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Abstract

We propose a new proof, as well as a generalization of Mirzakhani’s recursion for

volumes of moduli spaces. We interpret those recursion relations in terms of

expectation values in Kontsevich’s integral, i.e. we relate them to a Ribbon graph

decomposition of Riemann surfaces. We find a generalization of Mirzakhani’s

recursions to measures containing all higher Mumford’s κ classes, and not only κ1 as

in the Weil-Petersson case.

1 Introduction

Let

VolWP(Mg,n(L1, . . . , Ln)) (1-1)

be the volume (measured with Weil-Petersson’s measure) of the moduli space of genus

g curves with n geodesic boundaries of length L1, . . . , Ln. Maryam Mirzakhani found a

beautiful recursion relation [11, 12] for those functions, allowing to compute all of them

in principle. That relation has then received several proofs [13, 10], and we provide

one more proof, more “matrix model oriented”.

The main interest of our method, is that it easily generalizes to a larger class of

measures, containing all Mumford classes κ, which should also prove the result of Liu

and Xu [10].

In fact, our recursion relations are those of [7], and they should be generalizable

to a much larger set of measures, not only those based on Kontsevich’s hyperelliptical

1 E-mail: bertrand.eynard@cea.fr
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spectral curve, and not only rational spectral curves. For instance they hold for the

generalized Kontsevich integral whose spectral curve is not hyperelliptical, i.e. they

should hopefully allow to compute also some sort of volumes of moduli spaces of stable

maps with spin structures.

In [5] it was observed that after Laplace transform, Mirzakhani’s recursion became

identical to the solution of loop equations [7] for Kontsevich’s matrix integral. Based

on that remark we are in position to reprove Mirzakhani’s result, and in fact we prove

something more general:

Consider an arbitrary set of Kontsevich KdV times2 t2d+3, d = 0, 1, . . . ,∞, we

define their conjugated times t̃k, k = 0, 1, . . . ,∞, by:

f(z) =

∞
∑

a=1

(2a+ 1)!

a!

t2a+3

2 − t3
za → f̃(z) = − ln (1 − f(z)) =

∞
∑

b=1

t̃b z
b (1-2)

Then we prove the following theorem:

Theorem 1.1 Given a set of conjugated Kontsevich times t̃0, t̃1, t̃2, . . ., the following

“Mumford volumes”,

Wg,n(z1, . . . , zn) = 2−dg,n(t3 − 2)2−2g−n
∑

d0+d1+...+dn=dg,n

d0
∑

k=1

1

k!

∑

b1+...+bk=d0,bi>0

n
∏

i=1

2di + 1!

di!

dzi

z2di+2
i

k
∏

l=1

t̃bl
<

k
∏

l=1

κbl

n
∏

i=1

ψdi

i >g,n

(1 − 3)

where dg,n = 3g − 3 + n = dimMg,n, satisfy the following recursion relations (where

K = {z1, . . . , zn}):

W0,1 = 0 W0,2(z1, z2) =
dz1dz2

(z1 − z2)2

Wg,n+1(K, zn+1) =
1

2
Res
z→0

dzn+1

(z2
n+1 − z2)(y(z) − y(−z))dz

[

Wg−1,n+2(z,−z,K)

+

g
∑

h=0

∑

J⊂K

Wh,1+|J |(z, J)Wg−h,1+n−|J |(−z,K/J)
]

(1 − 4)

where

y(z) = z − 1

2

∞
∑

k=0

t2k+3 z
2k+1 (1-5)

2Our definition of times tk slightly differs from the usual one, we have tk = 1

N
Tr Λ−k.
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From theorem.1.1, we obtain as an immediate consequence if t2d+3 = − (2iπ)2d

2d+1!
+2δd,0,

i.e. t̃1 = 4π2 and t̃k = 0 for k > 1, and after Laplace transform:

Corollary 1.1 The Weil-Petersson volumes satisfy Mirzakhani’s recursions.

The proof of theorem 1.1 is detailed in the next sections, it can be sketched as

follows:

• We first define some Wg,n(z1, . . . , zn) which obey the recursion relations of [7], i.e.

eq.1-4. In other words, we define them as the solution of the recursion, without

knowing what they compute.

• We prove that thoseWg,n(z1, . . . , zn) correspond to some expectation values in the

Kontsevich integral Z(Λ) =
∫

dM e−N Tr (M3

3
−MΛ2), where Λ = diag(λ1, . . . , λn),

and tk = 1
N

Tr Λ−k, of the form:

Wg,n(λi1 , . . . , λin)

dx(λi1) . . . dx(λin)
= (−1)n 〈Mi1,i1 . . .Min,in〉(g)

c (1-6)

• Then we expand < Mi1,i1 . . .Min,in > into Feynman ribbon graphs, which are in

bijection with a cell decomposition of Mcomb
g,n (like in Kontsevich’s first works),

and the value of each of those Feynman graphs is precisely the Laplace transform

of the volume of the corresponding cell.

• the sum over all cells yields the expected result: the inverse Laplace transforms of

Wg,n are the volumes Vg,n, and, by definition, they satisfy the recursion relations.

• In fact the volumes are first written in terms of the first Chern classes ψi in

formula eq.2-31, and after some combinatorics, we find more convenient to rewrite

them in terms of Mumford κ classes.

Then, we specialize our theorem to some choices of times tk’s, in particular the

following:

• The first example is t2d+3 = − (2iπ)2d

2d+1!
+ 2δd,0, in which case Vg,n the Laplace

transform of Wg,n are the Weil-Petersson volumes, and thus we recover Mirzakhani’s

recursions.

• Our second example is tk = λ−k, i.e. Λ = λ Id, for which the Kontsevich integral

reduces to a standard one-matrix model, and for which the Wg,n are known to count

triangulated maps, i.e. discrete surfaces with the discrete Regge metrics (metrics whose

curvature is localized on vertices and edges). We are thus able to associate some class

to that discrete measure on Mg,n. And we have a formula which interpolates between

the enumeration of maps and the enumeration of Riemann surfaces, in agreement with

the spirit of 2d-quantum gravity in the 80’s [16, 2, 4].
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2 Proof of the theorem

2.1 Kontsevich’s integral

In his very famous work [9] Maxim Kontsevich introduced the following matrix integral

as a generating function for intersection numbers

Z(Λ) =

∫

dM e−N Tr (M3

3
−M(Λ2+t1))

= e
2N
3

Tr Λ3+Nt1 Tr Λ

∫

dM e−N Tr (M3

3
+M2Λ−t1M)

(2 − 1)

where the integral is a formal integral over hermitian matrices M of size N , and Λ is

a fixed diagonal matrix

Λ = diag(λ1, . . . , λn) , tk =
1

N
Tr Λ−k (2-2)

Throuthough all this article we shall assume t1 = 0, since anyways none of the quantities

we are interested in here depend on t1 (see symplectic invariance in [7], or see [3]).

In [7], a method to compute the topological expansion of such matrix integrals was

developped. We first define the Kontsevich’s spectral curve:

Definition 2.1 The spectral curve of Z(Λ) is the rational plane curve of equation:

E(x, y) = y2 − x− y

N
Tr

1

x− t1 − Λ2
− 1

N

〈

Tr
1

x− t1 − Λ2
M

〉(0)

= 0 (2-3)

i.e. it has the following rational uniformization

E(x, y) =

{

x(z) = z2 + t1
y(z) = z + 1

2N
Tr 1

Λ(z−Λ)
= z − 1

2

∑∞
k=0 tk+2z

k (2-4)

Then we define (i.e. the algebraic invariants of [7]):

Definition 2.2 We define the correlators:

W0,1 = 0 W0,2(z1, z2) =
dz1dz2

(z1 − z2)2
(2-5)

and we define by recursion on 2g − 2 + n, the symmetric3 form Wg,n+1(z0, z1, . . . , zn)

by (we write K = {z1, . . . , zn}):

Wg,n+1(K, zn+1) = Res
z→0

z dzn+1

(z2
n+1 − z2)(y(z) − y(−z))dx(z)

[

Wg−1,n+2(z,−z,K)

3The non-obvious fact that this is symmetric in its n + 1 variables is proved by recursion in [7].
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+

g
∑

h=0

∑

J⊂K

Wh,1+|J |(z, J)Wg−h,1+n−|J |(−z,K/J)
]

(2 − 6)

Then, if dΦ = ydx, we define for g > 1:

Fg =
1

2g − 2
Res
z→0

Φ(z)Wg,1(z) (2-7)

(there is a separate definition of Fg for g = 0, 1, but we shall not use it here).

We recall the result of [7] (which uses also [8]):

Theorem 2.1

lnZ =

∞
∑

g=0

N2−2gFg (2-8)

Now, we prove the more elaborate result:

Theorem 2.2 if i1, . . . , in are n distinct integers in [1, N ], then:

W
(g)
n (λi1 , . . . , λin)

dx(λi1) . . . dx(λin)
= 〈Mi1,i1 . . .Min,in〉(g)

c

(2-9)

where < . > means the formal expectation value with respect to the measure used

to define Z, the subscript c means connected part or cumulant, and the subscript (g)

means the gth term in the 1/N2 topological expansion.

In other words, the Wg,n compute some expectation values in the Kontsevich inte-

gral, which are not the same as those computed by [3].

proof:

From eq. 2-1, it is easy to see that:

N−n ∂n lnZ

∂λi1 . . . ∂λin

= 2n λi1 . . . λin 〈Mi1,i1 . . .Min,in〉c (2-10)

i.e., to order N2−2g−n:

∂nFg

∂λi1 . . . ∂λin

= 2n λi1 . . . λin 〈Mi1,i1 . . .Min,in〉(g)
c (2-11)

Now, let us compute ∂Fg

∂λi
with the method of [7].

Consider an infinitesimal variation of the matrix Λ: λi → λi + δλi (we assume

δt1 = 0). It translates into the following variations of the function y(z):

δy(z) =
1

2Nz
Tr

δΛ

(z − Λ)2
(2-12)
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and thus the form:

− δy(z)dx(z) = d

(

1

N
Tr

δΛ

z − Λ

)

= Res
ζ→z

1

(z − ζ)2

1

N
Tr

δΛ

ζ − Λ

= −
∑

i

Res
ζ→λi

1

(z − ζ)2

1

N
Tr

δΛ

ζ − Λ

(2 − 13)

Then, using theorem 5.1 of [7], we have:

δFg =
∑

i

Res
ζ→λi

W
(g)
1 (ζ)

1

N
Tr

δΛ

ζ − Λ

=
∑

i

W
(g)
1 (λi)

dλi

δλi

N
(2-14)

i.e.

W
(g)
1 (λi) = 〈Mii〉(g) dx(λi) (2-15)

And repeating the use of theorem 5.1 in [7] recursively we get the result. �

Example:

〈Mii〉(1) =
1

16(2 − t3)

(

1

λ5
i

+
t5

(2 − t3)λ3
i

)

−→ 〈TrM〉(1) =
t5

8(2 − t3)2
(2-16)

2.2 Expectation values and ribbon graphs

Let i1, . . . , in be n distinct given integers ∈ [1, . . . , N ]. We want to compute:

〈Mi1,i1 . . .Min,in〉(g) (2-17)

Let us also choose n positive real perimeters P1, . . . , Pn

Let Γ(g, n,m) be the set of tri-valent oriented ribbon graphs of genus g, with n

marked faces, and m unmarked faces. Each marked face F = 1, . . . , n carries the given

index iF , and each unmarked face f carries an index if ∈ [1, . . . , N ].

Let us consider another set of graphs: Let Γ∗(g, n,m) be the set of oriented ribbon

graphs of genus g, with trivalent and 1-valent vertices, made of m unmarked faces

bordered with only tri-valent vertices, each of them carrying an index if , and n marked

faces carrying the fixed index iF ∈ {i1, . . . , in}, such that each marked face has one

1-valent vertex on its boundary. The unique trivalent vertex linked to the 1-valent

vertex on each marked face, corresponds to a marked point on the boundary of that

face.
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For any graph G in either Γ(g, n,m) or Γ∗(g, n,m), each edge e is bordered by two

faces (possibly not different), and we denote the pair of their indices as (eleft, eright).

Assume that i1, . . . , in are distinct integers. The usual fat graph expansion of matrix

integrals gives (cf [2, 4, 9]):

〈Mi1,i1 . . .Min,in〉(g) = N−m
∑

m

∑

G∈Γ∗
g,n,m

∑

{if}

(−1)#vertices

#Aut(G)

∏

e∈edges(G)

1

λe left + λe right

(2-18)

It is obtained by first expanding e−
N
3

Tr M3

=
∑∞

v=0
Nv

3v v!
(−1)v ( Tr M3)v, and then

computing each polynomial moment of the Gaussian measure e−N Tr ΛM2

with the help

of Wick’s theorem. Each TrM3 corresponds to a trivalent vertex, each Mii corresponds

to a 1-valent vertex, and edges correspond to the “propagator” < MijMkl >Gauss=
δilδjk

N(λi+λj)
. The result is best represented as a fatgraph, whose edges are double lines,

carrying two indices. The indices are conserved along simple lines. The symmetry

factor comes from the combination of 1/(3vv!) and the fact that some graphs are

obtained several times. Notice that (−1)v = (−1)n, because the total number of 1 and

3-valent vertices must be even.

Notice that the edge connected to the 1-valent vertex MiF ,iF gives a factor 1/2λiF ,

and the two edges on the boundary of face F , on each side of the 1-valent vertex give

a factor 1/(λiF + λj)
2 (where j is the index of the neighboring face), which can be

written:
1

(λiF + λj)2
=

∫ ∞

0

dle

∫ le

0

dl̂i e−le(λiF
+λj) (2-19)

and all other edges have a weight of the form:

1

λe left + λe right
=

∫ ∞

0

dle e−le(λe left+λe right) (2-20)

We are thus led to associate to each edge e a length le ∈ R+.

Therefore

〈Mi1,i1 . . .Min,in〉(g) =
N−m

2nλi1 . . . λin

∑

m

∑

G∈Γ∗
g,n,m

∑

{if}

(−1)n

#Aut(G)

7



∏

e∈edges(G)

∫ ∞

0

dle e−
P

e le(λe left+λe right)
n

∏

F=1

∫ leF

0

dl̂F

(2 − 21)

Now, we introduce the perimeters of each face PF for marked faces, and pf for unmarked

ones.

Notice that each graph of Γ∗
g,n,m projects on a graph of Γg,n,m by removing the

1-valent vertex and its adjacent trivalent vertex, and keeping a marked point on the

boundary of the face F . The sum of
∫

∏

F dl̂F over graphs of Γ∗
g,n,m which project to

the same graph, corresponds to a sum of all possibilities of marking a point on the

boundary of face F , i.e. a factor PF , and thus removing the marked point. Therefore:

〈Mi1,i1 . . .Min,in〉(g)

=
N−m

2nλi1 . . . λin

∑

m

∑

G∈Γg,n,m

∑

{if}

(−1)n

#Aut(G)

∏

f

∫ ∞

0

dpf e−
P

f λif
pf

∏

F

∫ ∞

0

PF dPF e−λiF
PF

∏

e

∫ ∞

0

dle
∏

f

δ(pf −
∑

e∈∂f

le)

n
∏

F=1

δ(PF −
∑

e∈∂F

le)

=
1

2nλi1 . . . λin

∑

m

∑

G∈Γg,n,m

(−1)n

#Aut(G)

∏

f

∫ ∞

0

dpf
1

N
Tr (e−pfΛ)

∏

F

∫ ∞

0

PF dPF e−λiF
PF Vol(π−1

G (PF , pf))

(2 − 22)

where Vol(π−1
G (PF , pf)) is the volume of the pullback of the ribbon graph G in Mcomb

g,n+m:

Vol(π−1
G (PF , pf)) =

∫

∏

e

dle
∏

f

δ(pf −
∑

e∈∂f

le)

n
∏

F=1

δ(PF −
∑

e∈∂F

le) (2-23)

The number of integrations (i.e. after performing the δ) is 2dg,n+m = #edges−#faces =

2(3g−3+n+m), which is the dimension of Mg,n+m, therefore
∏

e dle is a top-dimension

volume form on Mcomb
g,n+m = Mg,n+m × Rn+m

+ , i.e.:

∏

e

dle =
ρg,n+m

dg,n+m!

∏

F

dPF

∏

f

dpf ∧ Ωdg,n+m (2-24)

where Ω is the 2-form on the strata π−1
G (PF , pf) of Mcomb

g,n+m such that:

Ω =
∑

f

p2
fωf +

∑

F

P 2
FωF (2-25)

and where ωf =
∑

e<e′ d(le/pf) ∧ d(le′/pf) is the first Chern class of pullback of the

cotangent bundle at the center of the face ψf = c1(Lf).
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Kontsevich [9] proved that the constant ρg,n+m is given by:

ρg,n+m = 2g−1−2dg,n+m (2-26)

Thus we have:

Vol(π−1
G (PF , pf))

=
ρg,n+m

dg,n+m!

∫

π−1
G

(PF ,pf )

Ωdg,n+m

= ρg,n+m

∑

P

f df +
P

F dF =dg,n+m

∫

π−1
G

(PF ,pf )

∏

f

p
2df

f ψ
df

f

df !

∏

F

P 2dF

F ψdF

F

dF !

= ρg,n+m

∑

P

f df +
P

F dF =dg,n+m

∏

f

p
2df

f

df !

∏

F

P 2dF

F

dF !
<

∏

f

ψ
df

f

∏

F

ψdF

F >G

(2 − 27)

therefore

∏

f

∫ ∞

0

dpf
1

N
Tr (e−pf Λ)Vol(π−1

G (PF , pf ))

= ρg,n+m

∏

f

∫ ∞

0

dpf
1

N
Tr (e−pf Λ)

∑

P

f df +
P

F dF =dg,n+m

∏

f

p
2df

f

df !

∏

F

P 2dF

F

dF !
<

∏

f

ψ
df

f

∏

F

ψdF

F >G

= ρg,n+m

∑

P

f df +
P

F dF =dg,n+m

∏

f

2df !

df !

1

N
Tr (Λ−(2df +1))

∏

F

P 2dF

F

dF !
<

∏

f

ψ
df

f

∏

F

ψdF

F >G

= ρg,n+m

∑

P

f df +
P

F dF =dg,n+m

∏

f

2df !

df !
t2df +1

∏

F

P 2dF

F

dF !
<

∏

f

ψ
df

f

∏

F

ψdF

F >G

(2 − 28)

and then, when we sum over all graphs (since we sum over graphs with m unmarked

faces, we have to divide wrt to the symmetry factor m!, like in [9]) :

〈Mi1,i1 . . .Min,in〉(g)

=
(−1)nρg,n

2nλi1 . . . λin

∏

F

∫ ∞

0

PFdPF e−λiF
PF

∑

m

1

m!

∑

P

df +dF =dg,n+m

∏

f

2df !

df !

t2df +1

4

∏

F

P 2dF

F

dF !
<

∏

f

ψ
df

f

∏

F

ψdF

F >

(2 − 29)

9



Therefore, if we write:

Wg,n(λi1, . . . , λin)

dλi1 . . . dλin

=

∫ ∞

0

dP1 . . . dPn

∏

F

PF e−λiF
PF Vg,n(P1, . . . , Pn) (2-30)

we find that the inverse Laplace transform of Wg,n is:

Vg,n(P1, . . . , Pn) = ρg,n

∑

m
(−1)n

m!

∑

Pm
1 df +

Pn
1 dF =dg,n+m

∏

f
2df !

df !

t2df +1

4

∏

F

P
2dF
F

dF !
<

∏

f ψ
df

f

∏

F ψ
dF

F >

(2-31)

where the intersection theory is computed on Mg,n+m.

Since we are interested only in the perimeters of the n marked faces, we may try

to perform the integration over the m unmarked faces, i.e. we introduce the forgetful

projection πn+m→n : Mg,n+m → Mg,n which “forgets” the m remaining points. It is

known [1, 16] that the push forward of the classes ψ
df

f , can then be rewritten in terms

of Mumford’s [14] tautological classes κb on Mg,n, by the relation:

(πn+m→n)∗(ψ
a1+1
1 . . . ψam+1

m

∏

F

ψdF

F ) =
∑

σ∈Σm

∏

c=cycles of σ

κP

i∈c ai

∏

F

ψdF

F (2-32)

Therefore, if we rewrite df = af + 1 we have:

1

ρg,n
Vg,n(P1, . . . , Pn)

=
∑

m

(−1)n

m!

∑

Pm
1 af +

Pn
1 dF =dg,n

∏

f

2af + 1!

af !

t2af +3

2

∏

F

P 2dF

F

dF !
<

∏

f

ψ
af +1

f

∏

F

ψdF

F >

=
∑

m

(−1)n

m!

∑

Pm
1 af +

Pn
1 dF =dg,n

∑

σ∈Σm

∏

f

2af + 1!

af !

t2af +3

2

∏

F

P 2dF

F

dF !
<

∏

c

κP

c ai

∏

F

ψdF

F >

= (−1)n
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

m

1

m!

∑

a1+...+am=d0,af≥0

∑

σ∈Σm

∏

f

2af + 1!

af !

t2af +3

2
<

∏

c

κP

c ai

∏

F

ψdF

F > (2-33)

Now, instead of summing over permutations, let us sum over classes of permutations,

i.e. partitions l1 ≥ l2 ≥ . . . ≥ lk > 0, and we denote |l| =
∑

i li = m the weight of the
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class, and |[l]| the size of the class:

|[l]| =
|l|!

∏

i li
∏

j(#{i/ li = j})! (2-34)

The sum over the a’s for each class gives:

(−1)n

ρg,n

Vg,n(P1, . . . , Pn)

=
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

∑

l1≥l2≥...≥lk>0

|[l]|
|l|!

∑

ai,j ,i=1,...,k,j=1,...,li

δ(
∑

i,j

ai,j − d0)
∏

i,j

2ai,j + 1!

ai,j !

t2ai,j+3

2
<

k
∏

i=1

κPli
j=1 ai,j

∏

F

ψdF

F >

(2 − 35)

Since the summand is symmetric in the li’s, the ordered sum over l1 ≥ . . . lk, can be

replaced by an unordered sum (multiplying by 1/k!, and by
∏

i(#{i/ li = j})! in case

some li coincide):

(−1)n

ρg,n

Vg,n(P1, . . . , Pn)

=
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1

k!

∑

l1,l2,...,lk>0

k
∏

i=1

1

li

∑

ai,j ,i=1,...,k,j=1,...,li

δ(
∑

i,j

ai,j − d0)
∏

i,j

2ai,j + 1!

ai,j !

t2ai,j+3

2
<

k
∏

i=1

κPli
j=1 ai,j

∏

F

ψdF

F >

=
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1

k!

∑

b1+b2+...+bk=d0

k
∏

i=1

t̃bi
<

k
∏

i=1

κbi

∏

F

ψdF

F >

(2 − 36)

where

t̃b =
∑

l>0

1

l

∑

a1+...+al=b

∏

j

2aj + 1!

aj !

t2aj+3

2
(2-37)

t̃b can be computed as follows: introduce the generating function

g(z) =
∞

∑

a=0

2a+ 1!

a!

t2a+3

2
za (2-38)

then t̃b is

t̃b =
∑

l>0

1

l
(gl)b = (− ln (1 − g))b (2-39)

11



where the subscript b means the coefficient of zb in the small z Taylor expansion of the

corresponding function, i.e.

− ln (1 − g(z)) =

∞
∑

b=0

t̃b z
b = g̃(z) , 1 − g(z) = e−g̃(z) (2-40)

In fact, it is better to treat the a = 0 and b = 0 terms separately. Define:

f(z) = 1 − 1 − g(z)

1 − t3
2

=
∞

∑

a=1

2a+ 1!

a!

t2a+3

2 − t3
za (2-41)

and

f̃(z) = − ln (1 − f(z)) = g̃(z) − t̃0 =
∞

∑

b=1

t̃b z
b (2-42)

We have:

t̃0 = − ln (1 − t3
2

) (2-43)

and t̃b is now a finite sum:

t̃b =

b
∑

l=1

(−1)l

l

∑

a1+...+al=b,ai>0

∏

j

2aj + 1!

aj !

t2aj+3

t3 − 2
(2-44)

Using that κ0 = 2g − 2 + n, we may also perform the sum over all vanishing b’s.

Let us change k → k + l where l is the number of vanishing b’s, i.e.

(−1)n

ρg,n

Vg,n(P1, . . . , Pn) =
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

∑

l

1

k!l!
(t̃0κ0)

l

∑

b1+b2+...+bk=d0,bi>0

k
∏

i=1

t̃bi
<

k
∏

i=1

κbi

∏

F

ψdF

F >

= et̃0κ0

∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1

k!

∑

b1+b2+...+bk=d0,bi>0

k
∏

i=1

t̃bi
<

k
∏

i=1

κbi

∏

F

ψdF

F >

=

(

2

2 − t3

)2g−2+n
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1

k!

∑

b1+b2+...+bk=d0,bi>0

k
∏

i=1

t̃bi
<

k
∏

i=1

κbi

∏

F

ψdF

F >

(2 − 45)

Notice that:

ρg,n22g−2+n = 2−dg,n (2-46)
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thus

2dg,n (t3 − 2)2g−2+n Vg,n(P1, . . . , Pn)

=
∑

d0+d1+...+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1

k!

∑

b1+b2+...+bk=d0,bi>0

k
∏

i=1

t̃bi
<

k
∏

i=1

κbi

∏

F

ψdF

F >

(2 − 47)

Finaly we obtain theorem 1.1 �.

3 Examples

3.1 Some examples

First, we give a few examples with general times tk’s.

Using formula 2-44, we have:

t̃1 = −6
t5

t3 − 2
, t̃2 = −60

t7
t3 − 2

+ 18
t25

(t3 − 2)2
(3-1)

t̃3 = −7!

3!

t9
t3 − 2

+
3!5!

2!

t5t7
(t3 − 2)2

− 3!3

3

t35
(t3 − 2)3

, . . . (3-2)

Then we use theorem 1.1 for some examples. In the examples that follow, the

first expression is the definition eq.1-3, while the second expression results from the

recursion eq.1-4.

W0,3(z1, z2, z3) =
1

t3 − 2

dz1 dz2 dz3
z2
1 z

2
2 z

2
3

< 1 >0=
1

t3 − 2

dz1 dz2 dz3
z2
1 z

2
2 z

2
3

(3-3)

i.e.

V0,3(L1, L2, L3) =
1

t3 − 2
, < 1 >0= 1 (3-4)

W1,1(z) =
dz

2(t3 − 2)

(

6

z4
< ψ >1 +

t̃1
z2

< κ1 >1

)

=
dz

8(t3 − 2)

(

1

z4
− t5

(t3 − 2)z2

)

(3-5)

i.e.

< ψ >1=
1

24
, < κ1 >1=

1

24
(3-6)

W1,2(z1, z2) =
dz1dz2

4(t3 − 2)2 z6
1 z

6
2

[5!

2!
(z4

1 < ψ2
2 > +z4

2 < ψ2
1 >) + 3!2z2

1z
2
2 < ψ1ψ2 >

+t̃1z
2
1z

4
2 < κ1ψ1 > +t̃1z

4
1z

2
2 < κ1ψ2 > +

1

2
t̃21z

4
1z

4
2 < κ2

1 > +t̃2z
4
1z

4
2 < κ2 >

]
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=
dz1dz2

8(t3 − 2)4z6
1z

6
2

[

(t3 − 2)2(5z4
1 + 5z4

2 + 3z2
1z

2
2) + 6t25z

4
1z

4
2

−(t3 − 2)(6t5z
4
1z

2
2 + 6t5z

2
1z

4
2 + 5t7z

4
1z

4
2)

]

(3-7)

i.e.

< κ1ψ1 >1=
1

2
, < κ2

1 >1=
1

8
, < κ2 >1=

1

24
(3-8)

The recursion equation 1-4 also gives:

W2,1(z) = − dz

128(2 − t3)7z10

[

252 t45z
8 + 12 t25z

6(2 − t3)(50 t7z
2 + 21 t5)

+z4(2 − t3)
2(252 t25 + 348 t5t7z

2 + 145 t27z
4 + 308 t5t9z

4)

+z2(2 − t3)(203 t5 + 145 z2t7 + 105 z4t9 + 105 z6t11)

+105 (2− t3)
4
]

.

(3 − 9)

W4,0(z1, z2, z3, z4) = 12
dz1dz2dz3dz4

(t3 − 2)3 z2
1z

2
2z

2
3z

2
4

(

(t3−2)(z−2
1 +z−2

2 +z−2
3 +z−2

4 )− t5
)

(3-10)

and so on ...

3.2 Specialisation to the Weil-Petersson measure

Now, we specialize to the Weil-Petersson spectral curve of [5]:

y(z) =
1

2π
sin (2πz) → t2d+3 =

(2iπ)2d

2d+ 1!
+ 2δd,0 → f(z) = 1 − e−4π2z (3-11)

so that:

f̃(z) = 4π2z → t̃b = 4π2 δb,1 + δb,0 ln (−2) (3-12)

therefore each bi must be 1, and we must have k = d0, and we get:

Vg,n(P1, . . . , Pn) = 2−dg,n

∑

d0+d1+...+dF =dg,n

2d0

d0!

∏

F

P 2dF

F

dF !
< (2π2κ1)

d0

∏

F

ψdF

F >

(3-13)

which is, after Wolpert’s relation [17], the Weil-Petersson volume since 2π2κ1 is the

Weil-Petersson Kähler form, and thus, we have rederived Mirzakhani’s recursion rela-

tion.
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3.3 Specialisation to the κ2 measure

Just to illustrate our method, we consider the integrals with only κ2:

Vg,n(P1, . . . , Pn) = 2−dg,n

∑

2d0+d1+...+dF =dg,n

1

d0!

∏

F

P 2dF

F

dF !
< (t̃2κ2)

d0

∏

F

ψdF

F > (3-14)

which correspond to the conjugated times

f̃(z) = t̃2z
2 → f(z) =

∞
∑

k=1

(−1)k t̃k2
k!

z2k (3-15)

i.e. t3 = 3, and

t4a+3 = 4(−1)a t̃a2
2a!

a!(4a+ 1)!
− δa,0 (3-16)

The corresponding spectral curve is:

y(z) = −z
2

+ 2

∞
∑

k=1

(−t̃2)k 2k!

k!(4k + 1)!
z4k+1 (3-17)

with that spectral curve, the volumes Vg,n satisfy the recursion of theorem 1.1.

3.4 Specialisation to discrete measure

Let us consider the example where Λ = λ Id, which is particularly important because

Z =

∫

dM e−N Tr (M3

3
−M(λ2+ 1

λ
)) ∝

∫

dM e−
N
T

Tr ( 1
2
M2−M3

3
) (3-18)

where

T = −1

8
(λ2 +

1

λ
)−3/2 (3-19)

i.e. Kontsevich integral reduces to the usual cubic one-matrix model, which is known

to count triangulated maps [2].

In that case we have:

tk = λ−k (3-20)

thus for b ≥ 1:

t̃b = 2bλ−2b
b

∑

l=1

1

l
(1 − 2λ3)−l

∑

a1+...+al=b,ai>0

∏

i

(2ai + 1)!! (3-21)

For instance we have:

V0,3(L) =
1

λ−3 − 2
(3-22)

V1,1(L) =
1

2

1

λ−3 − 2
(L < ψ1 >1 +t̃1 < κ1 >1) =

−1

8(2 − λ−3)

(

L

6
+

λ−5

2 − λ−3

)

(3-23)
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where t̃1 = 6λ−2 (1 − 2λ3)−1.

It would be interesting to understand how this relates to the discrete Regge measure

on the set triangulated maps. In the case of triangulated maps, loop equations, i.e. the

recursion equation eq.1-4 are known as Tutte’s equations [15] which give a recursive

manner to enumerate maps. This shows how general the recursion equation eq.1-4 is.

4 Other properties

From the general properties of the invariants of [7], we immediately have the following

properties:

• Integrability. The Fg’s satisfy Hirota equations for KdV hierarchy. That property

is well known and it motivated the first works on Witten-Kontsevich conjecture

[9].

• Virasoro. The invariants of [7] were initialy obtained in [6, 7] from the loop

equations, i.e. Virasoro constraints satisfied by Z(Λ).

• Dilaton equation, we have:

Wg,n(z1, . . . , zn) =
1

2g + n− 2
Res
z→0

Φ(z)Wg,n+1(z1, . . . , zn, z) (4-1)

where dΦ = ydx.

For the Weil-Petersson case, after Laplace transform this translates into [5]:

Vg,n(L1, . . . , Ln)WP =
1

2g + n− 2

∂

∂Ln+1

Vg,n+1(L1, . . . , Ln, 2iπ)WP (4-2)

• It was also found in [7] how all those quantities behave at singular points of the

spectral curve, and thus obtain the so-called double scaling limit.

• The invariants constructed in [7] have many other nice properties, and it would

be interesting to explore their applications to algebraic geometry...

5 Conclusion

In this paper we have shown how powerful the loop equation method is, and that the

structure of the recursion equation eq.1-4 (i.e. Virasoro or W-algebra constraints) is

very universal.

We have thus provided a new proof of Mirzakhani’s relations, exploiting the nu-

merous properties of the invariants introduced in [7]. However, the construction of [7]
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is much more general than that of Mirzakhani, since it can be applied to any spectral

curve and not only the Weil-Petersson curve y = 1
2π

sin (2π
√
x). In other words, we

have Mirzakhani-like recursions for other measures, and theorem.1.1 gives the relation-

ship between a choice of tk’s (i.e. a spectral curve) and a measure on moduli spaces.

Moreover, the recursion relations always imply integrability and Virasoro.

It would be interesting to understand what the algebraic invariants Wg,n defined

by the recursion relation of [7] compute for an arbitrary spectral curve, not necessarily

hyperelliptical neither rational...
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