25)

For a given configuration η, we denote by Cb
τ and Rb

τ the cluster and range
of the origin at the renormalized time τ , i.e. for the configuration ηt(τ). Let
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Rb
0 = k. At time τ = 1 Proposition 4.9 guarantees that all the tiles of the

original lattice corresponding to renormalized sites in Dk and which belong
to the cluster of the origin are empty. Indeed each of these sites has its South,
SouthEast and East neighbours which are good at time zero since they are
in Dk (if they were bad they would also belong to the cluster of the origin
and this would imply Rb

0 ≥ k + 1 in contrast with our assumption Rb
0 = k).

This implies therefore Rb
1 ≤ k − 1 = Rb

0 − 1. The same procedure can be
applied at each subsequent (renormalized) time step, yielding

Rb
τ+1 ≤ Rb

τ − 1 (4.26)

and finally
Rb

k ≤ 0. (4.27)

The latter equation implies that the South, the SouthEast and the East
neighbours of the origin are good when the renormalized time coincides with
the range of the bad cluster of the origin at time zero. Therefore, using
again Proposition 4.9, we get that the origin is certainly empty at time
t = 33/16L2(Rb

0 + 1) and therefore the first time at which the origin gets
emptied, tE , verifies

Pρ(tE > t) ≤ µρ(Rb > t16/33L−2 − 1) (4.28)

We can now use a Peierls type estimate to evaluate the probability that the
range of the origin is larger than a certain value

µρ(Rb > s − 1) ≤
∞∑

l=s

(1 − µρ(GL))l+13l (4.29)

If ρ < pOP
c and we choose ǫ < 1/3, Lemma (4.7) guarantees the existence of

an L(ρ, ǫ) such that if we let L = L(ρ, ǫ) we have α := (1−µρ(GL))3 < 3ǫ < 1.
Therefore we obtain and exponential decrease for the above probability,

µρ(Rb > s − 1) ≤ (1 − α)−1 exp(−s| log(α)|). (4.30)

This, together with (4.28), allows to conclude

Pρ(tE > t) ≤ C exp(−tβ(ρ)) (4.31)

with β(ρ) = | log(α)|16/33L(ρ, 1/3)−2. Thus the the speed γ(ρ) at which
the lattice is emptied (see definition (2.9)) satisfies γ(ρ) ≥ β(ρ) > 0 at any
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ρ < pOP
c and we conclude that ρ̃c ≥ pOP

c . Note that, as a byproduct, we have
also derived a lower bound on the velocity in terms of the crossover length
of oriented percolation (via expression (4.41) for L(ρ, ǫ)). �

We are now left with the proof of the main Lemma 4.7 which will be
achieved in several steps. Let us start by proving some results on the sufficient
conditions which allow to enlarge proper empty regions.

Let QNW−NE
L and QSW−SE

L be the two quadrangular regions inside the
continuous lines of Figure 5,

QNW−NE
L = ∪L

i=1(S2L−2(i−1) − (L − i + 1)e1 + (i − 1)e2)

QSW−SE
L = ∪L

i=1(S2L−2(i−1) − (L − i + 1)e1 − ie2)

and OL be the octagon centered around the origin formed by their union

OL := QNW−NE
L ∪ QSW−SE

L .

If OL is empty a sufficient condition in order to expand the empty region of
one step, i.e. to empty the region OL+1, is that the four key sites

KNW
L := −(L + 1)e1, KNE

L := e1 + Le2

KSW
L := −(L + 1)e2, KSE

L := (L + 1)e1 − e2

are all empty, namely

Proposition 4.10. If η(x) ∈ VOL
and η(KNE

L ) = η(KNW
L ) = η(KSW

L ) =
η(KSE

L ) = 0, then TLη ∈ VOL+1
.

Proof. From Proposition 4.5, it is immediate to verify that we can empty
all sites of the form KNW

L + (i − 1)(e1 + e2) with 1 ≤ i ≤ L + 1. The same
occurs for all sites KSE

L − (i − 1)(e1 + e2) with again 1 ≤ i ≤ L + 1, as can
be immediately be verified by using Remark 4.6. Then it is easy to verify
that we can subsequently empty all sites of the form KNE

L + (i− 1)(e1 − e2)
(KSW

L + (i − 1)(−e1 + e2)) with 1 ≤ i ≤ L + 1 since they all have the NW
and SW (NE and SE) neighbours which are empty. �

We will now prove that, if OL is empty, a sufficient condition in order to
guarantee that KNW

L is empty after L2 steps is that its NE occupied cluster
does not survive after L steps, namely ΓNE,L

KNW
L

is an empty set (and analogous

results in the other directions). More precisely if we define the events

KNW
L := (η : ΓNE,L

KNW
L

= ∅), KNE
L := (η : ΓSE,L

KNE
L

= ∅) (4.32)
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Figure 5: The octagon OL composed by QNW−NE
L and QSW−SE

L (top and
bottom regions inside the continuous lines, respectively) and the key external
sites KNW

L , KNE
L , KSE

L , KSW
L .

KSE
L := (η : ΓSW,L

KSE
L

= ∅), KSW
L := (η : ΓNW,L

KSW
L

= ∅),

the following holds

Lemma 4.11. (i) If η ∈ VOL
and η ∈ KNW

L then TL2

η(KNW
L ) = 0.

(ii) If η ∈ VOL
and η ∈ KNE

L then TL2

η(KNE
L ) = 0.

(iii) If η ∈ VOL
and η ∈ KSW

L then TL2

η(KSW
L ) = 0.

(iv) If η ∈ VOL
and η ∈ KSE

L then TL2

η(KSE
L ) = 0.

Proof. We will prove only result (i), the proofs of the other results follow
along the same lines. Let P be the square region of size L×L with vertexes
(−e1, K

NW
L , KNW

L +Le2,−e1+Le2) (region inside the dashed line in figure 5).
Recall the definition (2.4) and consider the evolution operator Tω,P restricted
to P and with fixed boundary conditions ω(x) = 0 for x ∈ OL and ω(x) = 1

for x ∈ Z
2 \ OL. For simplicity of notation we will call T̃ such operator. It

is immediate to verify that

If η ∈ VOL
and T̃L2

η(KNW
L ) = 0, then TL2

η(KNW
L ) = 0. (4.33)

We are therefore left with proving that the hypothesis in (i) imply those in
(4.33), which we will do by contradiction. First we need to introduce some
additional notation.
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Let ηs be the stationary configuration reached under T̃ after L2 steps,
ηs := T̃L2

(stationarity follows from (2.5) and |P| = L2) and P∗ be the
rectangular region P∗ : P ∪L

n=0 ne2 ∪L+1
n=0 (−ne1 − e2), we define the following

random set

B := (x ∈ P : ηs(x) = 1; (4.34)

ηs(y) = 0 if y ∈ P∗ and y = x + (n + m)e1 + me2 with n ≥ 1, m ≥ 0;

ηs(y) = 0 if y ∈ P∗ and y = x + (n + m)e1 − (m + 1)e2 with n ≥ 1, m ≥ 0)

The following properties, whose proof is postponed, hold

Proposition 4.12. If x ∈ B, then
(i) ηs(x + e2) = 1 or ηs(x + e1 + e2) = 1 (or both);
Let b(x) be rightmost among these two sites which is occupied (in ηs)
(ii) If b(x) ∈ P, then b(x) ∈ B.

By using the above properties, we will conclude the proof of lemma 4.11
by contradiction. Let us suppose that the left hand side of (4.33) does not
hold, namely ηs(KNW

L ) = 1. Since η ∈ VOL
it follows immediately that

KNW
L ∈ B. Thus we can define a sequence {xi} with i ∈ (1, . . . , L) with

x1 = KNW
L and xi = b(xi−1) for i ≤ L and it is immediate to verify that

xi ∈ NExi−1
and ηs(xi) = 1. Therefore, under the hypothesis ηs(KNW

L ) = 1,
we have identified a NE occupied path x1, . . . , xL of L sites for KNW

L such
that xL − KNW

L = me1 + Le2, which implies ΓNE,L
KNW 6= ∅. Since this result

contradicts the hypothesis of the Lemma we conclude that ηs(KNW
L ) 6= 1,

thus the condition in the left hand side of (4.33) is verified and the proof is
concluded. �

We are therefore left with proving the properties of the random set of
sites B.
Proof of Proposition 4.12
(i) follows immediately from the fact that the South-East neighbours of x,
SEx = (x + e1, x + e1 − e2), are both empty in ηs (x ∈ B implies x ∈ P and
therefore SEx ⊂ P∗ and both these sites are empty thanks to the definition
of B). Thus at least one of the two sites NEx = (x+e2, x+e1 +e2) should be
occupied, otherwise x would be empty at time s + 1 (which is forbidden by
the stationarity of ηs). We let b(x) be the rightmost among these occupied
sites.
(ii) The first property defining B, ηs(b(x)) = 1, is satisfied by definition of
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b(x). Let us prove that the second and third property are verified too. If
b(x) = x + e1 + e2, then

b(x) + (n + m)e1 + me2 = x + (n + m + 1)e1 + (m + 1)e2,

b(x) + (n + m)e1 − (m + 1)e2 = x + (n + 1 + m)e1 − me2

and the properties defining B are immediately verified. On the other hand,
if b(x) = x + e2,

b(x) + (n + m)e1 + me2 = x + ((n − 1) + (m + 1))e1 + (m + 1)e2

b(x) + (n + m)e1 − (m + 1)e2 = x + ((n + 1) + (m− 1))e1 − ((m− 1) + 1)e2.

Thus if n ≥ 2 (for all m ≥ 0) the second property defining B for site b(x)
follows from the fact that x ∈ B and the same holds for the third property if
m ≥ 1 (for all n ≥ 1). The third property is also easily established if m = 0,
since in this case b(x) + (n + m)e1 − (m + 1)e2 = b(x) + ne1 − e2 = x + ne1,
which is again empty since x ∈ B. Some additional care is required to verify
the only remaining case, i.e. the validity of second property in the case
n = 1. Notice that since b(x) = x + e2, this implies ηs(x + e2 + e1) = 0
(by definition b(x) is the rightmost occupied site in NEx). Thus the second
property is verified in the case n = 1 and m = 0. Let us consider the case
b(x) + (n + m)e1 + me2 with n = 1 and m = 1. It is easily verified that this
site is also empty in the stationary configuration ηs since its SE neighbours
are of the kind x+(1+m)e1+me2 or x+(2+m)e1+me2 (and therefore empty
since x ∈ B) , one of its SW neighbours is also of the form x+(1+m)e1+me2

and the other one is b(x) + (1 + (m − 1))e1 + (m − 1)e2. The latter, for the
choice m = 1, is b(x) + e1 which we verified to be empty. The same property
can be verified by induction for all the other values m ≥ 0 and n = 1. �

From Proposition 4.10 and Lemma 4.11 we can now derive the following
lower bound (which will be used to prove Lemma 4.7) on the probability that
after Ln := 4(L + n)2 steps we have enlarged of (at least) n steps the empty
octagonal region

Lemma 4.13. If ρ < pOP
c , then

µρ(TLnη ∈ VOL+n
|η ∈ VOL

) ≥
n−1∏

i=0

[1 − exp(−(L + i)/ξOP )]4
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Proof.

Case n = 1.
From Proposition 4.10 and Lemma 4.11 it follows that

µρ(TL1η ∈ VOL+1
|η ∈ VOL

) ≥ [µρ(KNW
L )]4

where we used the fact that the events VOL
, KNW

L , KNE
L , KSE

L and KSW
L are

independent and we used the equalities

µρ(KNW
L ) = µρ(KNE

L ) = µρ(KSE
L ) = µρ(KSW

L ) (4.35)

which easily follow from symmetry properties. Along the same lines of the
Proof of Lemma 4.4, it is now easy to prove that the probability of this event
coincides with the analogous quantity for oriented percolation, namely

µρ(KNW
L ) = µρ(ΓNE,L

KNW
L

= ∅) = µρ(ΓL
KNW

L
= ∅). (4.36)

Then the proof is completed by using the exponential bound (3.15).
Case n = 2
From Proposition 4.10 and Lemma 4.11 we get

µρ(TL2η ∈ VOL+2
|η ∈ VOL

) ≥ (4.37)

µρ(KNE
L ∩ KSE

L ∩ KSW
L ∩ KNW

L ∩ KNE
L+1 ∩ KSE

L+1 ∩ KSW
L+1 ∩ KNW

L+1)

where the couples of events at size L and L + 1 are now not independent,
µρ(KNE

L ∩ KNE
L+1) 6= µρ(KNE

L )µρ(KNE
L+1) However, since all the events that we

consider are of the form (4.32) and therefore non increasing with respect to
the partial order η ≺ η′ if η(x) ≤ η′(x) ∀x, we can apply FKG inequality [10]
and get

µρ(TL2η ∈ VOL+n
|η ∈ VOL

) ≥ (4.38)

µρ(KNE
L )µρ(KSE

L )µρ(KNW
L )µρ(KSW

L )µρ(KNE
L+1)µ

ρ(KNW
L+1)µ

ρ(KSE
L+1)µ

ρ(KSW
L+1) ≥[

µρ(KNW
L )

]4 [
µρ(KNW

L+1)
]4 ≥ [1 − exp(−L/ξOP )]4 [1 − exp(−(L + 1)/ξOP )]4

where again we used the symmetry properties (4.35), the mapping to oriented
percolation (4.36) and the fact that ρ < pOP

c .
Case n > 2.

The proof follows the same lines of the case n = 2. �
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Figure 6: Inside the dashed line we depict the region TL := (S2L − Le1)∪(e2+
QNE−NW

L ) which is emptied provided QNE−NW
L (region inside the continuous

line) is empty and the other hypothesis of Lemma 4.14 hold. The region
inside the dashed-dotted line is Λ2m,n, the rectangular region whose internal
configuration is not involved in the hypothesis of Lemma 4.14.

In the proof of the main Lemma 4.7 we will also need a condition which is
sufficient to guarantee the expansion of an empty region of the type QNE−NW

L

to the larger region TL := (S2L − Le1) ∪ (e2 + QNE−NW
L ) (region inside the

continuous line of Figure 6). In particular, we will need a sufficient condition
which does not involve the configuration inside the rectangular region Λ2m,n

with vertexes (L + 2)e2 − (m− 1)e1, (L + 2)e2 + me1,−(m− 1)e1 + (L + 2−
n)e2, me1 + (L + 2− n)e2 (region inside the dashed-dotted line in Figure 6)).

Lemma 4.14. Let m, n < L/2. If η ∈ VQNE−NW
L

, Γ
NE,L/2

KNW
L

= ∅ and Γ
SE,L/2
x =

∅ for all x such that (xe2 = L + 1 − n, 0 ≤ xe1 ≤ m) and for all x such that
(xe1 = m, L + 1 − n ≤ xe2 ≤ L + 1), then TL2

η ∈ VTL
.

Proof. Following the same lines of the proof of Proposition 4.10, it is
immediate to verify that if KNW

L and KNE
L are empty, then S2L−Le1

∪ (e2 +
QNE−NW

L ) is emptied in at most L steps. Since the hypothesis exclude the
existence of a NE (SE) path for KNW

L (KNE
L ) of length larger or equal than

L, the same arguments used in Lemma 4.11 allow to conclude that both this
sites are emptied in (at most) L2 steps and the proof is concluded. Note that
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L

L

L/4

L/4

L/4

L/4

A B

CD

M
O

J I

Q1 Q2 Q3

ℓ

Figure 7: The regions RL and its partition in the grid of c2 squares, with
c = L/ℓ (here c = 6). The region R̃L is depicted inside the dashed line.
The horizontal region plus the two ending triangles which is delimited by the
dashed dotted line is RI (see condition (v) in the text). Instead, the two
vertical regions delimited by the dashed dotted line form CI (see condition
(iv) and (vi) in the text).

all the hypothesis do not involve the value of the occupation variables inside
Λ2m,n. �

Remark 4.15. Analogous sufficient conditions in order to expand the bot-
tom (right or left) half of OL, towards the bottom (right or left direction,
respectively) can be established by applying the invariance of constraints un-
der rotations of 90 degrees.

We are now ready to prove Lemma 4.7.

Proof of Lemma 4.7. Choose two integers ℓ and L such that L = cℓ with
c > 1 also integer. Then divide RL into a grid of c columns and c rows
of width ℓ. Let Q1, . . . Qc2 be the squares identified by this grid and inside
each square consider a centered octagon Or with r < ℓ/2 and let Oi

r be the
octagon associated to Qi (octagon inside the continuous line in Figure 8(a).

We will now state a series of requirements (i)–(viii) which involve only
the configuration inside RL and are sufficient in order to guarantee that we
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(b)(a)

A B

CD

E F

G
H

r

QI

Figure 8: (a)Zoom on square QI : The empty internal octagon OI
r (guaranteed

by condition (i)) and (inside the dashed line) the empty region OI
ℓ/2 reached

thanks to conditions (ii) and (iii).(b) Region inside the bold continuous line
is emptied thanks to the conditions (i)-(vii)

can empty R̃L in (at most) L2 steps. The sufficiency of these conditions can
be directly proven by using step by step the previously proved properties (as
detailed below)

(i) There exists at lest one Qi with c < i < c2 − c such that Oi
r is

completely empty. Denote by I be the smallest integer such this property
holds and let KNW

r , KNE
r , KSW

r and KSE
r be the NW, NE, SW and SE key

sites corresponding to the octagon OI
r . Note that the conditions on i exclude

that QI belongs to the top or bottom row of squares.
(ii) The configuration in QI belongs to the events KNW

r , KNE
r ,KSW

r and
KSE

r . This, as has been proved in Lemma 4.11, is sufficient in order to expand
OI

r of one step, i.e. to reach an empty octagon Or+1;
(iii) The configuration in QI verifies also the constraints (Lemma 4.11)

required to expand further the empty octagon until reaching the border of
QI . Let OI

ℓ/2 be the empty region reached via this procedure (region inside

the dashed line in figure 8 (b).
(iv) Consider the left and right half of OI

ℓ/2. The sufficient conditions

of Lemma 4.14 (rotated of 90 and 270 degrees, see Remark 4.15) with m =
n = r hold in order to expand these regions (towards the left and the right,
respectively) via subsequent one site steps until emptying all sites in the
region RI composed by a row of squares plus two triangular region at the
right and left which are at distance ℓ/2 from the border of RL parallel to
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e1 + e2 (RI is the horizontal region delimited by the dashed-dotted line in
Figure 7). Note that at each step this sufficient conditions does not involve
any of the occupation variables inside Oj for j 6= I.

(v) Let QJ ⊂ RI (QM ⊂ RI) be the leftmost (rightmost) square such that
a vertical line drawn from J (M) crosses the bottom (top) border of RL, as
shown in Figure 7 (the existence of such QJ and QM is guaranteed, since I
does not belong neither to the top nor to the bottom row). The sufficient
conditions of Proposition 4.14 and Remark 4.15 with m = n = r holds in
order to expand with subsequent one site steps the bottom half (top half) of
OJ

ℓ/2 (OM
ℓ/2) until touching the bottom (top) border of RL. Note that again

at each step these conditions do not involve any of the occupation variables
inside Oj for j 6= I. Let CI be the region emptied via this procedure (which
is composed by the two vertical regions delimited by the dashed-dotted line
in Figure 7).

(vi) For each square Qj such that Qj ∩ CI 6= ∅ we repeat the same
procedure applied in (iv) to empty an horizontal region with the same shape
of RI by imposing necessary conditions which do not involve any of the
occupation variables inside Oj for j 6= I.

In Figure 8(b) we depict (inside the bold continuous line) the region which
is emptied thanks to all the previous requirements. This includes the region
RL \ (Rl ∪ Rr) (region inside the dashed line of Figure 8), where Rl and Rr

are two lateral strips of width ℓ3/2 (regions delimited by vertexes A,E,H,D
and F,B,C,G in Figure 8).

Let

Ai := (x : x = −(L−3/2ℓ+i)e1−L/2e2+a(e1+e2), with (i−1)⌊c/6⌋ ≤ a ≤ i⌊c/6⌋)

Bi := (x : x = −(L−3/2ℓ+i)e1−L/2e2+a(e1+e2), with i⌊c/6⌋+1 ≤ a ≤ L)

Di := (x : x = (L−3/2ℓ+i)e1+L/2e2−a(e1+e2), with (i−1)⌊c/6⌋ ≤ a ≤ i⌊c/6⌋)
Ei := (x : x = (L−3/2ℓ+ i)e1 +L/2e2 −a(e1 + e2), with i⌊c/6⌋+1 ≤ a ≤ L)

Note that ∪3/2ℓ
i=1 (Ai ∪ Bi) = Rl and ∪3/2ℓ

i=1 (Di ∪ Ei) = Rr.
(vii) There exists at least one empty site inside each Ai for all i ∈ [1, 3/2ℓ].

This implies that we can for sure empty all sites in ∪3/2ℓ
i=1 Bi. The proof can

be immediately obtained by subsequent applications of Proposition 4.5.
(viii) There exists at least one empty site inside each Di for all i ∈

[1, 3/2ℓ]. This implies that we can for sure empty all sites in ∪3/2ℓ
i=1 Ei. The
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proof can be immediately obtained by subsequent applications of Remark
4.6.

The proof of the sufficiency of conditions (i)–(viii) in order to empty R̃L is
then completed by noticing that the union between the region RL \ (Rl ∪Rr)

(emptied via conditions (i)-(vi)) and the regions ∪3/2ℓ
i=1 Bi and ∪3/2ℓ

i=1 Ei (emptied

via conditions (vii) and (viii), respectively) covers R̃L, namely R̃L ⊂ (RL \
(Rl ∪ Rr)) ∪3/2ℓ

i=1 (Bi ∪ Ei).
In order to complete the proof, we are now left with evaluating the prob-

ability of such conditions. If we now denote by P (j) the probability (w.r.t.
µρ) that the property stated in point (j) is satisfied we get

P (i) = 1 − (1 − (1 − ρ)r2

)c2−2c

P (ii ∩ iii) ≥
ℓ−r∏

j=1

[
1 − exp(−j + r

ξ
)

]4

P (iv)P (v)P (vi) ≥
[
1 − exp(−ℓ − r

ξ
)

]6rL+2rL2

P (vii) = P (viii) = (1 − ρ⌊c/6⌋)3/2l

where the second and third bound follow using Lemma 4.13 and Lemma 4.14
and for simplicity of notation here and in the following we drop the index
OP from the oriented percolation correlation length.

Note that we have chosen conditions (i)-(viii) in order that the event
defined by (i) is independent from all the others, since it is the only condition
which involves the configuration on the small octagons centered inside the
squares of the grid, i.e. the Or’s. On the other hand the events required by
conditions (ii-viii) are positively correlated (they are all non increasing event
under the partial order η ≺ η′ if η(x) ≤ η′(x) ∀x). Thus by using again FKG
inequality and the above inequalities we get

µρ((T f
RL

)L2

η ∈ V eRL
) = µρ(GL) ≥ P (i)P (ii ∩ iii)P (iv)P (v)P (vi)P (vii)2

(4.39)
Let r := 2ξ log ξ ≫ ξ, c := (1 − ρ)−3ξ2 log ξ2

, ℓ := ξ4 log ξ and define the
function L̃(ρ) as follows

L̃(ρ) := (1 − ρ)−3ξ2 log ξ2

ξ4 log ξ (4.40)
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From the above inequality we get in leading order as ξ → ∞

P (i) > 1 − exp(−(1 − ρ)−2(ξ log ξ)2)

P (ii) ≥ exp(−4/ξ)

P (iv)P (v)P (vi) ≥ 1 − exp(−ξ3 log ξ)

P (vii) = 1 − ξ4 log ξ exp(−| log ρ|/4(1 − ρ)−3ξ2 log ξ2

)

It is immediate to verify that in the limit ρ ր pOP
c , since ξ → ∞ all these

quantities go to one and for any ǫ > 0 there exists ρ(ǫ) (with ρ(ǫ) ր pOP
c

when ǫ ց 0) such that ξ̄ := ξ(ρ(ǫ)) is sufficiently large to guarantee that the
product on the left hand side of (4.39) is bounded from below by 1 − ǫ for
ρ ≥ ρ(ǫ). This implies the result of Lemma 4.7 with

L(ρ, ǫ) = L̃(ρ) (4.41)

for ρ ≥ ρ(ǫ), where L̃(ρ) has been defined in (4.41). The result for all the
densities, ρ < ρ(ǫ) < pOP

c , and with the choice L(ρ, ǫ) = L̃(ρ(ǫ)) trivially
follows from attractiveness which implies monotonicity of the probability of
the good event (on a fixed size) under ρ.

5 Discontinuity of transition: proof of Theo-

rem 3.4

The proof is composed of two steps. First we construct a set of configurations
such that the origin is frozen, i.e. it cannot be emptied at any finite time.
Then we prove that this set has finite probability at ρ = pOP

c . This is the same
strategy which we already used to prove the upper bound of ρc. However the
clusters which block the origin will now be of different type, the key feature
being the existence of North-East and North-West occupied clusters which
are mutually blocked. It is thanks to these structures that the properties of
the transition are completely different from those of oriented percolation. On
the other hand, we will see that an important ingredient which guarantees
a finite weight to these configurations is the anisotropy of typical blocked
clusters in each one of the two directions, i.e. anisotropy of conventional
oriented percolation (it is here that Conjecture 3.2 is used).

Before entering the proof of Theorem 3.4, let us establish a result which
will be used here as well as in the proof of Theorem 3.5 (ii). Recall that we
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denote by Λa,b a rectangular region with sides of length a parallel to e1 + e2

and sides of length b parallel to −e1 +e2. Let R1 be a rectangular region Λa,b

centered at the origin and let X := x1, . . . , xn with xi ∈ R1 be a North-East
path which spans R1, i.e. with x1 and xn belonging to the two sides of R1

which are parallel to −e1 + e2 (see Fig.9). Choose c and d such that 2c < a
and d > b and let R2 and R3 be two rectangular regions of the form Λc,d which
are centered on the line e1 + e2 with centers at (a − c)/(2

√
2)(e1 + e2) and

−(a− c)/(2
√

2)(e1 + e2) (we consider without loss of generality that a, b, c, d
are integer multiples of 2

√
2). Note that both R2 and R3 intersect R1 and

both sides of R1 which are parallel to −e1 + e2 lie on the two more far apart
sides of R2 and R3 along this direction. Finally, let Y := (y1, . . . , ym) and
Z := (z1, . . . , zm′) with yi ∈ R2 and zi ∈ R3 be two North-West paths which
span R2 and R3 respectively. Lemma 5.1 below states that if the three above
defined paths X, Y and Z are occupied, the subset of X which belongs to
R1 \ (R2∪R3) cannot be erased before erasing at least one site which belongs
either to Y or to Z (actually along the same lines of the proof below one can
prove the stronger result that one needs to erase at least M := (d− b)/(2

√
2)

sites in either Y or Z). Let X̃ := X \ (R2 ∪ R3) (sites inside the dashed
contour in Fig.9) and τA be the first time at which at least one site in A is
empty. The following holds

Lemma 5.1. If η0(w) = 1 for all w ∈ (X ∪ Y ∪ Z), τX̃ ≥ τY ∪Z + 1

Proof
In this proof for simplicity of notation τX̃ will be sometimes simply denoted by
τ . Let l and u to be the indexes such that xl ∈ R1\R3, xl−1 ∈ R3, xu ∈ R1\R2

and xu+1 ∈ R2 (it is immediate to verify that (u − l) ≥ (a − 2c)/
√

2). The
definition of τX̃ implies that ητ−1(xi+1) = ητ−1(xi+1) = 1 for l < i < u, thus
ητ (xi) = 1. This in turn implies that ητ (xu) = 0 or ητ (xl) = 0 (or both). We
will now prove that if the first possibility occurs this implies that at least
one site of Y should be emptied before τ . The other case, ητ (xl) = 0, can be
treated analogously leading to the result that at least one site of Z should
be emptied before τ . In both cases the result of the Lemma follows. The
first observation is that, since we consider the case ητ (xu) = 0, this implies
ητ−1(xu+1) = 0. This follows from the fact that ητ−1(xu−1) = 1, therefore
the SW neighbours of xl are not both empty at τ − 1. Thus both its NE
(which include xu+1 by definition) should be empty at τ − 1, otherwise the
emptying of xu at time τ could not occur. This procedure can be iterated to
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R1
R3

R2

Figure 9: The three rectangles R1, R2 and R3 with the corresponding occu-
pied clusters, X, Y and Z. The red (blue) line correspond to ℓX and ℓY and
their intersection point is P . Here P 6∈ X, P 6∈ Y , therefore we are in case
(b) for the proof. Black dots inside the dashed contour belong to X̃, i.e. the
set of sites which are guaranteed to be occupied before at least one site in
Y ∪ Z has been emptied.

prove that if su+i is the first time at which xu+i is emptied it verifies

su+i ≤ su+i−1 − 1 ≤ .. ≤ su − 1 = τ − 1 (5.42)

for 0 < i ≤ n − u. Since both X and Y span R̃ := R1 ∩ R2 and X connects
the two sides of R̃ which are parallel to −e1+e2 and Y those that are parallel
to e1 + e2, if we denote by ℓX (ℓY ) the continuous line obtained by joining
the sites in X (in Y ), it is immediate to verify that ℓX and ℓY do intersect.
Denote by P an intersection point for ℓX and ℓY . Since ℓX is by construction
composed only by segments of the form e2 and e1 + e2, while ℓY is composed
by segments of the form −e1 and −e1 + e2 it can be easily verified that (a)
either P belongs to the lattice (and therefore to both X and Y ) (b) or it does
not belong to the lattice but P ± (e1 + e2)/2 belong to X and P ± (e1 − e2)
belong to Y (this is for example the case for the paths depicted in Fig.9).
Let us treat case (a) and (b) separately.

(a) Since P ∈ X and P ∈ R2, we can identify an index j such that
u < j ≤ n and P = xj . Therefore by using (5.42), we get that the first
time at which P is emptied, s(P ), verifies s(P ) = sj ≤ τX̃ − 1. Since P also
belongs to Y we have τY ∪Z ≤ sj and therefore τX̃ ≥ τY ∪Z + 1.

(b) Since P −(e1 +e2)/2 ∈ X and P ∈ (R2∪xu), we can identify an index
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j such that u ≤ j ≤ n and P − (e1 + e2)/2 = xj . By using (5.42), we get that
sj ≤ τX̃ −1 and sj−1 > sj . Therefore both the NE neighbours of xj should be
empty at time sj − 1 (since its SW neighbours are not both empty). These
NE neighbours include P + (e1 − e2)/2, which therefore would be empty at
time sj − 1. Since P + (e1 − e2)/2 ∈ Y , we have proven that τY ∪Z ≤ sj − 1.
Putting above results together we conclude that τX̃ ≥ sj + 1 ≥ τY ∪Z + 2.

�

We can now proceed to prove the discontinuity of the transition.
Proof of Theorem 3.4 Fix ℓ0 = ℓ1 > 0 and let Λ0 be the rectangle with

the shape of Λℓ0,1/12ℓ0 centered at the origin and Λ1
1 and Λ2

1 be two rectangles
with the shape of Λℓ1/12,ℓ1 centered on the line e1 + e2 at distance ℓ0 −1/24ℓ0

from the origin, as shown in Figure 10. Let also ℓi = 2ℓi−2 and consider
two infinite sequences of the rectangular regions Λ1

i and Λ2
i with the shape

of Λℓi,1/12ℓi
for i even and of Λ1/12ℓi,ℓi

for i odd. As shown in Figure 10, the

centers cj
i of Λj

i for i odd (even) lie all on the e1 + e2 (−e1 + e2) line and their
distance form the origin satisfies |cj

i | = ℓi−1/2 − ℓi/24.
Let Sj

i for i even (for i odd) be the event that there exists an occupied
NE (NW ) path which connects the two short sides of Λj

i . Let also S0 be the
event that there exists an occupied NE path which contains the origin and
connects the two short sides of Λ0.

O
Λ0

Λ1

1

Λ1

2

Λ2

2

Λ2

1

Λ2

4

Λ1

3
Λ2

3

Λ1

4

e2

e1

Figure 10: We draw the first elements of the two sequences of increasing
rectangles R1,2

i . The figure is rotated of 45 degrees for sake of space, the
coordinate directions e1 and e2 are indicated.

The origin is frozen if η ∈ S0 ∩∞
i=1 S1

i ∩∞
i=1 S2

i , namely

ρ∞(ρ) ≥ µρ(S0 ∩∞
i=1 S1

i ∩∞
i=1 S2

i ) (5.43)

Indeed if we let Aj
i be the subset of the path spanning Λj

i which belongs
to Λj

i \ (Λ1
i+1 ∪ Λ2

i+1) and τi be the first time at which at least one of the
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sites in A1
i or A2

i is emptied, by using Lemma 5.1 (and the analogous result
for the structure rotated of 90 degrees) it can be easily established that: (i)
τi ≥ τi+1 + 1; (ii) the origin cannot be emptied before time τ1. For any
τ > 0 if we choose i > τ , from (i) (and the fact that τi ≥ 1) we conclude
immediately that τ1 ≥ i > τ . Therefore from (ii) the result T τη(0) = 1
immediately follows. This, together with the arbitrariness of τ immediately
leads to (5.43). Therefore, by using FKG inequality and definition 2.6 we get

ρ∞(ρ) ≥ µρ(S0)
∏

i=1,...∞
µρ(S1

i )µρ(S2
i ) (5.44)

By using the same mapping of NE oriented paths to paths of oriented perco-
lation used for Lemma 4.1 (and an analogous version in the NW direction),
it is then immediate to verify that µρ(Sj

i ) = µρ(Si), where Si are the oriented
percolation events defined in (3.18). Therefore the result ρ∞(ρc) > 0 follows
from Conjecture 3.2. �

Note that the structure which we have used to block the origin does
not contain any infinite cluster neither in the North-East nor in the South-
West directions, therefore it could be emptied if we had chosen to block
just in one direction (e.g. by taking Ax := (η : η ∈ (ENE

x ∪ ESW
x )) or

Ax := (η : η ∈ (ENW
x ∪ ESE

x ))). Oriented percolation corresponds to this
choice of blocking just in one direction, this is why our proof of discontinuity
does not apply to this case where it is indeed well known that the transition
is continuous.

6 Finite size effects: proof of Theorem 3.5

In this Section we will prove Theorem 3.5 which provides upper and lower
bounds for the scaling of the crossover length Ξ(ρ) (see definition (2.12)) in
terms of the correlation length of oriented percolation.

Proof of Theorem 3.5 (i)
Let Λ2L and ΛL/2 be two squares centered around the origin and of linear

size 2L and L/2, respectively. If we recall the definitions given in section

4.2 for regions RL and R̃L, it is immediate to verify that ΛL/2 ⊂ R̃L and
RL ⊂ Λ2L. This implies that if we take a configuration η in Λ2L and we
evolve it with occupied boundary conditions, ΛL/2 is completely empty if the
restriction of η to RL is a good configuration. Thus E(L, ρ) ≥ µρ(GL) and

35



the upper bound for the crossover length follows immediately from Lemma
4.7 and equation (4.41).

Proof of Theorem 3.5 (ii)
Let s and n be two positive integers and consider a square centered around

the origin of linear size 4ns with two sides parallel to e1 + e2 and the others
parallel to −e1 + e2, namely a region Λ4ns,4ns. Inside this square we draw
a renormalized lattice with sides parallel to the square sides and minimal
step 4s as shown in Fig. 11 and, without lack of generality, we let the origin
belong to this renormalized lattice. Then we draw around the origin the
structure shown in Fig. 11 (a) which is composed by the intersection of four
rectangles, two of the form Λ6s,s (dashed-dotted line in Fig. 11(a) and two of
the form Λs,6s (dashed line in Fig. 11 (a). Analogously, around the four sites
n.n to the origin, we draw the structure obtained by a reflection from the one
around the origin (so that for each of these sites one of the four rectangles
coincides with the one of the origin). Then we continue this procedure until
depicting one such structure centered on each site of the renormalized lattice
in such a way that the structures on two neighbouring sites coincide always
up to a reflection. This leads to the final structure depicted in Fig. 11 (b)
which contains 2N = O(2n2) rectangles: half are of the form Λ6s,s and will
be denoted by R1, . . .RN with R1 being one of rectangles around the origin;
and half are of the form Λs,6s and will be denoted by RN+1, . . .R2N . For
1 ≤ i ≤ N (i > N), we let Si be the event that there exists an occupied
NE (NW ) path which connects the two short sides of Ri. If we evolve the
dynamics with occupied boundary conditions on the square Λ2

√
2ns inscribed

inside Λ4ns,4ns (square inside the dotted line in Fig. 11(b)), the inner square
Λ√

2/2ns ⊂ Λ2
√

2ns can never be completely emptied (provided n is sufficiently
large, n > 12, in order that Λ√

2/2ns contains at least one rectangle Ri). In
other words, recalling definition (2.11), the following holds

E(
√

2ns, ρ) ≤ 1 − µρ(∩2N
i=1Si) (6.45)

The key observation to prove (6.45) is the following. Choose a rectangle Ri

and focus on the four perpendicular rectangles by which it is intersected. Let
Rj and R′

j be the two that are more far apart (see Fig. 11 (b)). If i ≤ N
(i > N), let Ai be the subset of the NE (NW) spanning cluster for Ri which
is contained in Ri\(Rj∪R′

j). The union over all rectangles of the sets Ai has
the property that none of these sites can ever be emptied. This is an easy
consequence of the result in Lemma 5.1 (and of having imposed occupied
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Q−

Q−
Q

s

R′
j

Rj

Ri

4s

6s

(a) (b)

Figure 11: (a) Λ4ns,4ns (here n = 4) and the structure around the ori-
gin.(b)The dashed and dotted-dashed rectangles form the structure described
in the text obtained by drawing around each renormalized site either the same
structure as for the origin or the one obtained by a reflection symmetry. The
dotted square corresponds to Λ2

√
2ns.

boundary conditions on Λ2
√

2ns). Therefore since Λ√
2/2ns ∩ (∪2N

i=1Ai) 6= ∅
(provided n > 12), (6.45) immediately follows.

Again we can use FKG inequality and conclude that

E(
√

2ns, ρ) ≤ 1 − µρ(S1)
2N (6.46)

Note that now all rectangles have the same size, namely µρ(Si) does not
depend on i. The probability that there does not exist a NE cluster spanning
R1 is clearly bounded from above by the product of the probabilities that
on each of the s1−z slices of the form Λ6s,sz which compose R1 there does
not exist such a cluster when empty boundary conditions are imposed on
the long sides of the slice. Therefore if we recall Conjecture 3.1 and we let
s = ξ(ρ), we get

lim
ρրρc

1 − µρ(S1) ≤ lim
ρրρc

(1 − cl
OP )ξ1−z

(6.47)

By using this inequality inside (6.46) we immediately get

lim
ρրρc

E(
√

2nξ(ρ), ρ) ≤ lim
ρրρc

1 − exp
[
−8(n + 1)2 exp(−aξ1−z)

]
(6.48)
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where a = | log(1 − cl
OP )| (and we used the fact that (1 − cl

OP )ξ1−z → 0 and
log(1 − x) > −2x for 0 < x < 1/2 and 2N < 2(n + 1)2). Therefore, if we let
n(ρ) = 1/4 exp(aξ(ρ)1−z/2) we get

lim
ρրρc

E(c1ξ exp(c2ξ
1−z), ρ) < 1/2 (6.49)

with c1 = 1/(2
√

2) and c2 = | log(1 − cl
OP )|/2. By recalling the definition of

the crossover length (2.12) the proof is concluded. �

As discussed in the Section 2 another possible definition of the crossover
length would have corresponded to defining E(L, ρ) in (2.12) as the proba-
bility that the origin is empty in the stationary configuration which is reached
after L2 steps when we evolve the configuration with filled boundary condi-
tions on ΛL. In this case the previous proof would have to be modified. First
one has to traslate the structure in order that the origin is at the center of
rectangle R1. Then the events Si for i ≥ 2 remain unchanged but S1 should
now be the event that there exist a structure which contains the origin similar
to the one used in the previous Section to prove discontinuity (see Fig. 10)
and this up to the size of R1 (i.e. with the longest rectangles Λi spanning R1

in the parallel direction). Then by combining the arguments used to prove
Theorem 3.4 and the above Therem 3.5 (ii) it is not difficult to see that the
origin is blocked by this structure, thus leading again to inequality (6.45).
Finally, to establish the upper bound (6.49) for the new E(L, ρ), one needs
to use a conjecture on the properties of oriented percolation which is slightly
more general than 3.2 and is again expected to be correct on the basis of
finite size scaling and numerical simulations.

7 A related Kinetically Constrained Spin Model

In this section we define a Kinetically Constrained Spin Model that we
introduced in [17], which is related to the cellular automaton that we have
considered in previous sections. Configurations η are again sets of occupation
variables ηx ∈ {0, 1} for x ∈ Z

2 distributed at time 0 with µρ, but evolution
is not deterministic. Dynamics is given by a continuous time Markov process
with generator L acting on local functions f : Ω → R as

Lf(η) =
∑

x∈Λ

cx(η) [f(ηx) − f(η)] (7.50)
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with

ηx
z :=

{
1 − ηx if z = x
ηz if z 6= x ;

(7.51)

The rates cx(η) are such that the flip in x can occur only if the configuration
satisfies the same constraint that we required for the cellular automaton in
order to empty the same site, namely

cx(η) :=





0 if ηx 6∈ Ax

ρ if η ∈ Ax and ηx = 0
1 − ρ if η ∈ Ax and ηx = 1

(7.52)

It is immediate to check that the process satisfies detailed balance with re-
spect to µρ, which is therefore a stationary measure for the process. This
property is the same as for the process without constraints, namely the case
cx(η) = ρ(1 − η(x)) + (1 − ρ)η(x), but important differences occur due to
the presence of constraints. In particular for our model µρ is not the unique
invariant measure. For example, since there exist configurations which are
invariant under dynamics, any measure concentrated on such configurations
is invariant too. A direct relation can be immediately established with the
cellular automaton studied in previous sections: configurations which are left
invariant by the stochastic evolution are all the possible final configurations
under the deterministic cellular automaton evolution (since all sites in such
configurations are either empty or such that if η(x) = 1 than η 6∈ Ax). A
natural issue is whether on the infinite lattice, despite the existence of sev-
eral invariant measures and of blocked configurations, the long time limit of
all correlation functions under the Markov process approaches those of the
Bernoulli product measure for almost all initial conditions. By the spectral
theorem this occurs if and only if zero is a simple eigenvalue of the generator
of the dynamics, i.e. if Lf0(η) = 0 with f0 ∈ L2(µρ) implies that f0 is con-
stant on almost all configurations, i.e. on all except possibly a set of measure
zero w.r.t. µρ (see [12] and, for a specific discussion on Markov processes
with kinetic constraints, see Theorem 2.3 and Proposition 2.5 of [3]).
By the result in Lemma 4.1 it is immediate to conclude that the process is
for sure not ergodic for ρ > pOP

c , since for example the characteristic func-
tion of set FNE−SW

0 is an invariant function which is not constant. On the
other hand, Lemma 4.2 establishes irreducibility for ρ < pOP

c , namely that
a.s. in µρ there exists ∀x a path η1 = η, . . . ηn = ηx such that ηi+1 = ηy

i and
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cy(ηi) = 1 3. Ergodicity for ρ < pOP
c can then be immediately established

thanks to irreducibility and the product form of Bernoulli measure (see [3]
Proposition 2.5). Therefore at pOP

c an ergodicity breaking transition occurs.
Furthermore, by using the result of our Lemma 4.7, in [4] it has been proved
that the spectral gap of this process is strictly positive at any ρ < pOP

c , i.e.
correlations decay exponentially in time to their equilibrium value.
Finally, for the connection with the physics of liquid/glass transition, let us
analyze the Edwards-Anderson order parameter q which corresponds to the
long time limit of the connected spin-spin correlation function,

q =
∑

η

µρ(η)q(η) =
∑

η

µρ(η) lim
t→∞

lim
|Λ|→∞

Eη

[
∑

x∈Λ

|Λ|−1η(x)ηt(x) − ρ2

]

(7.53)
where Eη denotes the mean over the Markov process started at η0 = η.
Ergodicity guarantees that q = 0 for ρ < pOP

c . For ρ ≥ pOP
c one can obtain

for a fixed initial configuration η the following inequality

q(η) ≥ (1 − ρ̃)2ρ̃ob/(1 − ρ̃ob)

where ρ̃ is the fraction of occupied sites in η and ρ̃ob is the fraction of oc-
cupied sites remained after performing on η the emptying process defined
by the cellular automaton. Under the hypothesis that both these quantities
have vanishing fluctuations in the large L limit with respect to the Bernoulli
measure for the initial configuration, one finds that for ρ ≥ pOP

c it holds

q ≥ (1 − ρ)2 ρ∞(ρ)

1 − ρ∞(ρ)
(7.54)

and therefore q(ρc) > 0.
Finally, as explained in [17], the fact that the crossover length for the cel-

lular automaton diverges faster than exponentially toward the critical den-
sity should correspond to (at least) an analogous divergence in the relaxation

3This follows immediately from the proof of Lemma 4.2: we have shown that for the
cellular automaton if we consider a sufficiently large finite lattice ΛL around x there exists
a path from η which subsequently empties all sites in ΛL. For all the moves ηi → ηi+1 = η

y
i

in this path the rate c
y
i is non zero since the constraint for the cellular automaton and the

stochastic process are the same. We can construct analogously a path which goes form ηx

to a configuration which is empty in ΛL. Then, by connecting the two paths we get an
allowed (i.e. with strictly positive rates) path from η to ηx.
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times for this stochastic model.
As discussed in [17], the first order/critical character of this dynamical tran-
sition is similar to the character experimentally detected for liquids/glass
and more general jamming transitions. To our knowledge, this is the first
example of a finite dimensional system with no quenched disorder with such
a dynamical transition.
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