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These lectures are an elementary, self-contained introduction to relativistic hydrodynamics, and
to its application to ultrarelativistic heavy-ion collisions. Some knowledge of thermodynamics and
special relativity is assumed.

I. INTRODUCTION

The use of relativistic hydrodynamics in the context
of high-energy physics dates back to Landau [1], long be-
fore QCD was discovered. High-energy collisions produce
many hadrons of different sorts going into all directions.
One expected that tools from statistical physics would
shed light on this complexity. The light eventually came
from the deep-inelastic scattering of electrons, which led
to the parton model, and hydrodynamics was of little
use. It is only in recent years, with the advent of heavy-
ion experiments at RHIC, that the interest in relativistic
hydrodynamics has been revived. One of the first RHIC
papers [2] reported on the “observation of a higher de-
gree of thermalization than at lower collision energies”.
Several phenomena were observed which suggested that
the matter produced in these collisions behaves collec-
tively, like a fluid. It was even claimed in 2005 that the
RHIC experiments had created a “perfect liquid”, with
the lowest possible viscosity.

Relativistic hydrodynamics is interesting because it is
simple and general. It is simple because the information
on the system is encoded in its thermodynamic prop-
erties, i.e., its equation of state. Hydrodynamics is also
general, in the sense that it relies on only one assumption,
unfortunately a very strong one: local thermodynamic
equilibrium. No other assumption is made concerning
the nature of the particles and fields, their interactions,
the classical/quantum nature of the phenomena involved.

These lectures are an elementary introduction to rel-
ativistic hydrodynamics. I hope they can be useful to
beginners in the field, both theorists and experimental-
ists. They are not meant as a review. There are several
recent reviews on the subject [3, 4, 5]. Sec. II recalls
basic results of thermodynamics and statistical physics
which are commonly used in the context of hydrodynam-
ics. Sec. III derives the equations of inviscid hydrody-
namics. Sec. IV describes the hydrodynamical evolution
of a heavy-ion collision; the details may be skipped upon
first reading. Sec. V derives some observables which are
used as signatures of hydrodynamical behaviour. Finally,
Sec. VI briefly describes the domain of validity of hydro-
dynamics. The readers who are interested in relativis-
tic hydrodynamics in itself should try and work out the
problems given in appendix.

II. THERMODYNAMICS

We first recall standard identities of thermodynamics
and statistical physics, which are often used in hydrody-
namical models.

A. General identities

The differential of internal energy is given by the ther-
modynamic identity

dU = −PdV + TdS + µdN, (1)

where P is the pressure, V the volume, S is the entropy,
T the temperature, µ the chemical potential. In nonrel-
ativistic systems, N is generally the number of particles,
which is conserved. In a relativistic system, the num-
ber of particles is not conserved: it is always possible
to create a particle-antiparticle pair, provided energy is
available. In this case, N no longer denotes a number of
particles, but a conserved quantity, such as the baryon
number. If there are several conserved quantities Ni, one
need simply replace µdN with

∑

i µidNi. In these notes,
we refer to N as to the baryon number, and to µ as the
baryon chemical potential, but N can be any conserved
quantity. The second important difference in relativistic
systems is that the mass energy mc2 is included in the
internal energy.

The first two terms in the right-hand side of Eq. (1)
have transparent physical interpretations as the elemen-
tary work and heat transferred to the system, respec-
tively. The third term is mathematically as simple as the
two first terms, but lacks such a simple interpretation 1.

The energy is a extensive function of the extensive vari-
ables V , S, N , which means that

U(λV, λS, λN) = λU(V, S, N). (2)

1 It does in fact have a simple interpretation in the more complex
situation where a particle is exchanged between two different
systems, e.g., between two solutions with different concentrations
at the same pressure and temperature, as occurs in chemistry. It
then plays the role of a thermodynamic potential, in the sense
that it chooses the lowest possible value.
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Differentiating with respect to λ, taking λ = 1, and using
Eq. (1), one obtains

U = −PV + TS + µN. (3)

Differentiating this equation and using again Eq. (1), one
obtains the Gibbs-Duhem relation

V dP = SdT + Ndµ (4)

In hydrodynamics, the useful quantities are not the to-
tal energy, entropy and baryon number, but rather their
densities per unit volume, the energy density ǫ ≡ U/V ,
the entropy density s ≡ S/V , and the baryon density
n ≡ N/V . All these densities are intensive quantities.
Eqs. (3) and (4) give respectively

ǫ = −P + Ts + µn. (5)

and

dP = sdT + ndµ. (6)

Differentiating Eq. (5) and using Eq. (6), one obtains

dǫ = Tds + µdn. (7)

These identities will be used extensively below.

B. Baryonless fluid

If the baryon density n vanishes throughout the fluid,
the corresponding terms disappear from Eqs. (5-7). The
same holds if the chemical potential µ is zero throughout
the fluid. This shows that “zero baryon density” is in
practice equivalent to “no conserved baryon number”.
Such a fluid has only one intensive degree of freedom.

The fluid produced in a heavy-ion collision has three
conserved charges, which are the net number of quarks
(i.e., number of quarks minus number of antiquarks) of
each flavour u, d, s. There is an excess of u and d quarks
over antiquarks because of the incoming nuclei. How-
ever, this excess turns out to be small at ultrarelativistic
energies because the number of produced particles over-
whelms the number of incoming nucleons. In practice,
doing a hydro calculation with n = 0 throughout the
fluid is a rough approximation, but a reasonable one.

C. Isentropic process

The entropy of an inviscid fluid is conserved through-
out its evolution, as we shall see in Sec. III. This is why
isentropic processes are important. In an isentropic pro-
cess, both S and N are conserved, and only the volume
V changes. The variations of entropy density and baryon
density are given by

ds

s
=

dn

n
= −dV

V
(8)

To compute the variation of energy density, we use
Eq. (1), which reduces to dU = −PdV :

dU = d(ǫV ) = ǫdV + V dǫ = −PdV, (9)

hence

dǫ

ǫ + P
= −dV

V
=

ds

s
=

dn

n
. (10)

D. Classical ideal gas

An ideal gas is made of independent particles, and is
best described by the grand-canonical ensemble of statis-
tical mechanics. We choose the natural system of units
kB = 1 (one recovers the conventional unit system by
replacing everywhere T → kBT and S → S/kB in the ex-
pressions below). For simplicity, we consider a gas made
of identical, spinless particles, each of which carries a
baryon number equal to unity (although such particles
do not exist).

In a finite volume V , the values of the momentum
~p are discrete (from quantum mechanics). The average
number of particles with momentum ~p is 1/(exp((E~p −
µ)/T ) ± 1), where E~p ≡

√

~p2 + m2 is the particle en-
ergy (we choose the natural unit system where c = 1),
and the sign depends on whether the particle is a boson
or a fermion. For sake of simplicity, we take the classical
limit where this number is much smaller than unity: both
Bose-Einstein and Fermi-Dirac statistics then reduce to
Maxwell-Boltzmann statistics:

1

e(E~p−µ)/T ± 1
≃ e(−E~p+µ)/T ≪ 1. (11)

The particle density, energy density and kinetic pressure
are random variables in the grand-canonical ensemble.
Their average values are

n =
1

V

∑

~p

e(−E~p+µ)/T

ǫ =
1

V

∑

~p

E~p e(−E~p+µ)/T

P =
1

V

∑

~p

pxvxe(−E~p+µ)/T , (12)

where px and vx denote the components of the particle
momentum and velocity along an arbitrary axis x. This
expression of the kinetic pressure is obtained by evalu-
ating the total momentum transferred per unit time by
elastic collisions with a unit surface perpendicular to the
x-axis. In other terms, it is the momentum flux along x.
This definition will be used later. For a large volume, the
sum over momenta is written as an integral:

1

V

∑

~p

→
∫

d3p

(2π~)3
. (13)
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It is an instructive exercise to check that the kinetic
pressure coincides with the thermodynamic pressure, i.e.,
that it satisfies the expected thermodynamic identities.
The Gibbs-Duhem relation, Eq. (6), gives n = (∂P/∂µ)T .
On the other hand, the kinetic pressure (12) satisfies
(∂P/∂µ)T = P/T . Putting together these two relations,
we obtain

P = nT, (14)

which is nothing but the ideal gas law. However, it is not
obvious that P and n defined by Eq. (12) satisfy Eq. (14).
This requires a little algebra. The velocity vx is given by
Hamilton’s equation vx = ∂E~p/∂px. One then writes

vxe(−E~p+µ)/T = −T
∂

∂px

(

e(−E~p+µ)/T
)

. (15)

Inserting this identity in the 3rd Eq. (12), and integrating
by parts over the variable px, one recovers Eq. (14).

In order to compute the pressure, one uses rotational
symmetry of the integrand in Eq. (12), and one replaces
pxvx by ~p · ~v/3 = pv/3. For massless particles, this gives
immediately

P =
ǫ

3
. (16)

This relation holds approximately for a quark-gluon
plasma at high temperatures, where interactions are
small due to asymptotic freedom.

The integrals in Eq. (12) can easily be evaluated for
massless particles. For a baryonless quark-gluon plasma
(µ = 0), this gives

n =
g

π2~3
T 3

ǫ = 3P = 3nT, (17)

where g is the number of degrees of freedom
(spin+colour+flavour), 16 for gluons and 24 for light u
and d quarks, i.e., g ≈ 40. Note that n denotes here the
particle density, not the baryon density. Eq. (5) gives
ǫ + P = Ts, so that

s = 4n. (18)

The entropy per particle is approximately 4 in a quark-
gluon plasma. (the ratio is in fact 3.6 for bosons, 4.2 for
fermions.)

For nonrelativistic particles, note that P ≪ ǫ. This is
because ǫ includes the huge mass energy mc2.

III. EQUATIONS OF RELATIVISTIC

HYDRODYNAMICS

Standard thermodynamics is about a system in global
thermodynamic equilibrium. This means that intensive
parameters (P , T , µ) are constant throughout the vol-
ume, and also that the system is globally at rest, which

means that its total momentum is 0. In this section,
we study systems whose pressure and temperature vary
with space and time, and which are not at rest, such as
indian atmosphere during monsoon. We however request
that the system is in local thermodynamic equilibrium,
which means that pressure and temperature are varying
so slowly that for any point, one can assume thermo-
dynamic equilibrium in some neighbourhood about that
point. Here, “neighbourhood” has the same meaning as
in mathematics, and there is no prescription as to the ac-
tual size of this neighbourhood, or “fluid element”. There
is, however, a general condition for local thermodynamic
equilibrium to apply, which is that the mean free path
of a particle between two collisions is much smaller than
all the characteristic dimensions of the system. We come
back to this important issue in Sec. VI.

The fluid equations derived under the assumption of
local thermodynamic equilibrium are called inviscid, or
ideal-fluid, equations.

A. Fluid rest frame

The rest frame of a fluid element is the galilean frame
in which its momentum vanishes. All thermodynamic
quantities associated with a fluid element (for example,
ǫ, P , n) are defined in the rest frame. They are therefore
Lorentz scalars by construction (for the same reason as
the mass of a particle is a Lorentz scalar). Local thermo-
dynamic equilibrium implies that the fluid element has
isotropic properties in the fluid rest frame. This is a very
strong assumption. It will be used extensively below.
It is, in fact, the only non-trivial assumption of inviscid
hydrodynamics.

B. Fluid velocity

The velocity ~v of a fluid element is defined as the ve-
locity of the rest frame of this fluid element with respect
to the laboratory frame. The 4-velocity uµ is defined by

u0 =
1√

1 − ~v2

~u =
~v√

1 − ~v2
, (19)

where we have chosen a unit system where c = 1. u0 is
the Lorentz contraction factor. The 4-velocity transforms
as a 4-vector under Lorentz transformations. The square
of a 4-vector is a Lorentz scalar, and we indeed obtain

uµuµ = (u0)2 − ~u2 = 1. (20)

In hydrodynamics, the fluid velocity is a function of
(t, x, y, z), as are the thermodynamic quantities ǫ, P and
n. The fluid velocity is also referred to as the “collective”
velocity.
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C. Baryon number conservation

In nonrelativistic fluid dynamics, the equation of mass
conservation is

∂ρ

∂t
+ ~∇(ρ~v) = 0, (21)

where ρ is the mass density. A relativistic conservation
equation must take into account the Lorentz contraction
of the volume by a factor u0. Recall that the baryon
density n is always defined in the fluid rest frame. The
baryon density in the moving frame is therefore nu0.
Replacing ρ with nu0 in the above equation and using
~u = u0~v, one obtains the following covariant equation:

∂µ(nuµ) = 0, (22)

where we use the standard notation ∂µ = ∂/∂xµ. This is
a conservation equation for the 4-vector nuµ. nu0 is the
baryon density, and n~u is the baryon flux.

In the rest frame of the fluid, the baryon flux vanishes.
In nonrelativistic fluid dynamics, this is how the fluid
rest frame is defined. In the relativistic case, the baryon
flux could in principle be 6= 0 in the fluid rest frame, de-
fined as the frame where the momentum density is zero:
the momentum of baryons could be compensated by the
momentum of baryonless particles (pions, gluons). How-
ever, local thermodynamic equilibrium implies isotropy.
If there was a non-zero current, it would define a direc-
tion in space and isotropy would be lost. The baryon
flux therefore vanishes in inviscid hydrodynamics. In rel-
ativistic viscous hydrodynamics, which studies deviations
from local thermodynamic equilibrium, the baryon flux
may be non-zero in the local rest frame: this transport
phenomenon is called diffusion.

D. Energy and momentum conservation

The conservation of total energy and momentum gives
4 local conservation equations, each of which is analogous
to the equation of baryon-number conservation. Baryon
conservation gives a conserved current, which is a con-
travariant 4-vector Jµ = nuµ. Energy and momentum
are also a contravariant 4-vector, therefore the associ-
ated conserved currents can be written as a contravari-
ant tensor T µν , where each value of ν corresponds to a
component of the 4-momentum, and each value of µ is a
component of the associated current. Specifically,

• T 00 is the energy density

• T 0j is the density of the jth component of momen-
tum, with j = 1, 2, 3.

• T i0 is the energy flux along axis i.

• T ij is the flux along axis i of the jth component of
momentum.

The momentum flux T ij is usually called the pressure
tensor. Kinetic pressure is precisely defined as the mo-
mentum flux (see Sec. II D).

In the fluid rest frame, the assumption of local ther-
modynamic equilibrium strongly constrains the energy-
momentum tensor. Isotropy implies that the energy flux
T i0 and the momentum density T 0j vanish. In addition,
it implies that the pressure tensor is proportional to the
identity matrix, i.e., T ij = Pδi,j , where P is the thermo-
dynamic pressure. The energy-momentum in the fluid
rest frame is thus

T(0) =







ǫ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P






(23)

In order to obtain the energy-momentum tensor in a
moving frame, one does a Lorentz transformation. In
these lectures, we shall only need the expression of T µν

to first order in the fluid velocity. To first order in the
velocity ~v, the matrix of a Lorentz transformation is

Λ =







1 vx vy vz

vx 1 0 0
vy 0 1 0
vz 0 0 1






. (24)

Under a Lorentz transformation, the contravariant tensor
T µν

(0) transforms to

T µν = Λµ
αΛν

βT αβ
(0) , (25)

which can be written as a multiplication of (4 × 4) ma-
trices

T = ΛT(0)Λ
T , (26)

where ΛT denotes the transpose of Λ. Eq. (24) shows
that Λ is symmetric, ΛT = Λ. Keeping only terms to
order 1 in the velocity ~v, Eq. (26) gives

T =







ǫ (ǫ + P )vx (ǫ + P )vy (ǫ + P )vz

(ǫ + P )vx P 0 0
(ǫ + P )vy 0 P 0
(ǫ + P )vz 0 0 P







(27)
We first note that T µν is symmetric: the momentum

density T 0i and the energy flux T i0 are equal. This is be-
cause Lorentz transformations preserve the symmetries
of tensors, and the tensor of the fluid at rest (23) is
symmetric. The symmetry of T µν is a nontrivial con-
sequence of relativity. In nonrelativistic fluid dynamics,
the energy flux and the momentum density differ. (Recall
that nonrelativistic energy does not include mass energy.)
They have different dimensions: the ratio of energy flux
and momentum density has the dimension of a velocity
squared, which is dimensionless in relativity.

The momentum density is (ǫ + P )~v. In the nonrela-
tivistic limit, it is ρ~v, where ρ is the mass density. Since



5

P ≪ ǫ and ǫ ≃ ρ~v in the nonrelativistic limit, we re-
cover the correct limit. What replaces the mass density
for a nonrelativistic fluid is not ǫ, as one would naively
expect, but ǫ + P : pressure contributes to the inertia of
a relativistic fluid.

Finally, we prove that the energy-momentum tensor
for an arbitrary fluid velocity is

T µν = (ǫ + P )uµuν − Pgµν , (28)

where gµν ≡ diag(1,−1,−1,−1) is the Minkovski met-
ric tensor. One easily checks that this equation re-
duces to Eq. (23) in the rest frame of the fluid, where
uµ = (1, 0, 0, 0). In addition, both sides of Eq. (28) are
contravariant tensors, which means that they transform
identically under Lorentz transformations. Since they are
identical in one frame, they are identical in all frames,
which proves the validity of Eq. (28).

The conservation equations of energy and momentum
are

∂µT µν = 0. (29)

Eqs. (22), (28) and (29) are the equations of inviscid rel-
ativistic hydrodynamics. Together with the equation of
state of the fluid, which is defined as a functional rela-
tion between ǫ, P and n, they form a closed system of
equations.

For sake of simplicity, only continuous flows will be
studied, in which all quantities vary continuously with
space-time coordinates. Inviscid hydrodynamics has a
whole class of discontinuous solutions, which are called
“shock waves”. The entropy of the fluid increases
through a shock, while it is constant for a continuous
flow (see tutorial 1). Shock waves usually appear when
the fluid undergoes compression, not expansion. They
are therefore of limited relevance to heavy-ion collisions 2.

E. Sound waves

Sound is defined as a small disturbance propagating in
a uniform fluid at rest. The energy density and pressure
are written in the form

ǫ(t, x, y, z) = ǫ0 + δǫ(t, x, y, z)
P, (t, x, y, z) = P0 + δP (t, x, y, z), (30)

where ǫ0 and P0 correspond to the uniform fluid, and δǫ
and δP correspond to the small disturbance. To study
the evolution of this disturbance, we linearize the equa-
tions energy-momentum conservation by keeping only
terms up to first order in δǫ, δP and ~v. For this purpose,

2 In fact, shock waves do appear in the expansion when the equa-
tion of state has a first-order phase transition. These “rarefaction
shocks” produce little entropy, at most 7% [6].

the expression Eq. (27) will suffice, since it is correct to
first order in the velocity. The resulting conservation
equations are

∂ǫ

∂t
+ ~∇ · ((ǫ + P )~v) = 0

∂

∂t
((ǫ + P )~v) + ~∇P = ~0. (31)

Inserting Eq. (30) and linearizing, they simplify to

∂(δǫ)

∂t
+ (ǫ0 + P0)~∇ · ~v = 0

(ǫ0 + P0)
∂~v

∂t
+ ~∇δP = ~0. (32)

The first equation expresses that the density decreases if

the velocity field diverges, ~∇ · ~v > 0, i.e., if the volume
increases. This is energy conservation. The second equa-
tion is Newton’s second law, that the inertia of the fluid
multiplied by its acceleration must be equal to the force.

The force per unit volume is −~∇P . It pushes the fluid
towards lower pressure.

We now define the velocity of sound cs by:

cs =

(

∂P

∂ǫ

)1/2

. (33)

c2
s is inversely proportional to the compressibility of the

fluid. A “soft” equation of state corresponds to a small
cs. The derivative in Eq. (33) is well defined only if we
specify along which line the partial derivative is taken. It
will be shown in the tutorial that in ideal fluid dynamics,
the entropy per baryon of a fluid element is conserved
as a function of time. If the fluid is initially uniform,
then the entropy per baryon remains constant through-
out the fluid at all times. This means that the partial
derivative must be taken along the lines of constant en-
tropy per baryon, s/n (thus corresponding to the adia-
batic compressibility). In the case of a baryonless quark-
gluon plasma, there is only one degree of freedom, and
no ambiguity in defining the derivative. Using Eqs. (7)
and (6), one can rewrite cs as

cs =

(

d lnT

d ln s

)1/2

(34)

for a baryonless fluid.
Using the definition (33), we write δP = c2

sδǫ in
Eq. (32). We then eliminate ~v between the two equa-
tions:

∂2(δǫ)

∂t2
− c2

s∆(δǫ) = 0. (35)

This is a wave equation in 3+1 dimensions, with velocity
cs. This equation means that small perturbations in a
uniform fluid travel at the velocity cs, independent of the
shape of the perturbation: there is no sound dispersion
in an inviscid fluid.
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F. Ideal gas

If the interaction energies between the particles are
small compared to their kinetic energies, one can express
the hydrodynamic quantities in terms of the individual
particle properties: conserved baryon number B, velocity
~p and momentum pµ. We use the notation vµ for (1, ~v),
or equivalently, vµ = pµ/p0. Please note that in spite
of the notation, vµ does not transform like a 4-vector
under a Lorentz boost. The baryon current and energy-
momentum tensor of a small fluid element of volume V
are

nuµ =
1

V

∑

particles

Bvµ

T µν =
1

V

∑

particles

pνvµ. (36)

With these definitions, it is straightforward to check that
nu0, T 00 and T 0i correspond to baryon density, energy
density and momentum density, respectively. The corre-
sponding fluxes are obtained by weighting these quanti-
ties with the particle velocity ~v.

Using the assumption of local thermodynamic equilib-
rium, one can replace these quantities by their thermal
averages. The average number of particles with momen-
tum ~p is given by Boltzmann statistics (we neglect quan-
tum statistics for simplicity), Eq. (11), where we replace
E~p with the energy in the fluid rest frame E∗. Using
Eq. (13), one can do the following substitution:

1

V

∑

particles

→
∫

d3p

(2π~)3
e(−E∗+µ)/T . (37)

This result will be useful later. We finally show that
the expressions in Eqs. (36) are covariant. For this pur-
pose, we write vµ = pµ/p0, and we note that d3p/p0 is
a Lorentz scalar, so that nuµ and T µν are explicitly co-
variant.

IV. HYDRODYNAMICAL EXPANSION

The energy of a nucleus-nucleus collision at RHIC is
100 GeV per nucleon. This means that each incoming nu-
cleus is contracted by a Lorentz factor γ ≈ 100: nuclei are
thin pancakes colliding. The collision creates thousands
of particles in a small volume. These particles interact.
If these interactions are strong enough, the system may
reach a state of local thermodynamic equilibrium. Equi-
librium is at best local, certainly not global: global equi-
librium applies to a gas in a closed box, which stays there
for a long time and becomes homogeneous. The system
formed in a heavy-ion collision starts expanding as soon
as it is produced, and is far from homogeneous.

Can QCD tell whether or not the system reaches ther-
modynamic equilibrium? There is not yet an answer to
this question, but a lot of progress has been made on this

issue in recent years, due in particular to works on QCD
plasma instabilities [7]. Another question is: can we tell
from experimental data whether the system has reached
local equilibrium? This issue will be briefly touched upon
in Sec. VI. You should keep in mind that local equilib-
rium is, at best, an approximation. Even if it turns out
to give reasonable results, it is not the end of the story.

In this section, we assume that the system of interact-
ing fields and particles produced in the collision reaches
local thermodynamic equilibrium at some point. Its sub-
sequent evolution follows the laws of inviscid hydrody-
namics. Since there are first-order partial differential
equations, their solution is uniquely determined once ini-
tial conditions are specified, together with an equation of
state.

A. Initial conditions

The z-axis is chosen as the collision axis, and the origin
is chosen such that the collision starts at z = t = 0.
The two nuclei pass through each other in a time tcoll ∼
0.15 fm/c at RHIC. This time is a factor 100 smaller
than the other characteristic dimension, the transverse
size R of the nucleus. This clear hierarchy between the
two scales is crucial.

The initial conditions are fixed at some initial time t0
(or more generally, on a space-like hyperboloid). A com-
plete set of initial conditions involves the 3 components of
fluid velocity, the energy density and the baryon density,
at each point in space.

If the thermalization time t0 is short enough, the trans-
verse components vx and vy of the fluid velocity are zero.
The reason is that the parton-parton collisions which
produce particles occur on very short transverse scales.
They produce particles whose transverse momenta are
distributed isotropically in the transverse plane. Isotropy
implies that there is no preferred direction, and that the
transverse momentum averaged over a fluid element van-
ishes. This part of the initial conditions is the only one
on which there is fairly general agreement. This is the
reason why the clearest experimental signatures of hydro-
dynamic behaviour are those associated with “transverse
flow”, as we shall see below: if there is no transverse col-
lective motion initially present in the system and if we
see it in the data, it means that something has happened
inbetween which has to do with hydrodynamics.

We now discuss the initial value of the longitudinal flow
velocity vz . All particles are produced in a very short in-
terval around z = t = 0. The standard prescription is
that their longitudinal motion is uniform, so that their
velocity is vz = z/t: all particles at a given z have the
same vz, hence it is also the fluid velocity. This prescrip-
tion is boost-invariant, in the following sense: if one does
a homogeneous (“homogeneous” means that the origin
is unchanged) Lorentz transformation with a velocity v
along the z axis, all three quantities vz, z, t are trans-
formed, but vz = z/t still holds in the new frame. This is
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t

z

z=tz=-t

z/t=const.
τ=const.

FIG. 1: Nucleus-nucleus collision in the (z, t) plane. The thick
lines are the trajectories of the colliding nuclei, which are
moving nearly at the velocity of light. The lines of constant
z/t are also lines of constant space-time rapidity ys.

because uniform motion remains uniform under a Lorentz
transformation. This “boost-invariant” prescription was
first proposed by Bjorken [8], and it is supported by mod-
els inspired by high-energy QCD, such as the colour glass
condensate.

There is no consensus on the initial density profile.
There are constraints, both theoretical and experimental,
and prescriptions which satisfy these constraints. On the
theoretical side, there is locality: it implies that a given
point (x, y) in the transverse plane, the initial density
can depend only on the thickness functions TA and TB

of the two colliding nuclei at this point, defined as the
integrals

TA,B(x, y) =

∫ +∞

−∞

ρA,B(x, y, z)dz, (38)

where ρA(x, y, z) (resp. ρB) is the density of nucleons per
unit volume in nucleus A (resp. B). The initial energy
density is ǫ(x, y, z) = f(z, TA(x, y), TB(x, y)), where f is
some function. Various prescriptions can be found in the
literature

• The initial energy density is proportional to the
density of binary collisions TATB [5].

• The initial entropy density is proportional to the
density of participants, which is essentially TA+TB

on the overlap area, and 0 outside.

• The colour glass condensate gives a more compli-
cated expression [9]. At z = 0, it gives an initial
multiplicity density approximately proportional to
min(TA, TB) [10].

All these prescriptions reproduce well the observed cen-
trality dependence of the global multiplicity.

B. Longitudinal expansion

We have chosen as initial condition vz = z/t for the
longitudinal fluid velocity. It may in fact happen that
vz = z/t holds throughout the hydrodynamical expan-
sion, which is the original Bjorken picture. We now dis-
cuss under which condition vz = z/t at all times. We
first study the simple case z = 0, and rewrite the second
of Eqs. (31), projected on the z axis:

∂

∂t
((ǫ + P )vz) +

∂

∂z
P = 0. (39)

vz = 0 at all times implies ∂P/∂z = 0. The physical
interpretation is obvious: if there is a pressure gradient
in the z direction, the fluid is accelerated, and vz varies
with time.

In order to generalize this result to z 6= 0, we first
introduce new variables:

τ =
√

t2 − z2

ys =
1

2
ln

(

t + z

t − z

)

. (40)

τ is the proper time, and ys is the space-time rapidity.
Lines of constant τ and constant ys are represented in
Fig. 1. In the neighbourhood of z = 0, one has τ ≃ t and
ys ≃ z/t. Our condition thus becomes (∂P/∂ys)τ = 0 at
ys = 0, in the new variables.

We then use the property of boost invariance men-
tioned above: any value of z with |z| < t can be brought
to z = 0 by means of a homogeneous Lorentz boost in
the z direction. Now, such a boost leaves τ unchanged,
and shifts ys by a constant. Hence it leaves (∂P/∂ys)τ

unchanged. As a consequence, our result (∂P/∂ys)τ = 0
holds for all values of ys. It is the general condition under
which vz = z/t at all times. The Bjorken picture predicts
flat rapidity spectra, which are not observed experimen-
tally. However, observables associated with transverse
momenta (in particular pt spectra, the pt dependence of
elliptic flow) are not very sensitive to this rapidity de-
pendence. This is the reason why many hydrodynamical
calculations still use the Bjorken picture.

A nice feature of the Bjorken model is that it is insen-
sitive to the details of the thermalization process: since
the initial condition vz = z/t is preserved by the subse-
quent evolution, the precise value of the initial time is not
important. If, on the contrary, ∂P/∂ys 6= 0, the scaling
vz = z/t is broken by the hydrodynamical evolution and
the value of the initial time does matter. This parameter
introduces additional model dependence.

We now derive the evolution of energy density in the
Bjorken picture. We assume that the transverse compo-
nents of the velocity, together with their spatial deriva-
tives, remain negligible. As will be shown below, this is
a good approximation as long as t ≪ R, where R is the
typical transverse size of the colliding system. We write
the first of Eqs. (31) at z = 0. The Bjorken prescription
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vz = z/t gives vz = 0 and ∂vz/∂z = 1/t:

∂ǫ

∂t
+

ǫ + P

t
= 0. (41)

The generalization for arbitrary z is obtained by trans-
forming to (τ, ys) coordinates, and replacing (∂/∂t)z with
(∂/∂τ)ys

, and t with τ in the above equation.
This equation shows that the energy density decreases

with time, which is quite natural since the system is ex-
panding. Neglecting the transverse expansion, the vol-
ume increases like the longitudinal size, i.e., like t. The
energy of a comoving fluid element scales like ǫt. Eq. (41)
can be recast in the form

d(ǫt) = −Pdt. (42)

This shows that the total energy also decreases. This is
due to the negative work of pressure forces, dE = −PdV .
This result is by no means trivial. It relies on our assump-
tion of local equilibrium, which implies that the pressure
is isotropic. P in Eq. (42) comes from T 33 in Eq. (23),
i.e., it is really the longitudinal pressure. For an ideal gas,
Eq. (36) shows that T 33 =

∑

particles pzvz. If the particles

are initially produced with vz = z/t (as is for instance
the case in the colour glass condensate), the longitudinal
pressure vanishes at z = 0. A non-zero longitudinal pres-
sure can only appear as a result of the thermalization
process. Most of the work on thermalization is about
understanding how this longitudinal pressure appears.

Unlike the energy, the total entropy and baryon num-
ber of a comoving fluid element are constant: dE =
−PdV means that dS = dN = 0 (see Eq. (1)). This
is a general result for inviscid hydrodynamics (see tuto-
rial 1 in appendix). Physically, it means that there is no
heat diffusion between fluid cells, and no baryon num-
ber diffusion. To show this explicitly, we use Eq. (10) to
rewrite Eq. (41) as

∂s

∂t
+

s

t
= 0, (43)

which shows that s t is constant. Similarly, Eq. (22) with
vz = z/t shows immediately that n t is constant.

It is worth noting that there is no direct evidence
for longitudinal cooling, Eq. (42), from experimental
data. Experimental data are particles, which are emitted
mostly at the final stage of the evolution. Our knowledge
of initial stages is indirect. Longitudinal cooling implies
a higher initial energy, for a given final energy. This
can be observed only through a direct signature of the
initial temperature. The most promising observables in
this respect are electromagnetic observables, “thermal”
dileptons and photons, which are mostly emitted at the
early stages, and sensitive to the temperature, but they
are plagued by huge backgrounds. Although there is
no experimental evidence for longitudinal cooling, it is
clearly favoured theoretically: models of particle produc-
tion based on perturbative QCD produce an initial en-
ergy significantly higher than the final energy, typically
by a factor of 3 [11], and require substantial longitudinal
cooling to match with the data.

C. Orders of magnitude

Can we use experimental data to estimate the initial
density in a heavy-ion collision? A popular estimate is
the “Bjorken” estimate of the energy density [8], defined
as the ratio of the final “transverse” energy (defined as
E sin θ, where θ is the relative angle between the par-
ticle velocity and the collision axis, or polar angle) to
the initial volume. This estimate neglects the longitudi-
nal cooling (42), and therefore underestimates the initial
energy density.

Since entropy is conserved, and particle number is ap-
proximately proportional to entropy (see Eq. (18)), it is
probably safer to assume that the number of particles
remains constant throughout the evolution. It is inter-
esting to note that while perturbative QCD estimates fail
in calculating the energy, they give a gluon multiplicity
comparable to the observed multiplicity [11], which seems
to support this assumption.

In order to estimate the initial density, we assume for
simplicity that the longitudinal velocity of particles re-
mains constant, i.e., vz = z/t. Then, the particle density
at time t is

n(t) =
1

S

dN

dz
=

1

St

dN

dvz
, (44)

where S it the transverse area of the interaction region,
S ≈ πR2 ≈ 100 fm2 for a central Au-Au collision, and
N is the particle multiplicity. Since we are interested
in the particle density in the fluid rest frame, we choose
to estimate it near z = 0, where the fluid is at rest.
The PHOBOS collaboration has measured [12] the po-
lar angle distribution of charged particles in central Au-
Au collisions at 100 GeV per nucleon 3. The result is
dNch/dθ ≃ 700 at θ = π/2. Now, vz = v cos θ. For par-
ticles emitted near θ = π/2 with velocity v, this gives
dN/dvz = (1/v)dN/dθ. The factor (1/v) gives on av-
erage a factor 1.25, and charged particles are only 2/3
of the produced particles, so that dN/dvz ≃ 1300. This
gives numerically, for a central Au-Au collision at the top
RHIC energy,

n(t) ≃ 13

t
, (45)

where n is in fm−3 and t in fm/c.
This estimate must be compared with our estimate of

the particle density in a quark-gluon plasma, Eq. (17).
Lattice QCD predicts that the transition to the quark-
gluon plasma occurs near Tc ≈ 192 MeV [13]. Since
~c = 197 MeV·fm, and we have chosen c = 1 throughout
the calculations, Eq. (17) gives

n ≃ 3.75 fm−3. (46)

3 What is measured is in fact the pseudorapidity (η) distribution,
defined by dN/dη = sin θ dN/dθ, which coincides with the polar-
angle distribution near θ = π/2.



9

at Tc. Comparing with Eq. (45), one sees that the sys-
tem is above the critical density only if t < 3.5 fm/c:
the lifetime of the quark-gluon plasma is approximately
3.5 fm/c. This is of course a rough estimate: the density
profile is not homogeneous throughout the surface S (the
maximum density, at the center, is approximately twice
larger than the average density, and the lifetime is corre-
spondingly larger), and we have neglected the transverse
expansion (which, on the contrary, reduces the lifetime).

D. The onset of transverse expansion

The initial transverse velocity of the fluid is 0, but
the acceleration is in general not zero. We rewrite the
second of Eqs. (31), projected on the x-axis, assuming
that vx = 0. This gives

(ǫ + P )
∂vx

∂t
= −∂P

∂x
, (47)

and a similar equation along the y-axis. The fluid is ac-
celerated if there are pressure gradients. Using Eqs. (10)
and (33), we rewrite this equation as

∂vx

∂t
= −c2

s

∂ ln s

∂x
. (48)

Assume for simplicity an initial gaussian entropy density
profile

s(x, y) ∝ exp

(

− x2

2σ2
x

− y2

2σ2
y

)

, (49)

where σx and σy are the rms widths of the distribution.
For a central Au-Au collision, σx = σy ≃ 3 fm. For a
non-central collision, one chooses in general the x-axis
as the direction of impact parameter (see Fig. 2), and
σx < σy . For a Au-Au collision at impact parameter
b = 7 fm, σx ≃ 2 fm, σy ≃ 2.6 fm.

Inserting Eq. (49) in Eq. (48), and assuming constant
cs for simplicity, we integrate over t to obtain, for small
t,

vx =
c2
sx

σ2
x

t, vy =
c2
sy

σ2
y

t. (50)

Note that we have integrated from t = 0. Thermalization
certainly requires some time, and hydrodynamics cannot
apply at very early times. On the other hand, the system
is expanding freely in the vacuum, and it is clear that the
transverse expansion starts immediately: it does not wait
until thermalization is achieved, so that it is probably
reasonable to start the transverse expansion at t = 0.

Eq. (50) shows that the transverse expansion, unlike
the longitudinal expansion, is a very smooth process.
This may not be intuitive: the pressure is very high at
early times, and pressure gradients are largest too, so
that a huge force acts on the system (see Eq. (47)); but

x
φ

y

FIG. 2: Non-central nucleus-nucleus collision in the trans-
verse (x, y) plane. The x-axis is chosen as the direction of
the impact parameter. The yellow surface is the overlap area
between the nuclei, where particles are produced. The den-
sity in this area can be approximated by a gaussian, Eq. (49).
The azimuthal angle of an outgoing particles with the x-axis
is denoted by φ.

this is compensated by the large inertia ǫ + P , resulting
in a linear increase of the transverse fluid velocity.

Another important result is that σx < σy results in
〈v2

x〉 > 〈v2
y〉, where angular brackets denote averages

weighted with the initial density: the tranverse expan-
sion is larger along the smaller dimension, because the
pressure gradient is larger. This results in more particles
emitted near φ = 0 and φ = π, i.e., parallel to the x-axis,
than near φ = ±π/2, parallel to the y-axis. This effect
corresponds to a cos 2φ term in the Fourier decomposi-
tion of the azimuthal distribution:

dN

dφ
∝ 1 + 2v2 cos 2φ. (51)

where v2 is a positive coefficient, which is called “ellip-
tic flow”. The observed dependence of v2 on transverse
momentum and particle species is considered the most
solid evidence for hydrodynamical behaviour in nucleus-
nucleus collision. It will be studied in Sec. V D.

E. The time scale of transverse expansion

Our equation for longitudinal cooling, Eq. (42), was
derived neglecting transverse expansion. If there was no
transverse expansion, the system would cool forever and
no energy would be left in the central rapidity region.
Transverse expansion effectively acts as a cutoff for lon-
gitudinal cooling. The typical time when transverse ex-
pansion becomes significant is, for dimensional reasons,
σx/cs or σy/cs. A convenient scaling variable is provided
by the following quantity [14]:

R ≡
(

1

σ2
x

+
1

σ2
y

)

−1/2

. (52)
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The total transverse energy can be computed, to a very
good approximation, by assuming that Eq. (42) holds un-
til t = R/cs, and that the energy remains constant for
t > R/cs [15]. This is what I mean by saying that trans-
verse expansion acts as a cutoff for longitudinal cooling.

An important feature of hydrodynamical models is
that the momentum distributions of outgoing particles
depends on the equation of state, therefore experimental
data constrain the equation of state. Most of this de-
pendence is a consequence of the simple picture above:
after t = R/cs, the energy and entropy of the fluid are es-
sentially constant. Since the multiplicity is proportional
to the entropy, this also implies that the average energy
per particle remains constant. The transverse energy per
particle thus reflects the thermodynamic state of the sys-
tem at t ≈ R/cs. Since the energy per particle scales like
the temperature (see Eq. (17)), it gives a direct infor-
mation on the temperature of the system at t ≈ R/cs.
The entropy density at this time is proportional to the
particle density, derived in Sec. IVC. Experimental data
imply a low temperature, which in turn means that the
equation of state is “soft” (see Eq. (34)). Hydrodynam-
ical models favour a soft equation of state, even softer
than predicted by lattice QCD.

Quite naturally, R/cs is also the characteristic time for
the build-up of elliptic flow: v2 at t = R/cs is typically
half its final value. The numerical value of R/cs for a
Au-Au collision is 3.6 fm/c for b = 0 (central collision),
2.7 fm/c for b = 7 fm. This explains why elliptic flow is
considered a signature of early pressure.

The final value of elliptic flow is a good illustration of
how the choice of initial conditions may influence the re-
sults. Early hydrodynamical calculations had predicted a
v2 as large as seen as RHIC, and this was the main reason
for the success of inviscid hydrodynamics. However, it is
now widely believed that these apparent agreement was
due to unrealistic initial conditions. Let us briefly explain
why. Hydrodynamics predicts that v2 is proportional to
the eccentricity ε of the initial distribution, defined as

ε ≡
σ2

y − σ2
x

σ2
y + σ2

x

. (53)

Early hydrodynamical calculations estimated ε using
participant scaling, or binary collision scaling (see
Sec. IVA). It was discovered recently that the colour
glass condensate predicts a significantly higher eccentric-
ity [9, 10].

Another effect may increase the initial eccentricity, and
was suggested by experimental data: one expects ε to
vanish for central collisions, but experimentally, a non-
zero v2 is seen even for the most central collisions. Sur-
prisingly, the effect is larger with smaller nuclei: the value
of v2 in central Cu-Cu collisions is almost twice as large
as in central Au-Au collisions. The PHOBOS collabora-
tion has suggested that this may be due to fluctuations in
the positions of nucleons within the nuclei [16, 17]. There
have been several attempts by STAR and PHOBOS to
measure these fluctuations directly, but they are difficult

to isolate from other effects. The present situation is that
our knowledge of the initial density profile is much more
uncertain than was usually thought a few years ago.

V. PARTICLE SPECTRA AND ANISOTROPIES

The fluid eventually becomes free particles which reach
the detector. In this section, we derive some properties
of the momentum distribution of particles emitted by a
fluid. The transition between a fluid (where the parti-
cles undergo many collisions) and free particles cannot be
described by fluid mechanics itself. If inviscid hydrody-
namics holds throughout most of the expansion, one can
reasonably assume that these late stages of the expan-
sion do not alter the essential features of the momentum
distributions. We therefore assume that the momentum
distribution of outgoing particles is essentially the mo-
mentum distribution of particles within the fluid, towards
the end of the hydrodynamical expansion, and that the
fluid consists of independent particles (ideal gas). These
assumptions form the basis of the common “Cooper-Frye
freeze-out picture” [18]. Here, we further assume that the
fluid is baryonless, and that momentum distributions are
given by Boltzmann statistics:

dN

d3xd3p
=

2S + 1

(2π~)3
exp

(

−E∗

T

)

, (54)

where 2S + 1 is the number of spin degrees of freedom,
and E∗ is the energy of the particle in the fluid rest frame.
T is called the freeze-out temperature.

A. Comoving particles and fast particles

The Boltzmann factor (54) is maximum when the en-
ergy E∗ in the fluid rest frame is minimum. For a given
fluid velocity, E∗ is minimum when the particle is at rest
in the fluid rest frame, in which case E∗ = m. This
in turn means that the particle velocity in the labora-
tory equals the fluid velocity: the particle is comoving
with the fluid, and has a momentum pµ = muµ. For
light particles, this corresponds to low transverse mo-
menta: even if the fluid has a transverse velocity as large
as 0.7, the corresponding transverse momentum is ap-
proximately equal to the mass, i.e., only 140 MeV/c for
pions, 500 MeV/c for kaons. In this low momentum re-
gion, the momentum distribution depends on how the
fluid velocity is distributed, and few general results can
be obtained.

In this section, we study particles which move faster
than the fluid, which we call “fast particles”. For fast
particles, E∗ is larger than m. For a given momentum
~p of the particle, the minimum of E∗ occurs if the fluid
velocity is parallel to ~p: fast particles are more likely to
be emitted from regions where the fluid velocity is par-
allel to their velocity (which means that the fluid and
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the particle have the same azimuthal angle φ and rapid-
ity y). This result can be justified rigorously using the
saddle-point method [19]. For simplicity, we study parti-
cles emitted at θ = π/2, i.e, pz = 0 (zero rapidity), and
we derive properties of the transverse momentum dis-
tributions. Since the transverse momentum is invariant
under Lorentz boosts along z, our final results are valid
also at non-zero rapidity.

The energy of the particle in the fluid rest frame can be
generally written as E∗ = pµuµ in the laboratory frame.
The reason is twofold: 1) pµuµ is a Lorentz scalar, and is
independent of the frame where it is evaluated; 2) pµuµ

reduces to p0 if the fluid velocity is zero. Assuming that
the fluid velocity is parallel to the particle velocity, and
that pz = 0, we obtain

E∗ = pµuµ = mtu
0 − ptu, (55)

where pt is the transverse momentum of the particle and

mt =
√

pt + m2 its “transverse mass”, which equals the
energy for a particle with pz = 0. The definition of a
fast particle is that its velocity exceeds the maximum
fluid velocity, i.e., pt > mu (or equivalently, mt > mu0)
everywhere. For a fast particle, E∗ is minimum if u is
maximum: fast particles are emitted from the regions
where the fluid velocity is largest.

B. Radial flow

We first study the transverse momentum distribution
of particles emitted in central collisions. Rotational sym-
metry in the transverse plane allows us to write dpxdpy =
2πptdpt. Eqs. (54) and (55) then give

dN

2πptdptdpz
∝ exp

(−mtu0 + ptu

T

)

, (56)

where u is the maximum transverse fluid 4-velocity at
zero rapidity, according to the above discussion. If the
fluid is at rest, i.e., u = 0 and u0 = 1, one expects that
the spectra are exponential in mt, with the same slope
1/T for all particles. It is a general feature of Boltzmann
statistics that kinetic energies associated with thermal
motion are always of order T , and independent of the
particle mass. This is precisely what is seen in proton-
proton collisions: Fig. 3 displays the momentum distribu-
tions of various hadrons in log scale, as a function of the
transverse mass. N denotes the number of particles per
event. Pions, kaons, protons and antiprotons are on par-
allel lines. Protons are slightly above antiprotons: this
shows that the net baryon number is not strictly zero,
and that our “baryonless” picture is only an approxima-
tion. The lines of protons and antiprotons are above the
line of pions (if one extrapolates the latter to larger mt),
roughly by a factor 2. This factor 2 corresponds to the
spin degrees of freedom in Eq. (54): S = 1/2 for protons
and 0 for pions and kaons. By contrast, the kaon line
is lower than the pion line. This phenomenon is known
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FIG. 3: mt spectra of identified hadrons produced in p-p
collisions near pz = 0 (data from [20], replotted).

as “strangeness suppression”: less strange particles are
produced in elementary particles than expected on the
basis of statistical models.

We now show that mt-scaling is broken if the fluid
moves: on top of thermal motion, there is now a col-
lective velocity v, the fluid velocity, which applies to all
particles within the fluid. The kinetic energy associated
with this collective motion is mv2/2 in the nonrelativis-
tic limit. It increases with the particle mass, and one
expects that heavier particles will have larger kinetic en-
ergies if collective flow is present. To see the breaking
of mt scaling explicitly, we compute the slope of the mt

spectrum by taking the log of Eq. (56) and differentiating
with respect to mt. We use the fact that p2

t = m2
t − m2

implies dpt/dmt = mt/pt:

d

dmt
log

(

dN

2πptdptdpz

)

=
−u0 + umt/pt

T
. (57)

For a given mt, heavier particles have a smaller pt. If
u > 0, this gives a positive contribution to the slope,
resulting in flatter mt-spectra4. This is clearly seen in
Au-Au collisions, Fig. 4: (anti)proton spectra and kaon
spectra are much flatter than pion spectra. This is gener-
ally considered evidence for transverse flow. In the case
of central collisions, which have rotational symmetry in
the (x, y) plane, transverse flow is also called “radial”
flow.

C. Chemical versus kinetic freeze-out

Comparing Figs. 3 and 4, it is clear that the rela-
tive abundances of pions, kaons, and (anti)protons, also

4 Please note that Eq. (57) applies only to fast particles, for which
pt > mu and mt > mu0, so that the slope is always negative.
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FIG. 4: mt spectra of identified hadrons produced in cen-
tral Au-Au collisions near pz = 0 (data from [20], replotted).
Yields are normalized per event, which explains why they are
≈ 200× larger than in p-p collisions.

known as particle ratios, do not change dramatically from
pp to Au-Au collisions: what happens between pp and
Au-Au is essentially a redistribution of the transverse
masses for heavier particles.

Now, the number of particles of a given type emitted
by a fluid element is obtained by integrating the Boltz-
mann factor, Eq. (54), over momentum. As a conse-
quence, particle ratios only depend on the temperature.
The fact that particle ratios are the same in pp and Au-
Au collisions means that the temperature is the same:
the temperature extracted from particle ratios is called
the “chemical freeze-out temperature”, and its value is
Tc ≃ 170 MeV [21]. A detailed calculation shows that
the kaon/pion ratio is in fact larger in Au-Au collisions
than in pp collisions, and that there is no “strangeness
suppression” in Au-Au collisions.

While the same value of the temperature explains both
the particles ratios and the mt spectra in pp collisions, it
is no longer the case for Au-Au collisions. If T in Eq. (57)
was the same for pp and Au-Au collisions, transverse
flow would result in much flatter pion spectra for Au-Au
than pp collisions. The phenomenon of transverse (or
radial) flow nicely explains the slopes of mt spectra of
identified hadrons, but the price to pay is a lower value
of the temperature. This temperature is referred to as
the temperature of “kinetic freeze-out”, and its typical
value at RHIC is Tf ≃ 100 MeV.

The fact that Tf < Tc is usually interpreted in the
following way: inelastic collisions, which maintain chem-
ical equilibrium, stop below Tc; below Tc, particle abun-
dances are frozen, but there are still enough elastic col-
lisions to maintain Boltzmann distributions of momenta,
i.e., kinetic equilibrium. Kinetic equilibrium is eventu-
ally broken when the temperature becomes lower than
Tf , the kinetic freeze-out temperature.

D. Elliptic flow

We now study non-central collisions, and we define the
x and y axes as in Fig. 2. We rewrite Eq. (54) using
dpxdpy = ptdptdφ and Eq. (55), where we take into ac-
count the fact that the maximum fluid velocity at zero
rapidity may also depend on φ:

dN

ptdptdpzdφ
∝ exp

(−mtu0(φ) + ptu(φ)

T

)

. (58)

According to Eq. (50), the fluid velocity is larger on the x-
axis than on the y-axis, which is the phenomenon referred
to as elliptic flow. This effect can be parameterized in the
form

u(φ) = u + 2α cos 2φ, (59)

where α is a positive coefficient characterizing the mag-
nitude of elliptic flow, and u is the average over φ of
the maximum fluid velocity in the φ direction. In semi-
central Au-Au collisions at RHIC, experimental data sug-
gest that α ≃ 4%, which means that elliptic flow at the
level of the fluid is a small effect. Using u0 =

√
u2 + 1,

and expanding to first order in α, we obtain

u0(φ) = u0 + 2vα cos 2φ, (60)

where v ≡ u/u0 is the maximum fluid velocity. We then
insert Eqs. (59) and (60) into Eq. (58) and expand to
first order in α. Comparing with Eq. (51), we obtain the
value of elliptic flow, v2:

v2 =
α

T
(pt − vmt) . (61)

This equation explains the essential features of the differ-
ential elliptic flow of identified particles, shown in Fig. 5.
For light particles such as pions, mt ≃ pt, and v2 in-
creases essentially linearly with pt. This is already a non-
trivial result. For heavier particles, mt is larger at the
same value of pt, resulting in smaller v2

5. This strong
mass ordering is clearly seen in the data: kaons and pro-
tons have smaller v2 than pions at the same pt. Eq. (61)
shows that the mass ordering is significant only if v is a
significant fraction of the velocity of light. RHIC data
on v2 can therefore be considered strong evidence for rel-

ativistic collective flow. Fits to data suggest that the
maximum fluid velocity may be as large as 0.7.

VI. VISCOSITY AND THERMALIZATION

A. Types of flows

The various types of flows occurring in fluid mechanics
are classified according to the values of three dimension-
less parameters:

5 Please note that Eq. (61) only applies to fast particles, pt > mu
and mt > mu0, which implies v2 > 0.
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FIG. 5: Elliptic flow of identified hadrons as a function of
transverse momentum [22]. v2 versus pt is often called “dif-
ferential” elliptic flow.

• The Knudsen number Kn ≡ λ/R is the ratio of
the mean free path λ of a particle between two
collisions, and a characteristic spatial dimension of
the system, R. Applicability of hydrodynamics re-
quires Kn ≪ 1.

• The Mach number Ma ≡ v/cs is the ratio of the
characteristic flow velocity, v, to the sound veloc-
ity, cs. It can be shown (see tutorial 2 in appendix)
that if Ma ≪ 1, the density is almost uniform
throughout the fluid, which defines incompressible

flow: whether a fluid is compressible or not depends
on how fast it is flowing.

• The Reynolds number is defined by Re ≡
Rv/(η/ρ), where η is the shear viscosity, and ρ the
mass density (which must be replaced by ǫ+P for a
relativistic fluid), and R and v are defined as above.
If Re ≫ 1, the flow can be considered inviscid.

There is a fundamental relation between these two num-
bers. Transport theory indeed shows that η/ρ ∼ λcs,
which implies

Re × Kn ∼ Ma. (62)

This is a very general relation6. Since the validity of a
fluid description requires Kn ≪ 1, Eq. (62) shows that
there are essentially three types of flows, which corre-
spond to three different branches of fluid dynamics.

6 There is a dimensionless proportionality constant of order 1 be-
tween the two sides of Eq. (62), whose precise values depends on
the interaction. It is ≃ 1.6 for a dilute gas of nonrelativistic hard
spheres.

• Compressible flows, for which Ma is of order unity.
Since Kn ≪ 1, this in turn implies Re ≫ 1: com-
pressible flows are inviscid. This part of fluid me-
chanics is called gas dynamics.

• Viscous flows, for which Re is of order unity. Since
Kn ≪ 1, this in turn implies Ma ≪ 1: viscous
flows are incompressible.

• Incompressible, inviscid flows (sometimes called
“ideal”), for which Ma ≪ 1 and Re ≫ 1. This
is where turbulence occurs.

In the case of a heavy-ion collision, the fluid is expanding
into the vacuum: this is obviously a compressible flow,
where Ma is of order unity. The real question is the
validity of the fluid description, i.e., the actual value of
Kn.

B. Viscous corrections

The dynamics of gases expanding into the vacuum has
been extensively studied in nonrelativistic gas dynam-
ics [23]. The Knudsen number Kn provides a natural
small parameter for these problems, and observables can
be computed by an expansion in powers of Kn:

• The lowest order, i.e., the limit Kn → 0, corre-
sponds to inviscid hydrodynamics.

• The first correction, linear in Kn, is also linear in
the viscosity, since Kn ∝ 1/Re ∝ η. The corre-
sponding fluid equations are Navier-Stokes equa-
tions, or viscous hydrodynamics. They involve sev-
eral transport coefficients (diffusion, shear and bulk
viscosities), and the energy-momentum tensor is no
longer symmetric.

• The next correction, in Kn2, is described by more
complicated equations called the Burnett equa-
tions [24].

A heavy-ion collision at RHIC produces a few thousand
particles. It is intuitively obvious that the fluid picture
is at best an approximation, and that there are sizeable
corrections to this picture. The question of whether or
not hydrodynamics applies to heavy-ion collisions is no
longer a qualitative question, but rather a quantitative
one. This is what viscosity is about: the goal of viscous
hydrodynamics is to provide a more accurate description
of heavy-ion collision, by taking into account the leading
corrections to the ideal-fluid picture [25, 26].

We conclude with estimates of the Knudsen number
at RHIC. The actual value of the viscosity of hot QCD
is not known at present. Estimates have been obtained
from lattice QCD [27] but there are still controversial.
Interestingly, a universal lower bound on the viscosity
to entropy ratio, which might hold for all field theories,
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has been proposed on the basis of a correspondence with
black-hole physics [28]. This universal bound is

η

s
>

~

4π
. (63)

This lower bound on η can be converted into an upper
bound on the Reynolds number. Since Kn ∼ 1/Re, this
in turn gives a lower bound on the Knudsen number,
which is of order 0.1 for central Au-Au collisions. This
means that viscous corrections at RHIC are expected to
be 10% at least. A recent study of elliptic flow [29] sug-
gests that the magnitude of viscous corrections is at least
30%. This in turn would mean that the viscosity of hot
QCD is significantly larger than the KSS bound, Eq. (63).

Inviscid hydrodynamics, which was the focus of these
lectures, gives a satisfactory explanation of several RHIC
data at the qualitative level: mass ordering of mt spectra,
differential elliptic flow. However, they are unable to re-
produce all the data quantitatively. Taking into account
viscous corrections will be a major step in this respect.
This is an ongoing programme. A lot of progress has
already been made, and quantitative results, with com-
parison to RHIC data, are now appearing [30]. Eventu-
ally, one should be able to estimate both the equation of
state and the viscosity of hot QCD from heavy-ion exper-
iments. Hydrodynamic calculations may even shed light
on the initial density profile, i.e., on the early stages of
the collision, and the particle production itself. Hydro-
dynamics was crucial in our understanding of heavy-ion
collisions at RHIC. It will be even more important at
LHC, where the quark-gluon plasma will last longer than
at RHIC, and the whole expansion will be dominated by
hydrodynamics.
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APPENDIX A: PROBLEMS

Tutorial 1: Equations of inviscid hydrodynamics

1. We introduce the notations D ≡ uµ∂µ and ∆µν ≡
gµν − uµuν . How do these quantities simplify for a fluid
at rest?

2. Using Eq. (20), show that uν∂µuν = 0 and ∆µνuν =
0.

3. Multiply the equations of energy-momentum conser-
vation (28-29) by uν and show that uµ∂µǫ+(ǫ+P )∂µuµ =
0.

4. Using Eqs. (5), (7) and (22), show that ∂µ(suµ) = 0.
What is the interpretation of this equation?

5. Show that D(s/n) = 0. What is the interpretation
of this result?

6. Multiply the equations of energy-momentum con-
servation by ∆ρν and show that

(ǫ + P )Duρ = ∆ρν∂νP. (A1)

What is the non-relativistic limit of this equation?

7. Explain why the previous equation, together with
the equation of entropy conservation and baryon number
conservation, exhausts all the information contained in
the equations of hydrodynamics.

Tutorial 2: Steady flows

The flow in a heavy-ion collision is strongly time de-
pendent. Studying steady flows is somewhat academic in
this context. However, simple exact results can be easily
obtained for steady flows, and they provide useful insight
into the physics of hydrodynamics.

1. Show that Eq. (A1) for ρ = 0, in the case of a steady
flow (where all quantities are time independent), can be
recast in the form

d lnu0 = − dP

ǫ + P
, (A2)

where the differential is taken along a streamline.

2. Take the nonrelativistic limit of this result for an
incompressible fluid and comment on the result.

3. For a baryonless fluid, show that u0T is constant
along a streamline.

4. The velocity of sound cs is defined as cs =
√

dP/dǫ.
Show that the result of Q1 can be rewritten as

du

u
= − c2

s

v2

ds

s
, (A3)

where v = u/u0 is the fluid velocity. The Mach number
of a flow is defined by Ma≡ v/cs. If Ma≪ 1, one says
that the flow is incompressible. Explain why.

5. Consider an elementary flux tube, and denote by
Σ the cross-section area of the flux tube at some point.
Explain why suΣ is a constant along the flux tube. Write
this in differential form.

6. Eliminate the fluid 4-velocity u between the results
of Q4 and Q5 and show that

dΣ

Σ
=

(

c2
s

v2
− 1

)

ds

s
(A4)

along the flux tube. How does the density evolve di-
verging streamlines, depending on whether the flow is
supersonic or subsonic?

7. Consider the case where a nozzle emits a baryonless
gas, which then expands into the vacuum. List some
consequences of the results obtained in this tutorial.
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Tutorial 3: The Riemann problem

The Riemann problem is a one-dimensional time-
dependent flow which can be solved exactly. The initial
conditions are: at time t = 0, the half space x < 0 is
filled with a uniform fluid at rest, with energy density ǫ0,
while the half space x > 0 is empty. We shall determine
the flow profile at t > 0. Since there is no characteristic
length or time scale in the problem, both the fluid veloc-
ity and the density depend through x and t only through
the combination ζ = x/t: the flow profile has the same
shape at all positive times, only its size increases linearly
with time.

1. Sketch the density profile at positive time.
2. We first determine the point where the matter starts

to flow to the right. At this point the fluid velocity is 0
by continuity, but the derivatives of v with respect to x
and t are generally not 0. Eqs. (31) simplify to:

∂ǫ

∂t
+ (ǫ + P )

∂v

∂x
= 0

∂P

∂x
+ (ǫ + P )

∂v

∂t
= 0. (A5)

Rewrive these partial differential equations as ordinary
differential equations in the reduced variable ζ = x/t.

3. Eliminate the pressure from this equation using
dP = c2

sdǫ. Show that the resulting system of equations
has a nontrivial solution only if ζ = ±cs. In the situation
considered here, one expects dǫ/dζ < 0 and dv/dζ > 0.
Show that this implies ζ = −cs. At which value of ζ does
the matter start to flow? Comment on this result.

4. Since the equations are Lorentz-invariant, at every
point one can perform a Lorentz boost such that the fluid
velocity is 0 in the new frame. Explain, without algebra,
why the above result generalizes to ζ = (v−cs)/(1−vcs)
at a point where the fluid velocity is not zero.

5. Invert this relation and draw the velocity profile
as a function of x for an ideal quark-gluon plasma with
sound velocity cs = 1/

√
3.

APPENDIX B: SOLUTIONS

1. Tutorial 1

1. D = u0(∂t + ~v · ~∇) where ~v = ~u/u0 is the fluid
velocity. In the nonrelativistic limit, u0 = 1 and D is
the convective derivative, i.e., the time derivative along
a comoving fluid element. For a fluid at rest, D is the
time derivative and ∆µν = diag(0,−1,−1,−1) projects
spacetime onto space.

2. By taking the derivative of uνuν = 1, one obtains
uν∂µuν = 0. From the definition of ∆µν it is obvious
that ∆µνuν = 0.

3. The equation of energy-momentum conservation
can be written as the sum of 3 terms:

(ǫ + P )uµ∂µuν + ∂µ((ǫ + P )uµ)uν − ∂νP = 0. (B1)

Multiplying this equation by uν , the first term disappears
using the result of Q2. One obtains

∂µ((ǫ + P )uµ) − uµ∂µP = 0. (B2)

Expanding the first term, one obtains

uµ∂µǫ + (ǫ + P )∂µuµ = 0. (B3)

4. Eq. (22) gives

uµ∂µn + n∂µuµ = 0. (B4)

Multiplying by µ and subtracting from the previous equa-
tion, one obtains

uµT∂µs + Ts∂µuµ = 0. (B5)

Simplifying by T , this can be recast in the form
∂µ(suµ) = 0. This equation is formally analogous to
the equation of baryon number conservation, with baryon
number replaced by entropy: it expresses entropy conser-
vation.

5. Eq. (B4) gives Dn/n = −∂µuµ. Similarly, the equa-
tion of entropy conservation gives Ds/s = −∂µuµ. It
follows that D(s/n) = (s/n)(Ds/s − Dn/n) = 0. This
equation expresses that the entropy per baryon, s/n, is
constant along a comoving fluid element.

6. Again, write the equation of energy-momentum con-
servation as the sum of 3 terms:

(ǫ + P )uµ∂µuν + ∂µ((ǫ + P )uµ)uν − ∂νP = 0. (B6)

Multiply by ∆ρν , the second term disappears and
∆ρν∂µuν = ∂µuρ. One thus obtains immediately

(ǫ + P )Duρ = ∆ρν∂νP. (B7)

In the nonrelativistic limit, ∆ρν projects onto the space
components, so that ∆ρν∂νP is the pressure gradient.
ǫ+P reduces to the mass density and one recovers Euler’s
equation, i.e., Newton’s second law of motion applied to
the fluid element.

7. In Q3 we have projected the equations on the time-
like direction uµ, in Q6 we have projected on space. All
the information has been used.

2. Tutorial 2

1. The equation for ρ = 0 is

(ǫ + P )Du0 = ∆0ν∂νP. (B8)

For a stationary flow, ∂0P = 0, and only the spatial
components remain on the right-hand side. D reduces to
~u · ∇. Inserting the definition of ∆, one obtains

(ǫ + P )~u · ~∇u0 = −u0ui∂
iP = −u0~u · ~∇P. (B9)
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Dividing both sides by u0, and writing ~u · ~∇ = u(d/ds),
where ds is the length along a steamline, one obtains the
result.

2. In the nonrelativistic limit, u0 ≃ 1 + ~v2/(2c2): to
leading order in ~v, lnu0 = ~v2/(2c2). Next, ǫ + P =
ρc2, where ρ is the mass density. For an incompressible
fluid, this shows that v2/2 + P/ρ is a constant along a
streamline. This is Bernoulli’s equation, which states
that when the fluid accelerates, the pressure decreases.
This equation has many applications in fluid dynamics;
it explains how a tornado can lift objects.

3. For a baryonless fluid, Eqs. (5) and (6) give dP/(ǫ+
P ) = dT/T = d lnT . The relativistic Bernoulli equation
then becomes d lnu0+d lnT = 0 along a streamline, from
which one easily proves the result. The fluid cools as it
accelerates.

4. u2
0 − u2 = 1, hence u0du0 = udu. This im-

plies du/u = (du0/u0)/v2. We then write dP = c2
sdǫ

(Eq. (33)), and dǫ/(ǫ + P ) = ds/s (Eq. (10)). This gives
the result.

5. Conservation of entropy implies that the entropy
flux is constant along the flux tube. This implies that
suΣ is constant. In differential form, this writes

ds

s
+

du

u
+

dΣ

Σ
= 0. (B10)

6. Replacing du/u with the result of Q4 in the above
equation gives the result. If the streamlines diverge,
dΣ/Σ is positive. For a supersonic flow, v > cs, this im-
plies ds > 0, i.e., the density decreases along the stream-
line. For a subsonic flow, it increases.

7. For a gas expanding into the vacuum, streamlines
obviously diverge, and the density decreases. This means
that the flow is supersonic. As the fluid cools, it acceler-
ates, u0 ∝ 1/T . As the fluid becomes cooler and cooler,
the mean free path becomes eventually too large for hy-
dro to be valid. This occurs when the flow is ultrarel-
ativistic, i.e., u0 ≫ 1. In the nonrelativistic case, this
condition becomes v ≫ cs, and this is called “hypersonic
flow”.

3. Tutorial 3

1. One expects the matter to flow to the right, so
that the density will smoothly decrease as a function of

x. Since the information cannot propagate faster than
the speed of light, one expects that the density is ǫ0 for
x < −t, and 0 for x > t. The flow occurs in the interval
−t < x < t.

2. One simply does the replacements ∂/∂x =
(1/t)d/dζ, ∂/∂t = −(ζ/t)d/dζ. The system of equations
becomes

− ζ
dǫ

dζ
+ (ǫ + P )

dv

dζ
= 0

dP

dζ
− ζ(ǫ + P )

dv

dζ
= 0. (B11)

 0
 0.2
 0.4
 0.6
 0.8

 1

t0-t

v

x

FIG. 6: Velocity profile for the Riemann problem.

3. Replacing dP with c2
sdǫ, one obtains a linear system

of 2 equations with unknowns dǫ/dζ and dv/dζ. The sys-
tem has a trivial solution dv/dζ = dǫ/dζ = 0. It has non-
trivial solutions only if the determinant vanishes, which
gives ζ2 = c2

s, i.e. ζ = ±cs. The conditions dǫ/dζ < 0
and dv/dζ > 0 imply ζ < 0 (see equations above). The
correct solution is therefore ζ = −cs. The matter starts
to flow at x = −cst. For x < −cst, the flow velocity
is 0 and the density is equal to the initial value ǫ0, cor-
responding to the trivial solutions of the hydrodynamic
equations.

4. In the frame where the fluid velocity is zero, ζ =
−cs, which means that the information travels at velocity
−cs with respect to the fluid. Under a Lorentz boost of
velocity v, the relativistic addition of velocities applies,
so that ζ = (v − cs)/(1 − vcs).

5. Inverting the relation, we obtain v = (ζ + cs)/(1 +
ζcs). The maximum value of v is 1, which corresponds
to ζ = 1. Note that the fluid velocity at x = 0 is exactly
cs. The velocity profile is shown in Fig. 6.
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