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Abstract
Relativistic hydrodynamics is essential to our current understanding of nucleus–
nucleus collisions at ultrarelativistic energies (current experiments at the
Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large
Hadron Collider). This is an introduction to relativistic hydrodynamics for
graduate students. It includes a detailed derivation of the equations and a
description of the hydrodynamical evolution of a heavy-ion collision. Some
knowledge of thermodynamics and special relativity is assumed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of relativistic hydrodynamics in the context of high-energy physics dates back to
Landau [1], long before quantum chromodynamics (QCD) was discovered. High-energy
collisions produce many hadrons of different sorts going into all directions. One expected
that tools from statistical physics would shed light on this complexity. The light eventually
came from the deep-inelastic scattering of electrons, which led to the parton model, and
hydrodynamics was of little use. It is only in recent years, with the advent of heavy-ion
experiments at the Relativistic Heavy Ion Collider (RHIC), that the interest in relativistic
hydrodynamics has been revived. One of the first RHIC papers [2] reported on the ‘observation
of a higher degree of thermalization than at lower collision energies’. Several phenomena were
observed which suggested that the matter produced in these collisions behaves, collectively,
like a fluid. It was even claimed in 2005 that the RHIC experiments had created a ‘perfect
liquid’, with the lowest possible viscosity.

Relativistic hydrodynamics is interesting because it is simple and general. It is simple
because the information on the system is encoded in its thermodynamic properties, i.e., its
equation of state. Hydrodynamics is also general, in the sense that it relies on only one
assumption, unfortunately a very strong one: local thermodynamic equilibrium. No other
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assumption is made concerning the nature of the particles and fields, their interactions, the
classical/quantum nature of the phenomena involved.

This paper is an introduction to relativistic hydrodynamics in relation with heavy-ion
collisions. Relativistic hydrodynamics per se is textbook material since Landau’s course
has appeared (see chapter XV of [3]). As for its applications to heavy-ion collisions, they
are covered by several recent reviews [4–6]. The recent experimental achievements show
us the old textbook results under a new perspective, since it appears possible to produce
a relativistic fluid in the laboratory. My purpose is to provide graduate students with an
elementary, self-contained survey of this exciting research field. Section 2 recalls basic
results of thermodynamics and statistical physics which are commonly used in the context
of hydrodynamics. Section 3 derives the equations of inviscid hydrodynamics. Section 4
describes the hydrodynamical evolution of a heavy-ion collision; the details may be skipped
upon first reading. Section 5 derives some observables which are used as signatures of
hydrodynamical behaviour. Finally, section 6 briefly describes the domain of validity of
hydrodynamics. The readers who are interested in relativistic hydrodynamics in itself should
try and work out the problems given in the appendix.

2. Thermodynamics

We first recall standard identities of thermodynamics and statistical physics, which are often
used in hydrodynamical models.

2.1. General identities

The differential of internal energy is given by the thermodynamic identity

dU = −P dV + T dS + µ dN, (1)

where P is the pressure, V is the volume, S is the entropy, T is the temperature and µ is the
chemical potential. In nonrelativistic systems, N is generally the number of particles, which
is conserved. In a relativistic system, the number of particles is not conserved: it is always
possible to create a particle–antiparticle pair, provided energy is available. In this case, N no
longer denotes a number of particles, but a conserved quantity, such as the baryon number. If
there are several conserved quantities Ni , one needs to simply replace µdN with

∑
i µi dNi .

In this paper, we refer to N as to the baryon number, and to µ as the baryon chemical potential,
but N can be any conserved quantity. The second important difference in relativistic systems
is that the mass energy mc2 is included in the internal energy.

The first two terms on the right-hand side of (1) have transparent physical interpretations
as the elementary work and heat transferred to the system, respectively. The third term is
mathematically as simple as the two first terms, but lacks such a simple interpretation1.

The energy is an extensive function of the extensive variables V, S,N , which means that

U(λV, λS, λN) = λU(V, S,N). (2)

Differentiating with respect to λ, taking λ = 1, and using (1), one obtains

U = −PV + T S + µN. (3)

1 It does in fact have a simple interpretation in the more complex situation where a particle is exchanged between
two different systems, e.g., between two solutions with different concentrations at the same pressure and temperature,
as occurs in chemistry. It then plays the role of a thermodynamic potential, in the sense that it chooses the lowest
possible value.
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Differentiating this equation and using again (1), one obtains the Gibbs–Duhem relation

V dP = S dT + N dµ. (4)

In hydrodynamics, the useful quantities are not the total energy, entropy and baryon
number, but rather their densities per unit volume, the energy density ε ≡ U/V , the entropy
density s ≡ S/V and the baryon density n ≡ N/V . All these densities are intensive quantities.
(3) and (4) give, respectively,

ε = −P + T s + µn (5)

and

dP = s dT + n dµ (6)

Differentiating (5) and using (6), one obtains

dε = T ds + µ dn. (7)

These identities will be used extensively below.

2.2. Baryonless fluid

If the baryon density n vanishes throughout the fluid, the corresponding terms disappear from
(5) to (7). The same holds if the chemical potential µ is zero throughout the fluid. This shows
that ‘zero baryon density’ is in practice equivalent to ‘no conserved baryon number’. Such a
fluid has only one intensive degree of freedom.

The fluid produced in a heavy-ion collision has three conserved charges, which are the
net number of quarks (i.e., number of quarks minus number of antiquarks) of each flavour
u, d, s. There is an excess of u and d quarks over antiquarks because of the incoming nuclei.
However, this excess turns out to be negligible at ultrarelativistic energies because the number
of produced particles overwhelms the number of incoming nucleons. In practice, doing a
hydro calculation with n = 0 is a rough approximation, but a reasonable one.

2.3. Isentropic process

The entropy of an inviscid fluid is conserved throughout its evolution, as we shall see in
section 3. This is why isentropic processes are important. In an isentropic process, both S
and N are conserved, and only the volume V changes. The variations of entropy density and
baryon density are given by

ds

s
= dn

n
= −dV

V
. (8)

To compute the variation of energy density, we use (1), which reduces to dU = −P dV :

dU = d(εV ) = εdV + V dε = −P dV, (9)

hence

dε

ε + P
= −dV

V
= ds

s
= dn

n
. (10)
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2.4. Classical ideal gas

An ideal gas is made of independent particles, and is best described by the grand-canonical
ensemble of statistical mechanics. We choose the natural system of units kB = 1 (one
recovers the conventional unit system by replacing everywhere T → kBT and S → S/kB in
the expressions below). For simplicity, we consider a gas made of identical, spinless particles,
each of which carries a baryon number equal to unity (although such particles do not exist).

In a finite volume V , the values of the momentum �p are discrete (from quantum
mechanics). The average number of particles with momentum �p is 1/(exp((E�p −µ)/T )±1),
where E�p ≡

√
�p2 + m2 is the particle energy (we choose the natural unit system where c = 1),

and the sign depends on whether the particle is a fermion or a boson. For the sake of simplicity,
we take the classical limit where this number is much smaller than unity: both Bose–Einstein
and Fermi–Dirac statistics then reduce to Maxwell–Boltzmann statistics:

1

e(E�p−µ)/T ± 1
� e(−E�p+µ)/T � 1. (11)

The particle density, energy density and kinetic pressure are random variables in the grand-
canonical ensemble. Their average values are

n = 1

V

∑
�p

e(−E�p+µ)/T

ε = 1

V

∑
�p

E�p e(−E�p+µ)/T (12)

P = 1

V

∑
�p

pxvx e(−E�p+µ)/T ,

where px and vx denote the components of the particle momentum and velocity along an
arbitrary axis x. This expression of the kinetic pressure is obtained by evaluating the total
momentum transferred per unit time by elastic collisions with a unit surface perpendicular to
the x-axis. In other terms, it is the momentum flux along x. This definition will be used later.
For a large volume, the sum over momenta is written as an integral:

1

V

∑
�p

→
∫

d3p

(2πh̄)3
. (13)

It is an instructive exercise to check that the kinetic pressure coincides with the
thermodynamic pressure, i.e., that it satisfies the expected thermodynamic identities. The
Gibbs–Duhem relation (6) gives n = (∂P/∂µ)T . On the other hand, the kinetic pressure (12)
satisfies (∂P/∂µ)T = P/T . Putting together these two relations, we obtain

P = nT , (14)

which is nothing but the ideal gas law. However, it is not obvious that P and n defined by (12)
satisfy (14). This requires a little algebra. The velocity vx is given by Hamilton’s equation
vx = ∂E�p/∂px . One then writes

vx e(−E�p+µ)/T = −T
∂

∂px

(e(−E�p+µ)/T ). (15)

Inserting this identity into (12), and integrating by parts over the variable px , one recovers
(14).
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In order to compute the pressure, one uses rotational symmetry of the integrand in (12),
and one replaces pxvx with �p · �v/3 = pv/3. For massless particles, this gives immediately

P = ε

3
. (16)

This relation holds approximately for a quark–gluon plasma at high temperatures, where
interactions are small due to asymptotic freedom.

The integrals in (12) can easily be evaluated for massless particles. For a baryonless
quark–gluon plasma (µ = 0), this gives

n = g

π2h̄3C3
T 3 ε = 3P = 3nT , (17)

where g is the number of degrees of freedom (spin+colour+flavour), 16 for gluons and 24 for
light u and d quarks, i.e., g ≈ 40. Note that n denotes here the particle density, not the baryon
density. (5) gives ε + P = T s, so that

s = 4n. (18)

The entropy per particle is approximately 4 in a quark–gluon plasma (the ratio is in fact 3.6
for bosons, 4.2 for fermions).

For nonrelativistic particles, note that P � ε. This is because ε includes the huge mass
energy mc2.

3. Equations of relativistic hydrodynamics

Standard thermodynamics is about a system in global thermodynamic equilibrium. This
means that intensive parameters (P, T , µ) are constant throughout the volume, and also that
the system is globally at rest, which means that its total momentum is 0. In this section, we
study systems whose pressure and temperature vary with space and time, and which are not at
rest, such as the Indian atmosphere during monsoon. We, however, request that the system is in
local thermodynamic equilibrium, which means that pressure and temperature are varying so
slowly that for any point one can assume thermodynamic equilibrium in some neighbourhood
about that point. Here, ‘neighbourhood’ has the same meaning as in mathematics, and there
is no prescription as to the actual size of this neighbourhood or ‘fluid element’. There is,
however, a general condition for local thermodynamic equilibrium to apply, which is that the
mean free path of a particle between two collisions is much smaller than all the characteristic
dimensions of the system. We come back to this important issue in section 6.

The fluid equations derived under the assumption of local thermodynamic equilibrium
are called inviscid, or ideal-fluid, equations.

3.1. Fluid rest frame

The rest frame of a fluid element is the Galilean frame in which its momentum vanishes. All
thermodynamic quantities associated with a fluid element (for example, ε, P, n) are defined
in the rest frame. They are therefore Lorentz scalars by construction (for the same reason as
the mass of a particle is a Lorentz scalar). Local thermodynamic equilibrium implies that the
fluid element has isotropic properties in the fluid rest frame. This is a very strong assumption.
It will be used extensively below. It is, in fact, the only non-trivial assumption of inviscid
hydrodynamics.
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3.2. Fluid velocity

The velocity �v of a fluid element is defined as the velocity of the rest frame of this fluid element
with respect to the laboratory frame. The 4-velocity uµ is defined by

u0 = 1√
1 − �v2

�u = �v√
1 − �v2

, (19)

where we have chosen a unit system where c = 1. u0 is the Lorentz contraction factor. The
4-velocity transforms as a 4-vector under Lorentz transformations. The square of a 4-vector
is a Lorentz scalar, and we indeed obtain

uµuµ = (u0)2 − �u2 = 1. (20)

In hydrodynamics, the fluid velocity is a function of (t, x, y, z), as are the thermodynamic
quantities ε, P and n. The fluid velocity is also referred to as the ‘collective’ velocity.

3.3. Baryon number conservation

In nonrelativistic fluid dynamics, the equation of mass conservation is

∂ρ

∂t
+ �∇(ρ�v) = 0, (21)

where ρ is the mass density. A relativistic conservation equation must take into account the
Lorentz contraction of the volume by a factor u0. Recall that the baryon density n is always
defined in the fluid rest frame. The baryon density in the moving frame is therefore nu0.
Replacing ρ with nu0 in the above equation and using �u = u0�v, one obtains the following
covariant equation:

∂µ(nuµ) = 0, (22)

where we use the standard notation ∂µ = ∂/∂xµ. This is a conservation equation for the
4-vector nuµ. nu0 is the baryon density and n�u is the baryon flux.

In the rest frame of the fluid, the baryon flux vanishes. In nonrelativistic fluid dynamics,
this is how the fluid rest frame is defined. In the relativistic case, the baryon flux could in
principle be 	= 0 in the fluid rest frame, defined as the frame where the momentum density
is zero: the momentum of baryons could be compensated by the momentum of baryonless
particles (pions, gluons). However, local thermodynamic equilibrium implies isotropy. If
there was a non-zero current, it would define a direction in space and isotropy would be
lost. The baryon flux therefore vanishes in inviscid hydrodynamics. In relativistic viscous
hydrodynamics, which studies deviations from local thermodynamic equilibrium, the baryon
flux may be non-zero in the local rest frame: this transport phenomenon is called diffusion.

3.4. Energy and momentum conservation

The conservation of total energy and momentum gives four local conservation equations, each
of which is analogous to the equation of baryon-number conservation. Baryon conservation
gives a conserved current, which is a contravariant 4-vector Jµ = nuµ. Energy and momentum
are also a contravariant 4-vector, therefore the associated conserved currents can be written
as a contravariant tensor T µν , where each value of ν corresponds to a component of the
4-momentum, and each value of µ is a component of the associated current. Specifically,

• T 00 is the energy density.
• T 0j is the density of the j th component of momentum, with j = 1, 2, 3.



Relativistic hydrodynamics 281

• T i0 is the energy flux along axis i.
• T ij is the flux along axis i of the j th component of momentum.

The momentum flux T ij is usually called the pressure tensor. Kinetic pressure is precisely
defined as the momentum flux (see section 2.4).

In the fluid rest frame, the assumption of local thermodynamic equilibrium strongly
constrains the energy–momentum tensor. Isotropy implies that the energy flux T i0 and the
momentum density T 0j vanish. In addition, it implies that the pressure tensor is proportional
to the identity matrix, i.e., T ij = Pδi,j , where P is the thermodynamic pressure. The energy–
momentum in the fluid rest frame is thus

T(0) =

⎛
⎜⎜⎝

ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞
⎟⎟⎠ . (23)

In order to obtain the energy–momentum tensor in a moving frame, one does a Lorentz
transformation. In what follows, we shall only need the expression of T µν to first order in the
fluid velocity. To first order in the velocity �v, the matrix of a Lorentz transformation is

� =

⎛
⎜⎜⎝

1 vx vy vz

vx 1 0 0
vy 0 1 0
vz 0 0 1

⎞
⎟⎟⎠ . (24)

Under a Lorentz transformation, the contravariant tensor T
µν

(0) transforms to

T µν = �µ
α�ν

βT
αβ

(0) , (25)

which can be written as a multiplication of (4 × 4) matrices

T = �T(0)�
T , (26)

where �T denotes the transpose of �. (24) shows that � is symmetric, �T = �. Keeping
only terms to order 1 in the velocity �v, (26) gives

T =

⎛
⎜⎜⎝

ε (ε + P)vx (ε + P)vy (ε + P)vz

(ε + P)vx P 0 0
(ε + P)vy 0 P 0
(ε + P)vz 0 0 P

⎞
⎟⎟⎠ . (27)

We first note that T µν is symmetric: the momentum density T 0i and the energy flux T i0

are equal. This is because Lorentz transformations preserve the symmetries of tensors, and the
tensor of the fluid at rest (23) is symmetric. The symmetry of T µν is a non-trivial consequence
of relativity. In nonrelativistic fluid dynamics, the energy flux and the momentum density
differ. (Recall that nonrelativistic energy does not include mass energy.) They have different
dimensions: the ratio of energy flux to momentum density has the dimension of a velocity
squared, which is dimensionless in relativity.

The momentum density is (ε + P)�v. For a nonrelativistic fluid, it is ρ�v, where ρ is the
mass density. Since P � ε and ε � ρ�v in the nonrelativistic limit, we recover the correct
limit. What replaces the mass density for a nonrelativistic fluid is not ε, as one would naı̈vely
expect, but ε + P : pressure contributes to the inertia of a relativistic fluid.

Finally, we prove that the energy–momentum tensor for an arbitrary fluid velocity is

T µν = (ε + P)uµuν − Pgµν, (28)
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where gµν ≡ diag(1,−1,−1,−1) is the Minkowski metric tensor. One easily checks that this
equation reduces to (23) in the rest frame of the fluid, where uµ = (1, 0, 0, 0). In addition,
both sides of (28) are contravariant tensors, which means that they transform identically under
Lorentz transformations. Since they are identical in one frame, they are identical in all frames,
which proves the validity of (28).

The conservation equations of energy and momentum are

∂µT µν = 0. (29)

(22), (28) and (29) are the equations of inviscid relativistic hydrodynamics. Together with the
equation of state of the fluid, which is defined as a functional relation between ε, P and n, they
form a closed system of equations.

For the sake of simplicity, only continuous flows will be studied, in which all quantities
vary continuously with spacetime coordinates. Inviscid hydrodynamics has a whole class of
discontinuous solutions, which are called ‘shock waves’. The entropy of the fluid increases
through a shock, while it is constant for a continuous flow (see section 4.3 and problem 1
in the appendix). Shock waves usually appear when the fluid undergoes compression, not
expansion. They are therefore of limited relevance to heavy-ion collisions2.

3.5. Sound waves

Sound is defined as a small disturbance propagating in a uniform fluid at rest. The energy
density and pressure are written in the form

ε(t, x, y, z) = ε0 + δε(t, x, y, z) P (t, x, y, z) = P0 + δP (t, x, y, z), (30)

where ε0 and P0 correspond to the uniform fluid, and δε and δP correspond to the small
disturbance. To study the evolution of this disturbance, we linearize the equations of energy–
momentum conservation by keeping only terms up to first order in δε, δP and �v. For this
purpose, the expression (27) will suffice, since it is correct to first order in the velocity. (29)
gives

∂ε

∂t
+ �∇ · ((ε + P)�v) = 0

∂

∂t
((ε + P)�v) + �∇P = �0. (31)

Inserting (30) and linearizing, these equations simplify

∂(δε)

∂t
+ (ε0 + P0) �∇ · �v = 0 (ε0 + P0)

∂�v
∂t

+ �∇δP = �0. (32)

The first equation expresses that the density decreases if the velocity field diverges, �∇ · �v > 0,
i.e., if the volume increases. This is energy conservation. The second equation is Newton’s
second law, that the inertia of the fluid multiplied by its acceleration must be equal to the force.
The force per unit volume is −�∇P . It pushes the fluid towards lower pressure.

We now define the velocity of sound cs by

cs =
(

∂P

∂ε

)1/2

. (33)

c2
s is inversely proportional to the compressibility of the fluid. A ‘soft’ equation of state

corresponds to a small cs . The derivative in (33) is well defined only if we specify along
which line the partial derivative is taken. It will be shown in problem 1 that in ideal-fluid
dynamics, the entropy per baryon of a fluid element is conserved as a function of time. If the

2 In fact, shock waves do appear in the expansion when the equation of state has a first-order phase transition. These
‘rarefaction shocks’ produce little entropy, at most 7% [7].
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fluid is initially uniform, then the entropy per baryon remains constant throughout the fluid
at all times. This means that the partial derivative must be taken along the lines of constant
entropy per baryon, s/n (thus corresponding to the adiabatic compressibility). In the case of
a baryonless quark–gluon plasma, there is only one degree of freedom, and no ambiguity in
defining the derivative. Using (6) and (7), one can rewrite cs as

cs =
(

d ln T

d ln s

)1/2

(34)

for a baryonless fluid.
Using the definition (33), we write δP = c2

s δε in (32). We then eliminate �v between the
two equations:

∂2(δε)

∂t2
− c2

s �(δε) = 0. (35)

This is a wave equation in 3+1 dimensions, with velocity cs . This equation means that small
perturbations in a uniform fluid travel at the velocity cs , independent of the shape of the
perturbation: there is no sound dispersion in an inviscid fluid.

3.6. Ideal gas

If the interaction energies between the particles are small compared to their kinetic energies,
one can express the hydrodynamic quantities in terms of the individual particle properties:
conserved baryon number B, velocity �v and momentum pµ. We use the notation vµ for (1, �v)

or, equivalently, vµ = pµ/p0. Note that in spite of the notation, vµ does not transform like a
4-vector under a Lorentz boost. The baryon current and energy–momentum tensor of a small
fluid element of volume V are

nuµ = 1

V

∑
particles

Bvµ T µν = 1

V

∑
particles

pνvµ. (36)

With these definitions, it is straightforward to check that nu0, T 00 and T 0i correspond to the
baryon, energy and momentum densities, respectively. The corresponding fluxes are obtained
by weighting these quantities with the particle velocity �v.

Using the assumption of local thermodynamic equilibrium, one can replace these
quantities with their thermal averages. The average number of particles with momentum
�p is given by Boltzmann statistics (we neglect quantum statistics for simplicity) (11), where
we replace E�p with the energy in the fluid rest frame E∗. Using (13), one can do the following
substitution:

1

V

∑
particles

→
∫

d3p

(2πh̄)3
e(−E∗+µ)/T . (37)

This result will be useful later. We finally show that the expressions in (36) are covariant. For
this purpose, we write vµ = pµ/p0, and we note that d3p/p0 is a Lorentz scalar, so that nuµ

and T µν are explicitly covariant.

4. Hydrodynamical expansion

The energy of a nucleus–nucleus collision at RHIC is 100 GeV per nucleon. This means
that each incoming nucleus is contracted by a Lorentz factor γ ≈ 100: nuclei are thin
pancakes colliding. The collision creates thousands of particles in a small volume. These
particles interact. If these interactions are strong enough, the system may reach a state of
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local thermodynamic equilibrium. Equilibrium is at best local, certainly not global: global
equilibrium applies to a gas in a closed box, which stays there for a long time and becomes
homogeneous. The system formed in a heavy-ion collision starts expanding as soon as it is
produced, and is far from homogeneous.

Can QCD tell whether or not the system reaches thermodynamic equilibrium? There is
not yet an answer to this question, but a lot of progress has been made on this issue in recent
years, due in particular to works on QCD plasma instabilities [8]. Another question is: can
we tell from experimental data whether the system has reached local equilibrium? This issue
will be briefly touched upon in section 6. You should keep in mind that local equilibrium is,
at best, an approximation. Even if it turns out to give reasonable results, it is not the end of
the story.

In this section, we assume that the system of interacting fields and particles produced in the
collision reaches local thermodynamic equilibrium at some point. Its subsequent evolution
follows the laws of inviscid hydrodynamics. Since there are first-order partial differential
equations, their solution is uniquely determined once initial conditions are specified, together
with an equation of state.

4.1. Initial conditions

The z-axis is chosen as the collision axis, and the origin is chosen such that the collision starts
at z = t = 0. The two nuclei pass through each other in a time tcoll ∼ 0.15 fm/c at RHIC.
This time is a factor 100 smaller than the other characteristic dimension, the transverse size R
of the nucleus. This clear hierarchy between the two scales is crucial.

The initial conditions are fixed at some initial time t0 (or, more generally, on a spacelike
hypersurface). A complete set of initial conditions involves the three components of fluid
velocity, the energy density and the baryon density, at each point in space.

If the thermalization time t0 is short enough, the transverse components vx and vy of the
fluid velocity are zero. The reason is that the parton–parton collisions which produce particles
occur on very short transverse scales. They produce particles whose transverse momenta are
distributed isotropically in the transverse plane. Isotropy implies that there is no preferred
direction and that the transverse momentum averaged over a fluid element vanishes. This
part of the initial conditions is the only one on which there is fairly general agreement. This
is the reason why the clearest experimental signatures of hydrodynamic behaviour are those
associated with ‘transverse flow’, as we shall see below: if there is no transverse collective
motion initially present in the system and if we see it in the data, it means that something has
happened in-between which has to do with hydrodynamics.

We now discuss the initial value of the longitudinal flow velocity vz. All particles are
produced in a very short interval around z = t = 0. The standard prescription is that their
longitudinal motion is uniform, so that their velocity is vz = z/t : all particles at a given z

have the same vz, hence it is also the fluid velocity. This prescription is boost invariant, in
the following sense: if one does a homogeneous3 Lorentz transformation with a velocity v

along the z-axis, all three quantities vz, z, t are transformed, but vz = z/t still holds in the
new frame. This is because uniform motion remains uniform under a Lorentz transformation.
This ‘boost-invariant’ prescription was first proposed by Bjorken [9], and it is supported by
models inspired by high-energy QCD, such as the colour glass condensate.

We now introduce new coordinates, the proper time τ , the spacetime rapidity ηs and the
fluid rapidity Y, defined by

3 A Lorentz transformation is homogeneous if it leaves the origin unchanged.
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t

z

z = tz = -t

z/t = const.
τ = const.

Figure 1. Nucleus–nucleus collision in the (z, t) plane. The thick lines are the trajectories of the
colliding nuclei, which are moving nearly at the velocity of light. The lines of constant z/t are
also lines of constant spacetime rapidity ηs .

t = τ cosh ηs z = τ sinh ηs vz = tanh Y. (38)

Under a Lorentz boost in the z-direction, τ is unchanged, while ηs and Y are shifted by a
constant. Lines of constant τ and constant ηs are represented in figure 1. Initial conditions are
usually specified at a given proper time τ = τ0, rather than at a given time t = t0. Bjorken’s
prescription vz = z/t translates into Y = ηs : the fluid rapidity equals the spacetime rapidity.

We now discuss the initial density profile. One usually specifies the energy density,
or the entropy density, as a function of x, y, ηs . There are constraints on these profiles,
both theoretical and experimental, and prescriptions which satisfy these constraints. On the
theoretical side, there is locality: it implies that a given point (x, y) in the transverse plane,
the initial density can depend only on the thickness functions TA and TB of the two colliding
nuclei at this point, defined as the integrals

TA,B(x, y) =
∫ +∞

−∞
ρA,B(x, y, z) dz, (39)

where ρA(x, y, z) (resp. ρB) is the density of nucleons per unit volume in nucleus A (resp.
B). The initial energy density is ε(x, y, ηs) = f (TA(x, y), TB(x, y), ηs), where f is some
function. Various prescriptions can be found in the literature:

• The initial energy density is proportional to the density of binary collisions TATB [6].
• The initial entropy density is proportional to the density of participants [10], which is

essentially TA + TB on the overlap area and 0 outside. More complex prescriptions can
also be found, where the entropy [11] or the energy [12] density is linear combinations of
the densities of binary collisions and participants.

• In contrast to the above pictures, where the ηs dependence is fitted to measured rapidity
spectra, the colour glass condensate [13] provides a prescription for the ηs dependence.
It also predicts quite distinctive transverse profiles: at z = ηs = 0, it gives an initial
multiplicity density approximately proportional to min(TA, TB) [14].

All these prescriptions reproduce well the observed centrality dependence of the global
multiplicity.

We assume for simplicity a Gaussian entropy density profile at τ = τ0:

s(x, y, ηs) ∝ exp

(
− x2

2σ 2
x

− y2

2σ 2
y

− η2
s

2σ 2
η

)
. (40)
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x

φ

y

Figure 2. Non-central nucleus–nucleus collision in the transverse (x, y) plane. The x-axis is
chosen as the direction of the impact parameter. The shaded area is the overlap area between the
nuclei, where particles are produced. The density in this area can be approximated by a Gaussian,
(40). The azimuthal angle of an outgoing particle with the x-axis is denoted by φ.

In this equation, σx and σy are the rms (root mean square) widths of the transverse distribution.
For a central Au–Au collision, σx = σy � 3 fm. For a non-central collision, one chooses
in general the x-axis as the direction of impact parameter (see figure 2), and σx < σy . For a
Au–Au collision at impact parameter b = 7 fm, σx � 2 fm, σy � 2.6 fm. Unlike σx and σy, ση

is dimensionless. In order to estimate its value, we use the fact that the particle multiplicity is
proportional to the entropy. We further assume, for the sake of simplicity, that the rapidity of
outgoing particles is equal to their spacetime rapidity ηs . Rapidity distributions of outgoing
particles in symmetric nucleus–nucleus collisions at RHIC are perfectly fit by Gaussians of
width ση � 2.3 [15].

4.2. Longitudinal acceleration

Our initial condition for the longitudinal fluid velocity is vz = z/t or, equivalently, Y = ηs .
The original Bjorken picture [9] is that this relation holds at all times. We now discuss under
which this condition is preserved by the hydrodynamical evolution. We first study the simple
case z = 0. Since vz = 0 initially at z = 0, we can use (31), which is valid to first order in the
fluid velocity. The z component gives

∂

∂t
((ε + P)vz) +

∂

∂z
P = 0. (41)

Recalling that vz = 0 initially, we obtain the acceleration:
∂vz

∂t
= − 1

ε + P

∂P

∂z
= −c2

s

∂ ln s

∂z
, (42)

where we have used (10) and (33). If the initial density s depends on z, the fluid is accelerated,
and the initial condition vz = 0 is not preserved by the hydrodynamical evolution.

We now rewrite (42) using the variables ηs, τ, Y defined in (38). Near z = 0, dt �
dτ, dz � τdηs, vz � Y :

∂Y

∂τ
= −c2

s

τ

∂ ln s

∂ηs

. (43)

This equation can easily be generalized to ηs 	= 0 using boost invariance: any value of z

with |z| < t can be brought to z = 0 by means of a homogeneous Lorentz boost in the
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z-direction. Such a boost leaves τ unchanged and shifts ηs by a constant. Hence it leaves
(∂/∂ηs)τ unchanged, and (43) holds for all ηs . The general condition under which Y = ηs at
all times is (∂s/∂ηs)τ = 0, corresponding to the limit ση → ∞ in (40), i.e., to flat rapidity
spectra.

We now show that even though rapidity spectra are not flat, the Bjorken picture is a
reasonable approximation in practice at high energies. We follow the same approach as
Eskola et al [16]. (40) and (43) give

∂Y

∂τ
= c2

s

τ

ηs

σ 2
η

. (44)

Integrating from τ0 to τ with the initial condition Y = ηs , we obtain our final result

Y (τ) =
(

1 +
c2
s ln(τ/τ0)

σ 2
η

)
ηs. (45)

The rapidity of the fluid is not equal to the initial rapidity, as assumed in the Bjorken scenario,
but proportional to it. As will be explained in section 4.6, transverse expansion acts as a
cut-off for the longitudinal expansion at a time τ ∼ 3.6 fm/c for a central Au–Au collision.
Even if the longitudinal pressure builds up as early as τ0 � 1 fm/c, and assuming c2

s = 1
3 , this

results in a modest increase of the rapidity width, by 9%. At LHC energies, where the rapidity
width ση is expected to increase, effects of longitudinal acceleration will be even smaller.

4.3. Longitudinal cooling

We now derive the evolution of baryon density, energy density and entropy density in
the Bjorken picture of a uniform longitudinal expansion. We assume that the transverse
components of the velocity, together with their spatial derivatives, remain negligible. As will
be shown in section 4.6, this is a good approximation as long as t � σx/cs, σy/cs .

We start with the baryon density. We rewrite (22) at z = 0. The Bjorken prescription
vz = z/t gives vz = 0 and ∂vz/∂z = 1/t :

∂n

∂t
+

n

t
= 0. (46)

This equation can be integrated as nt = constant, which expresses the conservation of the
baryon number in a comoving fluid element: neglecting the transverse expansion, the volume
of a comoving fluid element increases like the longitudinal size, i.e., like t.

The evolution of energy density at z = 0 is derived in a similar way, using (31):

∂ε

∂t
+

ε + P

t
= 0. (47)

The generalization of (46) and (47) for arbitrary z is obtained by transforming to (τ, ηs)

coordinates, and replacing (∂/∂t)z with (∂/∂τ)ηs
and t with τ .

Unlike the baryon number, the total energy in a comoving fluid element is not conserved.
(47) can be recast in the form

d(εt) = −P dt, (48)

which shows that the comoving energy decreases. This is due to the negative work of pressure
forces, dE = −P dV . This result is by no means trivial. It relies on our assumption of local
equilibrium, which implies that the pressure is isotropic. P in (48) comes from T 33 in (23), i.e.,
it is really the longitudinal pressure. For an ideal gas, (36) shows that T 33 = ∑

particles pzvz. If
the particles are initially produced with vz = z/t (as is for instance the case in the colour glass
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condensate), the longitudinal pressure vanishes at z = 0. A non-zero longitudinal pressure
can only appear as a result of the thermalization process. Most of the work on thermalization
is about understanding how this longitudinal pressure appears.

It is worth noting that there is no direct evidence for longitudinal cooling (48) from
experimental data. Experimental data are particles, which are emitted mostly at the final
stage of the evolution. Our knowledge of initial stages is indirect. Longitudinal cooling
implies a higher initial energy, for a given final energy. This can be observed only through
a direct signature of the initial temperature. The most promising observables in this respect
are electromagnetic observables, ‘thermal’ dileptons and photons, which are mostly emitted at
the early stages, and sensitive to the temperature, but they are plagued by huge backgrounds.
Although there is no experimental evidence for longitudinal cooling, it is clearly favoured
theoretically: models of particle production based on perturbative QCD produce an initial
energy significantly higher than the final energy, typically by a factor of 3 [17, 18], and require
substantial longitudinal cooling to match with the data.

Finally, it is worth noting that the total entropy of a comoving fluid element is conserved,
as the baryon number: (1) shows that dE = −P dV and dN = 0 implies dS = 0. This is
a general result for inviscid hydrodynamics (see problem 1 in the appendix). Physically, it
means that there is no heat diffusion between fluid cells. To show this explicitly, we multiply
(46) by µ and subtract (47). Using (5) and (7), one obtains

∂s

∂t
+

s

t
= 0, (49)

which shows that the comoving entropy, which scales like st , is constant.

4.4. Orders of magnitude

We can use experimental data to estimate the initial density in a heavy-ion collision. A
popular estimate is Bjorken’s estimate of the energy density [9], defined as the ratio of the
final ‘transverse’ energy (defined as E sin θ , where θ is the relative angle between the particle
velocity and the collision axis, or polar angle) to the initial volume. This estimate neglects the
longitudinal cooling (48), and therefore underestimates the initial energy density.

It is in fact probably safer to assume that the number of particles remains constant
throughout the evolution: in the quark–gluon plasma phase, the particle number is
approximately proportional to entropy (see (18)), and entropy is conserved. In the hadron
phase, the scenario of chemical freeze-out (see below section 5.3) supports particle number
conservation in the hadronic phase. Finally, at the quark–hadron phase transition, the idea
of local quark–hadron duality (taken over from perturbative QCD [19, 20]) suggests that the
number of particles might again be conserved. It is interesting to note that while perturbative
QCD estimates fail in calculating the energy, they give a gluon multiplicity comparable to the
observed multiplicity [17], which seems to support this assumption.

In order to estimate the initial density, we assume for simplicity that the longitudinal
velocity of particles remains constant, i.e., vz = z/t . Then, the particle density at time t is

n(t) = 1

S

dN

dz
= 1

St

dN

dvz

, (50)

where S is the transverse area of the interaction region, S ≈ πR2 ≈ 100 fm2 for a central
Au–Au collision, and N is the particle multiplicity. Since we are interested in the particle
density in the fluid rest frame, we choose to estimate it near z = 0, where the fluid is at
rest. The PHOBOS Collaboration has measured [21] the polar-angle distribution of charged
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particles in central Au–Au collisions at 100 GeV per nucleon4. The result is dNch/dθ � 700
at θ = π/2. Now, vz = v cos θ . For particles emitted near θ = π/2 with velocity v, this gives
dN/dvz = (1/v) dN/dθ . The factor (1/v) gives on average a factor 1.25, and charged particles
are only 2/3 of the produced particles, so that dN/dvz � 1300. This gives numerically, for a
central Au–Au collision at the top RHIC energy,

n(t) � 13

t
, (51)

where n is in fm−3 and t in fm/c.
This estimate must be compared with our estimate of the particle density in a quark–gluon

plasma (17). Lattice QCD predicts that the transition to the quark–gluon plasma occurs near
Tc ≈ 192 MeV [22]. Since h̄c = 197 MeV fm, and we have chosen c = 1 throughout the
calculations, (17) gives

n � 3.75 fm−3, (52)

at Tc. Comparing with (51), one sees that the system is above the critical density only if
t < 3.5 fm/c: the lifetime of the quark–gluon plasma is approximately 3.5 fm/c. This is
of course a rough estimate: the density profile is not homogeneous throughout the surface S
(the maximum density, at the centre, is approximately twice larger than the average density,
and the lifetime is correspondingly larger), and we have neglected the transverse expansion
(which, in contrast, reduces the lifetime). Finally, our starting assumption that the particle
number is conserved is a crude picture for two reasons: the number of particles is ill-defined in
a strongly-interacting system. Recent works have argued that the hadronization process could
involve both fragmentation and recombination of partons, thus breaking the conservation of
particle number at the transition [23].

4.5. The onset of transverse expansion

The initial transverse velocity of the fluid is 0, but the acceleration is in general not zero. It is
given by an equation similar to (42):

∂vx

∂t
= − 1

ε + P

∂P

∂x
= −c2

s

∂ ln s

∂x
, (53)

and a similar equation along the y-axis. Inserting (40) into (53), and assuming constant cs for
simplicity, we integrate over t to obtain, for small t,

vx = c2
s x

σ 2
x

t, vy = c2
s y

σ 2
y

t. (54)

Note that we have integrated from t = 0. Thermalization certainly requires some time, and
hydrodynamics cannot apply at very early times. On the other hand, the system is expanding
freely in the vacuum, and it is clear that the transverse expansion starts immediately: it does
not wait until thermalization is achieved, so that it is probably reasonable to start the transverse
expansion at t = 0.

(54) shows that the transverse expansion, unlike the longitudinal expansion, is a very
smooth process. This may not be intuitive: the pressure is very high at early times, and
pressure gradients are largest too, so that a huge force −�∇P acts on the system; but this
is compensated by the large inertia ε + P , resulting in a linear increase of the transverse
fluid velocity. The typical time scale for transverse expansion is σx/cs , which means that
longitudinal expansion dominates for t � σx/cs .

4 What is measured is in fact the pseudorapidity (η) distribution, defined by dN/dη = sin θdN/dθ , which coincides
with the polar-angle distribution near θ = π/2.
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The almond shape of the overlap area, in a non-central collision (see figure 2), results in
σx < σy , which in turn implies

〈
v2

x

〉
>

〈
v2

y

〉
, where the angular brackets denote averages

weighted with the initial density: the transverse expansion is larger along the smaller
dimension, because the pressure gradient is larger. This results in more particles emitted
near φ = 0 and φ = π , i.e., parallel to the x-axis, than near φ = ±π/2, parallel to the y-axis
[24]. This effect corresponds to a cos 2φ term in the Fourier decomposition of the azimuthal
distribution:

dN

dφ
∝ 1 + 2v2 cos 2φ, (55)

where v2 is a positive coefficient, which is called ‘elliptic flow’. The observed dependence
of v2 on transverse momentum and particle species is considered the most solid evidence for
hydrodynamical behaviour in nucleus–nucleus collision. It will be studied in section 5.4.

4.6. The time scale of transverse expansion

Our equation for longitudinal cooling (48) was derived by neglecting transverse expansion. If
there was no transverse expansion, the system would cool forever and no energy would be left
in the central rapidity region. Transverse expansion effectively acts as a cut-off for longitudinal
cooling. The typical time when transverse expansion becomes significant is, for dimensional
reasons, σx/cs or σy/cs . A convenient scaling variable is provided by the following quantity
[25]:

R ≡
(

1

σ 2
x

+
1

σ 2
y

)−1/2

. (56)

The total transverse energy can be computed, to a very good approximation, by assuming that
(48) holds until t = R/cs , and that the energy remains constant for t > R/cs [10]. This is
what I mean by saying that transverse expansion acts as a cut-off for longitudinal cooling.

An important feature of hydrodynamical models is that the momentum distributions of
outgoing particles depend on the equation of state, therefore experimental data constrain the
equation of state. Most of this dependence is a consequence of the simple picture above: after
t = R/cs , the energy and entropy of the fluid are essentially constant. Since the multiplicity
is proportional to the entropy, this also implies that the average energy per particle remains
constant. The transverse energy per particle thus reflects the thermodynamic state of the
system at t ≈ R/cs . Since the energy per particle scales like the temperature (see (17)), it
gives a direct information on the temperature of the system at t ≈ R/cs . The entropy density
at this time is proportional to the particle density, derived in section 4.4. Experimental data
imply a low temperature, which in turn means that the equation of state is ‘soft’ (see (34)).
Hydrodynamical models favour a soft equation of state, even softer than predicted by lattice
QCD.

Quite naturally, R/cs is also the characteristic time for the build-up of elliptic flow: v2

at t = R/cs is typically half its final value. With cs = 1/
√

3, the numerical value of R/cs

for a Au–Au collision is 3.6 fm/c for b = 0 (central collision), 2.7 fm/c for b = 7 fm. This
explains why elliptic flow is considered a signature of early pressure.

The final value of elliptic flow is a good illustration of how the choice of initial conditions
may influence the results. Early hydrodynamical calculations had predicted a v2 as large
as seen as RHIC, and this was the main reason for the success of inviscid hydrodynamics.
However, the possibility was raised recently that this agreement might be due to unrealistic
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initial conditions. Let us briefly explain why. Hydrodynamics predicts that v2 is proportional
to the eccentricity ε of the initial distribution, defined as

ε ≡ σ 2
y − σ 2

x

σ 2
y + σ 2

x

. (57)

Early hydrodynamical calculations estimated ε using participant scaling or binary collision
scaling (see section 4.1). It was discovered recently that the colour glass condensate predicts
a significantly higher eccentricity [11, 26].

Another effect may increase the initial eccentricity and was suggested by experimental
data: one expects ε to vanish for central collisions but, experimentally, a non-zero v2 is seen
even for the most central collisions. Surprisingly, the effect is larger with smaller nuclei:
the value of v2 in central Cu–Cu collisions is almost twice as large as in central Au–Au
collisions. The PHOBOS Collaboration has suggested that this may be due to fluctuations
in the positions of nucleons within the nuclei [27–29]. There have been several attempts by
STAR and PHOBOS to measure these fluctuations directly, but they are difficult to isolate
from other effects. The present situation is that our knowledge of the initial density profile is
much more uncertain than was usually thought a few years ago.

5. Particle spectra and anisotropies

The fluid eventually becomes free particles which reach the detector. In this section, we derive
some properties of the momentum distribution of particles emitted by a fluid. The transition
between a fluid (where the particles undergo many collisions) and free particles cannot be
described by fluid mechanics itself. If inviscid hydrodynamics holds throughout most of the
expansion, one can reasonably assume that the late stages of the expansion do not alter the
essential features of the momentum distributions. We therefore assume that the momentum
distribution of outgoing particles is essentially the momentum distribution of particles within
the fluid, towards the end of the hydrodynamical expansion, and that the fluid consists of
independent particles (ideal gas). These assumptions form the basis of the common ‘Cooper–
Frye freeze-out picture’ [30]. Here, we further assume that the fluid is baryonless and that
momentum distributions are given by Boltzmann statistics:

dN

d3x d3p
= 2S + 1

(2πh̄)3
exp

(
−E∗

T

)
, (58)

where 2S + 1 is the number of spin degrees of freedom and E∗ is the energy of the particle in
the fluid rest frame. T is called the freeze-out temperature.

5.1. Comoving particles and fast particles

The Boltzmann factor (58) is maximum when the energy E∗ in the fluid rest frame is minimum.
For a given fluid velocity, E∗ is minimum when the particle is at rest in the fluid rest frame, in
which case E∗ = m. This in turn means that the particle velocity in the laboratory equals the
fluid velocity: the particle is comoving with the fluid and has a momentum pµ = muµ. For
light particles, this corresponds to low transverse momenta: even if the fluid has a transverse
velocity as large as 0.7, the corresponding transverse momentum is approximately equal to the
mass, i.e., only 140 MeV/c for pions, 500 MeV/c for kaons. In this low-momentum region,
the momentum distribution depends on how the fluid velocity is distributed, and few general
results can be obtained.

In this section, we study particles which move faster than the fluid, which we call ‘fast
particles’. For fast particles, E∗ is larger than m. For a given momentum �p of the particle,
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the minimum of E∗ occurs if the fluid velocity is parallel to �p: fast particles are more likely
to be emitted from regions where the fluid velocity is parallel to their velocity (which means
that the fluid and the particle have the same azimuthal angle φ and rapidity y). This result can
be justified rigorously using the saddle-point method [31]. For simplicity, we study particles
emitted at θ = π/2, i.e., pz = 0 (zero rapidity), and we derive properties of the transverse
momentum distributions. Since the transverse momentum is invariant under Lorentz boosts
along z, our final results are also valid at non-zero rapidity.

The energy of the particle in the fluid rest frame can be generally written as E∗ = pµuµ in
the laboratory frame. The reason is twofold: (1) pµuµ is a Lorentz scalar and is independent of
the frame where it is evaluated; (2) pµuµ reduces to p0 if the fluid velocity is zero. Assuming
that the fluid velocity is parallel to the particle velocity, and that pz = 0, we obtain

E∗ = pµuµ = mtu
0 − ptu, (59)

where u0 =
√

1 + u2, pt is the transverse momentum of the particle and mt =
√

pt + m2 its
‘transverse mass’, which equals the energy for a particle with pz = 0. The definition of a fast
particle is that its velocity exceeds the maximum fluid velocity, i.e., pt > mu (or, equivalently,
mt > mu0) everywhere. For a fast particle, E∗ is minimum if u is maximum: fast particles
are emitted from the regions where the fluid velocity is largest.

5.2. Radial flow

We first study the transverse momentum distribution of particles emitted in central collisions.
Rotational symmetry in the transverse plane allows us to write dpx dpy = 2πpt dpt . (58) and
(59) then give

dN

2πpt dpt dpz

∝ exp

(−mtu0 + ptu

T

)
, (60)

where u is the maximum transverse fluid 4-velocity at zero rapidity, according to the above
discussion. If the fluid is at rest, i.e., u = 0 and u0 = 1, one expects that the spectra
are exponential in mt , with the same slope 1/T for all particles. It is a general feature of
Boltzmann statistics that kinetic energies associated with thermal motion are always of order T
and independent of the particle mass. This is precisely what is seen in proton–proton collisions:
figure 3 displays the momentum distributions of various hadrons in log scale, as a function of
the transverse mass. N denotes the number of particles per event. Pions, kaons, protons and
antiprotons are on parallel lines. Protons are slightly above antiprotons: this shows that the net
baryon number is not strictly zero and that our ‘baryonless’ picture is only an approximation.
The lines of protons and antiprotons are above the line of pions (if one extrapolates the latter
to larger mt ), roughly by a factor 2. This factor 2 corresponds to the spin degrees of freedom
in (58): S = 1

2 for protons and 0 for pions and kaons. By contrast, the kaon line is lower than
the pion line. This phenomenon is known as ‘strangeness suppression’: less strange particles
are produced in elementary particles than expected on the basis of statistical models.

The fact that thermal models give a satisfactory description of particle spectra and
abundances in p–p [33], and even e+– e− collisions [34] does not prove that thermal equilibrium,
is achieved in these collisions. In fact, thermal equilibrium is not at all expected in such small
systems, and the apparent thermal behaviour still remains a puzzle. It could arise from the
mechanism of hadronization itself, which is essentially a statistical process.

We now show that mt -scaling is broken if the fluid moves: on top of thermal motion,
there is now a collective velocity v, the fluid velocity, which applies to all particles within the
fluid. The kinetic energy associated with this collective motion is mv2/2 in the nonrelativistic
limit. It increases with the particle mass, and one expects that heavier particles will have larger
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Figure 3. mt spectra of identified hadrons produced in p–p collisions near pz = 0 (data from [32],
replotted).
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Figure 4. mt spectra of identified hadrons produced in central Au–Au collisions near pz = 0 (data
from [32], replotted). Yields are normalized per event, which explains why they are ≈200× larger
than in p–p collisions.

kinetic energies if collective flow is present. To see the breaking of mt -scaling explicitly, we
compute the slope of the mt spectrum by taking the log of (60) and differentiating with respect
to mt . We use the fact that p2

t = m2
t − m2 implies dpt/dmt = mt/pt :

d

dmt

log

(
dN

2πpt dpt dpz

)
= −u0 + umt/pt

T
. (61)

For a given mt , heavier particles have a smaller pt . If u > 0, this gives a positive contribution
to the slope, resulting in flatter mt -spectra5. This is clearly seen in Au–Au collisions
(figure 4): (anti)proton spectra and kaon spectra are much flatter than pion spectra. This
is generally considered evidence for transverse flow [35]. In the case of central collisions,
which have rotational symmetry in the (x, y) plane, transverse flow is also called ‘radial’
flow.

5 Note that (61) applies only to fast particles, for which pt > mu and mt > mu0, so that the slope is always negative.
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5.3. Chemical versus kinetic freeze-out

Comparing figures 3 and 4, it is clear that the relative abundances of pions, kaons, and
(anti)protons, also known as particle ratios, do not change dramatically from proton–proton
to Au–Au collisions: what happens between proton–proton and Au–Au is essentially a
redistribution of the transverse masses for heavier particles.

Now, the number of particles of a given type emitted by a fluid element is obtained by
integrating the Boltzmann factor (58) over momentum. As a consequence, particle ratios only
depend on the temperature. The fact that particle ratios are the same in proton–proton and
Au–Au collisions means that the temperature is the same: the temperature extracted from
particle ratios is called the ‘chemical freeze-out temperature’, and its value is Tc � 170 MeV
[36]. A detailed calculation shows that the kaon/pion ratio is in fact larger in Au–Au collisions
than in proton–proton collisions and that there is no ‘strangeness suppression’ in Au–Au
collisions. Although this is generally considered a strong argument for thermalization, it
has been shown that the mechanism of quark production itself can produce apparent thermal
equilibrium [37].

While the same value of the temperature explains both the particle ratios and the mt

spectra in proton–proton collisions, it is no longer the case for Au–Au collisions. If T in (61)
was the same for proton–proton and Au–Au collisions, transverse flow would result in much
flatter pion spectra for Au–Au than proton–proton collisions. The phenomenon of transverse
(or radial) flow nicely explains the slopes of mt spectra of identified hadrons, but the price to
pay is a lower value of the temperature. This temperature is referred to as the temperature of
‘kinetic freeze-out’, and its typical value at RHIC is Tf � 100 MeV.

The fact that Tf < Tc is usually interpreted in the following way: inelastic collisions,
which maintain chemical equilibrium, stop below Tc; below Tc, particle abundances are frozen,
but there are still enough elastic collisions to maintain Boltzmann distributions of momenta,
i.e., kinetic equilibrium. Kinetic equilibrium is eventually broken when the temperature
becomes lower than Tf , the kinetic freeze-out temperature.

5.4. Elliptic flow

We now study non-central collisions, and we define the x- and y-axes as in figure 2. We
rewrite (58) using dpx dpy = pt dpt dφ and (59), where we take into account the fact that the
maximum fluid velocity at zero rapidity may also depend on φ:

dN

pt dpt dpz dφ
∝ exp

(−mtu0(φ) + ptu(φ)

T

)
. (62)

According to (54), the fluid velocity is larger on the x-axis than on the y-axis, which is the
phenomenon referred to as elliptic flow. This effect can be parameterized in the form

u(φ) = u + 2α cos 2φ, (63)

where α is a positive coefficient characterizing the magnitude of elliptic flow and u is the
average over φ of the maximum fluid 4-velocity in the φ-direction. In semi-central Au–Au
collisions at RHIC, experimental data suggest that α � 4%, which means that elliptic flow at
the level of the fluid is a small effect. Using u0 =

√
u2 + 1, and expanding to first order in α,

we obtain

u0(φ) = u0 + 2vα cos 2φ, (64)
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Figure 5. Elliptic flow of identified hadrons as a function of transverse momentum [39]. v2 versus
pt is often called ‘differential’ elliptic flow.

where v ≡ u/u0 is the average over φ of the maximum fluid velocity. We then insert (63)
and (64) into (62) and expand to first order in α. Comparing with (55), we obtain the value of
elliptic flow, v2:

v2 = α

T
(pt − vmt) . (65)

This equation [38] explains the essential features of the differential elliptic flow of identified
particles, as shown in figure 5. For light particles such as pions, mt � pt , and v2 increases
essentially linearly with pt . This is already a non-trivial result. For heavier particles, mt is
larger at the same value of pt , resulting in smaller v2.6 This strong mass ordering is clearly
seen in the data: kaons and protons have smaller v2 than pions at the same pt . (65) shows that
the mass ordering is significant only if v is a significant fraction of the velocity of light. RHIC
data on v2 can therefore be considered strong evidence for relativistic collective flow. Fits to
data suggest that the maximum fluid velocity may be as large as 0.7.

The increase of v2 with pt predicted by (65) is seen in the data only up to pt ∼ 2 GeV/c.
For higher values of pt , v2 saturates and eventually decreases [40]. Such a deviation from
ideal hydrodynamics has been shown to occur generally as a result of viscous effects [41],
to be discussed briefly in section 6. However, viscosity alone cannot explain the observation
[42] that v2 becomes higher for baryons than for mesons between 2 and 3 GeV/c, an effect
which has been attributed to the process of hadronization through quark coalescence [43].
This picture has in turn suggested new analyses involving new scaling variables [44]. This
illustrates the vivid interplay between experiment and phenomenology in the field of heavy-ion
collisions.

6. Viscosity and thermalization

6.1. Types of flows

The various types of flows occurring in fluid mechanics are classified according to the values
of three dimensionless parameters:

6 Note that (65) only applies to fast particles, pt > mu and mt > mu0, which implies v2 > 0.
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• The Knudsen number Kn ≡ λ/R is the ratio of the mean free path λ of a particle between
two collisions, to a characteristic spatial dimension of the system, R. Applicability of
hydrodynamics requires Kn � 1.

• The Mach number Ma ≡ v/cs is the ratio of the characteristic flow velocity, v, to the
sound velocity, cs . It can be shown (see problem 2 in the appendix) that if Ma � 1,
the density is almost uniform throughout the fluid, which defines incompressible flow:
whether a fluid is compressible or not depends on how fast it is flowing.

• The Reynolds number is defined by Re ≡ Rv/(η/ρ), where η is the shear viscosity and
ρ the mass density (which must be replaced with ε + P for a relativistic fluid), and R and
v are defined as above. If Re � 1, the flow can be considered inviscid.

There is a fundamental relation between these three numbers. Transport theory indeed shows
that η/ρ ∼ λcs , which implies

Re × Kn ∼ Ma. (66)

This is a very general relation7. Since the validity of a fluid description requires Kn � 1,
(66) shows that there are essentially three types of flows, which correspond to three different
branches of fluid dynamics.

• Compressible flows, for which Ma is of order unity. Since Kn � 1, this in turn implies
Re � 1: compressible flows are inviscid. This part of fluid mechanics is called gas
dynamics.

• Viscous flows, for which Re is of order unity. Since Kn � 1, this in turn implies
Ma � 1: viscous flows are incompressible.

• Incompressible, inviscid flows (sometimes called ‘ideal’), for which Ma � 1 and
Re � 1. This is where turbulence occurs.

In the case of a heavy-ion collision, the fluid is expanding into the vacuum: this is obviously
a compressible flow, where Ma is of order unity. The real question is the validity of the fluid
description, i.e., the actual value of Kn.

6.2. Viscous corrections

The dynamics of gases expanding into the vacuum has been extensively studied in
nonrelativistic gas dynamics [45]. The Knudsen number Kn provides a natural small parameter
for these problems, and observables can be computed by an expansion in powers of Kn:

• The lowest order, i.e., the limit Kn → 0, corresponds to inviscid hydrodynamics.
• The first correction, linear in Kn, is also linear in the viscosity, since Kn ∝ 1/Re ∝ η. The

corresponding fluid equations are Navier–Stokes equations or viscous hydrodynamics.
They involve several transport coefficients (diffusion, shear and bulk viscosities), and the
energy–momentum tensor is no longer symmetric.

• The next correction, in Kn2, is described by more complicated equations called the
Burnett equations [46, 47].

A heavy-ion collision at RHIC produces a few thousand particles. It is intuitively obvious
that the fluid picture is at best an approximation and that there are sizeable corrections to this
picture. The question of whether or not hydrodynamics applies to heavy-ion collisions is no
longer a qualitative question, but rather a quantitative one. This is what viscosity is about:

7 There is a dimensionless proportionality constant of order 1 between the two sides of (66), whose precise values
depends on the interaction. It is � 1.6 for a dilute gas of nonrelativistic hard spheres.



Relativistic hydrodynamics 297

the goal of viscous hydrodynamics is to provide a more accurate description of heavy-ion
collision, by taking into account the leading corrections to the ideal-fluid picture [48, 49].

We conclude with estimates of the Knudsen number at RHIC. The actual value of the
viscosity of hot QCD is not known at present. Estimates have been obtained from lattice QCD
[50] but there are still controversies. Interestingly, a universal lower bound on the viscosity
to entropy ratio, which might hold for all field theories, has been proposed on the basis of a
correspondence with black-hole physics [51]. This universal bound is

η

s
>

h̄

4π
. (67)

This lower bound on η can be converted into an upper bound on the Reynolds number. Since
Kn ∼ 1/Re, this in turn gives a lower bound on the Knudsen number, which is of order 0.1 for
central Au–Au collisions. This means that viscous corrections at RHIC are expected to be 10%
at least. A recent study of elliptic flow [52] suggests that the magnitude of viscous corrections
is at least 30%. This in turn would mean that the viscosity of hot QCD is significantly larger
than the KSS bound (67).

Inviscid hydrodynamics gives a satisfactory explanation of several RHIC data at the
qualitative level: mass ordering of mt spectra, differential elliptic flow. However, they are
unable to reproduce all the data quantitatively. Taking into account viscous corrections will
be a major step in this respect. This is an ongoing programme. A lot of progress has already
been made, and quantitative results, with comparison to RHIC data, are now appearing [53].
Eventually, one should be able to estimate both the equation of state and the viscosity of hot
QCD from heavy-ion experiments. Hydrodynamic calculations may even shed light on the
initial density profile, i.e., on the early stages of the collision, and the particle production itself.
Hydrodynamics was crucial in our understanding of heavy-ion collisions at RHIC. It will be
even more important at LHC, where the quark–gluon plasma will last longer than at RHIC,
and the whole expansion will be dominated by hydrodynamics.

Acknowledgments

I thank IIT Mumbai and TIFR for their hospitality, CEFIPRA for financial support under
project 3104-3, and F Grassi and R Bhalerao for discussions and useful comments on the
manuscript.

Appendix A. Problems

Problem 1. Equations of inviscid hydrodynamics

(1) We introduce the notations D ≡ uµ∂µ and �µν ≡ gµν − uµuν . How do these quantities
simplify for a fluid at rest?

(2) Using (20), show that uν∂µuν = 0 and �µνu
ν = 0.

(3) Multiply the equations of energy–momentum conservation (28) and (29) by uν and show
that uµ∂µε + (ε + P)∂µuµ = 0.

(4) Using (5), (7) and (22), show that ∂µ(suµ) = 0. What is the interpretation of this
equation?

(5) Show that D(s/n) = 0. What is the interpretation of this result?
(6) Multiply the equations of energy–momentum conservation by �ρν and show that

(ε + P)Duρ = �ρν∂
νP . (A.1)

What is the nonrelativistic limit of this equation?
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(7) Explain why the previous equation, together with the equation of entropy conservation
and baryon-number conservation, exhausts all the information contained in the equations
of hydrodynamics.

Problem 2. Steady flows

The flow in a heavy-ion collision is strongly time dependent. Studying steady flows is
somewhat academic in this context. However, simple exact results can be easily obtained for
steady flows, and they provide useful insight into the physics of hydrodynamics.

(1) Show that (A.1) for ρ = 0, in the case of a steady flow (where all quantities are time
independent), can be recast in the form

d ln u0 = − dP

ε + P
, (A.2)

where the differential is taken along a streamline (i.e., a line parallel to the fluid velocity).
(2) Take the nonrelativistic limit of this result for an incompressible fluid and comment on

the result.
(3) For a baryonless fluid, show that u0T is constant along a streamline.
(4) The velocity of sound cs is defined as cs = √

dP/dε. Show that the result of Q1 can be
rewritten as

du

u
= − c2

s

v2

ds

s
, (A.3)

where v = u/u0 is the fluid velocity. The Mach number of a flow is defined by
Ma ≡ v/cs . If Ma � 1, one says that the flow is incompressible. Explain why?

(5) Consider an elementary flux tube, and denote by � the cross-section area of the flux
tube at some point. Explain why su� is a constant along the flux tube. Write this in
differential form.

(6) Eliminate the fluid 4-velocity u between the results of Q4 and Q5 and show that

d�

�
=

(
c2
s

v2
− 1

)
ds

s
(A.4)

along the flux tube. How does the density evolve diverging streamlines, depending on
whether the flow is supersonic or subsonic?

(7) Consider the case where a nozzle emits a baryonless gas, which then expands into the
vacuum. List some consequences of the results obtained in this problem.

Problem 3. The Riemann problem

The Riemann problem is a one-dimensional time-dependent flow which can be solved exactly.
The initial conditions are: at time t = 0, the half space x < 0 is filled with a uniform fluid at
rest, with energy density ε0, while the half space x > 0 is empty. We shall determine the flow
profile at t > 0. Since there is no characteristic length or time scale in the problem, both the
fluid velocity and the density depend through x and t only through the combination ζ = x/t :
the flow profile has the same shape at all positive times, only its size increases linearly with
time.

(1) Sketch the density profile at positive time.
(2) We first determine the point where the matter starts to flow to the right. At this point

the fluid velocity is 0 by continuity, but the derivatives of v with respect to x and t are
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generally not 0. (31) simplify to

∂ε

∂t
+ (ε + P)

∂v

∂x
= 0

∂P

∂x
+ (ε + P)

∂v

∂t
= 0. (A.5)

Rewrite these partial differential equations as ordinary differential equations in the reduced
variable ζ = x/t .

(3) Eliminate the pressure from this equation using dP = c2
s dε. Show that the resulting

system of equations has a non-trivial solution only if ζ = ±cs . In the situation considered
here, one expects dε/dζ < 0 and dv/dζ > 0. Show that this implies ζ = −cs . At which
value of ζ does the matter start to flow? Comment on this result.

(4) Since the equations are Lorentz invariant, at every point one can perform a Lorentz boost
such that the fluid velocity is 0 in the new frame. Explain, without algebra, why the above
result generalizes to ζ = (v − cs)/(1−vcs) at a point where the fluid velocity is not zero?

(5) Invert this relation and draw the velocity profile as a function of x for an ideal quark–gluon
plasma with sound velocity cs = 1/

√
3.

Appendix B. Solutions

B.1. Solution of problem 1

(1) D = u0(∂t + �v · �∇) where �v = �u/u0 is the fluid velocity. In the nonrelativistic limit,
u0 = 1 and D is the convective derivative, i.e., the time derivative along a comoving fluid
element. For a fluid at rest, D is the time derivative and �µν = diag(0,−1,−1,−1)

projects spacetime onto space.
(2) By taking the derivative of uνuν = 1, one obtains uν∂µuν = 0. From the definition of

�µν it is obvious that �µνu
ν = 0.

(3) The equation of energy–momentum conservation can be written as the sum of three terms:

(ε + P)uµ∂µuν + ∂µ((ε + P)uµ)uν − ∂νP = 0. (B.1)

Multiplying this equation by uν , the first term disappears using the result of Q2. One
obtains

∂µ((ε + P)uµ) − uµ∂µP = 0. (B.2)

Expanding the first term, one obtains

uµ∂µε + (ε + P)∂µuµ = 0. (B.3)

(4) (22) gives

uµ∂µn + n∂µuµ = 0. (B.4)

Multiplying by µ and subtracting from the previous equation, one obtains

uµT ∂µs + T s∂µuµ = 0. (B.5)

Simplifying by T, this can be recast in the form ∂µ(suµ) = 0. This equation is formally
analogous to the equation of baryon-number conservation (22), where the baryon number
is replaced with the entropy: it expresses entropy conservation.

(5) (B.4) gives Dn/n = −∂µuµ. Similarly, the equation of entropy conservation gives
Ds/s = −∂µuµ. It follows that D(s/n) = (s/n)(Ds/s − Dn/n) = 0. This equation
means that the entropy per baryon, s/n, is constant along a comoving fluid element.



300 J-Y Ollitrault

(6) Again, write the equation of energy–momentum conservation as the sum of three terms:

(ε + P)uµ∂µuν + ∂µ((ε + P)uµ)uν − ∂νP = 0. (B.6)

Multiply by �ρν , then the second term disappears and �ρν∂µuν = ∂µuρ . One thus obtains
immediately

(ε + P)Duρ = �ρν∂
νP . (B.7)

In the nonrelativistic limit, �ρν projects onto the space components, so that �ρν∂
νP is the

pressure gradient. ε + P reduces to the mass density and one recovers Euler’s equation,
i.e., Newton’s second law of motion applied to the fluid element.

(7) In Q3 we have projected the equations on the timelike direction uµ, in Q6 we have
projected on space. All the information has been used.

B.2. Solution of problem 2

(1) The equation for ρ = 0 is

(ε + P)Du0 = �0ν∂
νP . (B.8)

For a stationary flow, ∂0P = 0, and only the spatial components remain on the right-hand
side. D reduces to �u · ∇. Inserting the definition of �, one obtains

(ε + P)�u · �∇u0 = −u0ui∂
iP = −u0�u · �∇P. (B.9)

Dividing both sides by u0, and writing �u · �∇ = u(d/dσ), where dσ is the length along a
streamline, one obtains the result.

(2) In the nonrelativistic limit, u0 � 1 + �v2/(2c2): to leading order in �v, ln u0 = �v2/(2c2).
Next, ε + P = ρc2, where ρ is the mass density. For an incompressible fluid, this shows
that v2/2 + P/ρ is a constant along a streamline. This is Bernoulli’s equation, which
states that when the fluid accelerates, the pressure decreases. This equation has many
applications in fluid dynamics; it explains how a tornado can lift objects.

(3) For a baryonless fluid, (5) and (6) give dP/(ε + P) = dT/T = d ln T . The relativistic
Bernoulli equation then becomes d ln u0 + d ln T = 0 along a streamline, from which one
easily proves the result. The fluid cools as it accelerates.

(4) u2
0 − u2 = 1, hence u0 du0 = u du. This implies du/u = (du0/u0)/v

2. We then write
dP = c2

s dε (33), and dε/(ε + P) = ds/s (10). This gives the result.
(5) Conservation of entropy implies that the entropy flux is constant along the flux tube. This

implies that su� is constant. In differential form, this writes

ds

s
+

du

u
+

d�

�
= 0. (B.10)

(6) Replacing du/u with the result of Q4 in the above equation gives the result. If the
streamlines diverge, d�/� is positive. For a supersonic flow, v > cs , this implies ds > 0,
i.e., the density decreases along the streamline. For a subsonic flow, it increases.

(7) For a gas expanding into the vacuum, streamlines obviously diverge, and the density
decreases. This means that the flow is supersonic. As the fluid cools, it accelerates,
u0 ∝ 1/T . As the fluid becomes cooler and cooler, the mean free path becomes eventually
too large for hydro to be valid. This occurs when the flow is ultrarelativistic, i.e., u0 � 1.
In the nonrelativistic case, this condition becomes v � cs , and this is called ‘hypersonic
flow’.
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Figure B1. Velocity profile for the Riemann problem.

B.3. Solution of problem 3

(1) One expects the matter to flow to the right, so that the density will smoothly decrease as
a function of x. Since the information cannot propagate faster than the speed of light, one
expects that the density is ε0 for x < −t and 0 for x > t . The flow occurs in the interval
−t < x < t .

(2) One simply does the replacements ∂/∂x = (1/t) d/dζ, ∂/∂t = −(ζ/t) d/dζ . The system
of equations becomes

−ζ
dε

dζ
+ (ε + P)

dv

dζ
= 0

dP

dζ
− ζ(ε + P)

dv

dζ
= 0. (B.11)

(3) Replacing dP with c2
s dε, one obtains a linear system of two equations with unknowns

dε/dζ and dv/dζ . The system has a trivial solution dv/dζ = dε/dζ = 0. It has non-
trivial solutions only if the determinant vanishes, which gives ζ 2 = c2

s , i.e. ζ = ±cs . The
conditions dε/dζ < 0 and dv/dζ > 0 imply ζ < 0 (see the equations above). The correct
solution is therefore ζ = −cs . The matter starts to flow at x = −cst . For x < −cst ,
the flow velocity is 0 and the density is equal to the initial value ε0, corresponding to the
trivial solutions of the hydrodynamic equations.

(4) In the frame where the fluid velocity is zero, ζ = −cs , which means that the information
travels at velocity −cs with respect to the fluid. Under a Lorentz boost of velocity v, the
relativistic addition of velocities applies, so that ζ = (v − cs)/(1 − vcs).

(5) Inverting the relation, we obtain v = (ζ + cs)/(1 + ζcs). The maximum value of v is 1,
which corresponds to ζ = 1. Note that the fluid velocity at x = 0 is exactly cs . The
velocity profile is shown in figure B1.
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