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1. Introduction

Most statistical models of disorder start by assuming that randomness has Gaussian
statistics—from the classic Brownian motion to the Edwards–Anderson (or Derrida)
models of spin-glasses, Kraichnan models of turbulent flows, KPZ models of surface
growth, Black–Scholes models of financial markets, etc. Thanks to the outstanding
mathematical properties of Gaussian random variables, this assumption is often
technically very convenient and allows one to use powerful analytical techniques:
stochastic calculus and Ito’s lemma, field theory and replicas, etc. The real (and often
implicit) justification is, however, the existence of a central limit theorem. This should
ensure that on large enough lengthscales or timescales, the physical results are universal,
independent of the details of the microscopic randomness—which can therefore, for
simplicity and congeniality, be chosen as Gaussian. The paradigm of such a mechanism is
the Brownian motion; in this case, provided elementary hops are sufficiently decorrelated
from one another, it is well known that the sum of a very large number of these small
displacements leads to a Gaussian diffusion profile, quite independently of the distribution
of elementary hops—whenever its second moment is finite. If the second moment diverges,
the walk becomes a Lévy flight, with anomalous diffusion described by the generalized
central limit theorem of Lévy and Gnedenko which again ensures a certain degree of
universality [1]: only the extreme tails of the microscopic distribution matter in the
macroscopic limit. Although this dichotomy between finite and infinite variance is
asymptotically rigorous, finite time or size effects can be strong and lead to effective
violations of these central limit theorems. An important example is when the distribution
of elementary hops has a finite variance but power-law tails. In this case, fat tail effects are
persistent and convergence towards Gaussian diffusion is very slow. This is particularly
relevant in finance, where significant deviations from Gaussian statistics are observed even
for long time lags [2].

Sums of N i.i.d. random variables therefore provide a beautiful illustration of
universality and universality classes, a concept that extends far beyond this simple, exactly
soluble example. The existence of generalized central limit theorems for more complicated
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(non-linear) problems involving random variables should be generic, again leading to some
universality—universality classes should, however, be determined on a case-by-case basis
and might be different from the Lévy–Gnedenko classification. A well-known example is
the statistics of extreme values, say the largest of N independent random variables xi.
In this case again, the limiting distribution becomes to some degree universal; one has to
distinguish three different cases, depending on the ‘microscopic’ distribution p(x): Weibull
(for distributions p(x) which strictly vanish beyond a finite value x∗), Gumbel–Fisher–
Tippett (for distributions decaying faster than any power law) and Fréchet (for power-law
distributions) [3]. Interestingly, it is possible to formulate a problem which interpolates
between sums of random variables and extremes of random variables, by considering the
following quantity:

Sq =

[
N∑

i=1

xq
i

]
, (1)

where one assumes for simplicity that xi’s are all positive. Clearly, q = 1 corresponds to

a simple sum, whereas when q → ∞ at fixed N , S
1/q
q converges to the largest element

xmax. Defining xi ≡ exp−εi, it is clear that Sq plays the role of a partition function
and q is the inverse temperature for a generalized random energy model (REM), where
the energies εi’s are not necessarily Gaussian. This problem was considered in [4, 5] and
has, beyond the REM interpretation, many different applications. For example, suppose
εi is a growth rate of species i in the population, or the return of asset i in a portfolio,
and q is the time. Then Sq is the total population after time q or the total value of the
portfolio after time q; the detailed statistics of these objects is therefore quite interesting4.
The result depends on the relative value of q and N when both diverge to infinity. More
precisely, taking for simplicity εi to be Gaussian with variance σ2, the relevant parameter
is μ =

√
2 lnN/qσ. The statistics of Sq(N) only depends on μ and, quite interestingly,

closely follows the above Gauss/Lévy dichotomy: for μ > 2, Sq is Gaussian; for μ < 2 it
becomes Lévy distributed and more and more dominated by extreme values. In fact, as
soon as μ < 1, the whole sum Sq is well approximated by a finite number of terms, whereas
when μ → 0, only the largest survives. The transition at μ = 1 corresponds exactly the
glass transition in the REM. The above results can be extended to any distributions of εi

in the Gumbel class, up to a redefinition of μ [4, 5]; interestingly, the detailed statistics of
Sq is precisely encoded in the one-step replica symmetry broken solution of the generalized
random energy model [4, 7].

As the above example illustrates, it is clear that low temperature/long time properties
of disordered systems are sensitive to extreme values rather than to typical values; this
change of focus means that one should a priori be specially weary about universality
classes and the influence of the choice of distribution on the physical results. The aim of
this paper is to discuss several problems within this perspective, reviewing some recent
and older results, and pointing out several open problems and technical challenges well
worth investigating in the future.

4 More complex situations, for example diffusion of species in a random environment, can be analysed along
similar lines [6].
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2. Random matrices and top eigenvalues

A remarkable example of universal limit distribution is the eigenvalue spectrum of random
symmetric N ×N matrices M with i.i.d. real elements. Again, as soon as the variance of
the matrix elements is finite, the eigenvalue density ρ(λ) converges to the Wigner semi-
circle, with edges at λ = ±2 when the variance of the entries is normalized to 1/N . This
result can be derived in a way which makes direct use of the central limit theorem for
sums of random variables, and in this way makes explicit the mechanism underpinning the
universality of the Wigner semi-circle. In line with the above classification, one finds that,
where the variance of entries diverges, the eigenvalue spectrum ρ(λ) of M is no longer
the Wigner semi-circle. Not surprisingly, the discussion parallels the Lévy–Gnedenko
classification for sums of random variables. The case where the distribution of entries
decays as a power-law ∼|Mij|−1−μ (possibly multiplying a slow function) with μ < 2
(such that the variance of entries diverge), the eigenvalue spectrum ρ(λ) can be computed
exactly [8, 9] and no longer has a compact support, but itself acquires a power-law tail
ρ(λ) ∼ |λ|−1−μ, bequeathed from the tails of the matrix entries [8]. The structure of
eigenvectors is also quite interesting: whereas for μ > 2 most states are extended, various
localization transitions occur, as a function of λ, for μ < 2.

Following the above discussion, it is quite natural to investigate the distribution of
extreme eigenvalues as well, and to find the universality classes corresponding to this
question. Since the eigenvalues of a random matrix are strongly correlated random
variables, one does not expect the result to belong to any of the well known Gumbel–
Fisher–Tippett, Weibull and Fréchet cases. One of the most exciting recent results in
mathematical physics is the Tracy–Widom distribution of the top eigenvalue of large
Gaussian random matrices [10]. The truly amazing circumstance is that the very same
distribution also appears in a host of physically important problems [11]: crystal shapes,
exclusion processes [12], sequence matching, and, as discussed in the next section, directed
polymers in random media.

Again, the Tracy–Widom result is expected to hold for a broad class of random
matrices. The precise characterization of this class, as well as the extension of the Tracy–
Widom result for other classes, is a subject of intense activity [14, 15]. The case where
the distribution of entries decays as a power law ∼|Mij|−1−μ is expected to fall in a
different universality class, at least when μ is small enough. The situation is simple when
μ < 2: for large λ, eigenvalues become uncorrelated and, as mentioned above, distributed
as ρ(λ) ∼ |λ|−1−μ. Correspondingly, the largest eigenvalues are described by Fréchet
statistics [16]. What happens when μ is in the range ]2, +∞), such that the eigenvalue
spectrum ρ(λ) still converges [8], for large N , to the Wigner semi-circle? We find that
Fréchet statistics holds whenever μ < 4, whereas the Tracy–Widom applies asymptotically
as soon as μ > 4, with a new limiting family of distributions for μ = 4 [17]. The idea of

the method is to start with a real symmetric matrix M̂ with i.i.d. elements of variance
equal to 1/N , and such that the distribution has a tail decaying as:

p(Mij) �
μ(AN−1/2)μ

|Mij |1+μ
, (2)

where the tail amplitude ensures that Mij ’s are of order AN−1/2. As soon as μ > 2, the
density of eigenvalues converges to the Wigner semi-circle on the interval λ ∈ [−2, 2],
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meaning that the probability to find an eigenvalue beyond 2 goes to zero when N → ∞.
However, this does not necessarily mean that the largest eigenvalue tends to 2—we will

see below that this is only true when μ > 4. Now, we perturb the matrix M̂ by adding

a certain amount S to a given pair of matrix elements, say (α, β): M̂αβ → M̂αβ + S and

M̂βα → M̂βα + S. What can one say about the spectrum of this new matrix? Using
self-consistent perturbation theory, which becomes exact for large N , one can show [17]
that, when |S| ≥ 1, there is a pair of eigenvectors partly localized on α, β, with eigenvalues
λ± = ±(S + 1/S) with |λ| ≥ 2, which is therefore expelled from the Wigner sea. When
|S| < 1, on the other hand, no such eigenvalue exists and the edge of the spectrum remains
λmax = 2 in this case.

Now consider large matrix entries |Mij | > 1. From equation (2), their number is
N2

∫ ∞
1

p(Mij) dMij = AμN2−μ/2. In the case μ > 4, it is clear that this number tends to
zero when N → ∞. With probability close to unity for large N , no entry is larger than one,
in which case the largest eigenvalue is expected to remain Tracy–Widom around λ∗ = 2.
With small probability, however, the largest element S of M exceeds one; its distribution
is AμN2−μ/2/|S|1+μ and the corresponding largest eigenvalue, using the above analysis, is
λmax = S+1/S. For μ > 4 and large but finite N , we therefore expect that the distribution
of the largest eigenvalue of M is Tracy–Widom, but with a power-law tail of index μ that
very slowly disappears when N → ∞. Our numerical results are in full agreement with
this expectation (see figure 1). When μ < 4, on the other hand, the number of large entries
increases with N . However, when μ is larger than 2, such as to ensure that the eigenvalue
spectrum still converges to the Wigner semi-circle, the number of rows or columns where
two such large entries appear still tends to zero, as N2−μ. Therefore, the above analysis
still holds: for each large element Sij exceeding unity, one eigenvalue λ = Sij + S−1

ij will
pop out of the Wigner sea. Even if the eigenvalue density tends to zero outside of the
interval [−2, 2] when 2 < μ < 4, the number of eigenvalues exceeding 2 (in absolute
value) grows as N2−μ/2 
 N . The largest eigenvalues are then equal to the largest entries
and are themselves given by a Poisson point process with Fréchet intensity, as proven by
Soshnikov in the case μ < 2 [16]. His result therefore holds in the whole range μ < 4.
Finally, the marginal case μ = 4 is easy to understand from the above discussion. The
number of entries exceeding one remains of the order of unity as N → ∞; the distribution
of the largest entry S is Fréchet with N -independent parameters:

Pμ=4(|S|) =
4A4

|S|5 exp

[
− A4

|S|4

]
. (3)

The probability that |S| exceeds 1 is ϕ = 1− e−A4
, in which case λmax = |S|+ |S|−1;

otherwise, with probability 1 − ϕ, λmax = 2. This characterizes entirely the asymptotic
distribution of the largest eigenvalue in the marginal case μ = 4: it is a mixture of a δ
peak at 2 and a transformed Fréchet distribution. Note that this asymptotic distribution
is non-universal since it depends explicitly on the tail amplitude A. Again, all these results
are convincingly borne out by numerical simulations, see [17]. The statistics of the second,
third, etc., eigenvalues could be understood along the same lines.

One can also consider the case of sample covariance matrices, important in
many different contexts. The ‘benchmark’ spectrum of sample covariance matrix for
i.i.d. Gaussian random variables is well known and given by the Marčenko–Pastur
distribution [19]. Here again, the spectrum has a well defined upper edge and the
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Figure 1. Histogram of λmax conditioned on |S| < 0.95 for μ = 5 for
N = 200, 500, 1000: each eigenvalue has been shifted by the empirical mean
and scaled by N2/3. For comparison a GOE Tracy–Widom distribution of zero
mean and variance adjusted to match N = 500 data is also shown (data obtained
from [18]). Similar agreement with Tracy–Widom and scaling in N2/3 is obtained
for any value of μ when conditioned on |S| < 0.95. Note that, for the parameters
chosen here, the probability of |S| > 1 is still quite large (75.2%) at N = 1000.
Even for such large values of N , the unconditional distribution of λmax has a
marked power-law tail of index μ (dotted line) and is very different from the
asymptotic Tracy–Widom distribution (inset).

distribution of the largest eigenvalue is Tracy–Widom (see, e.g., [15]). What happens
if the random variables have heavy tails? More precisely, we consider N times series of
length T each, denoted xt

i, where i = 1, . . . , N and t = 1, . . . , T . The xt
i have zero mean

and unit variance, but may have power-law tails with exponent μ. For example, daily
stock returns are believed to have heavy tails with an exponent μ in the range 3–5 [2].
The empirical covariance matrix C is defined as:

Cij =
1

T

∑
t

xt
ix

t
j. (4)

When the time series are independent, and for T and N both diverging with a fixed ratio
Q = T/N , the eigenvalues of C are distributed in the interval [(1−Q−1/2)2, (1 +Q−1/2)2].
When T → ∞ at fixed N , all eigenvalues tend to unity, as they should since the empirical
covariance matrix converges to its theoretical value, the identity matrix. When N and T
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are large but finite, the largest eigenvalue of C is, for Gaussian returns, a distance ∼N−2/3

away from the Marčenko–Pastur edge, with Tracy–Widom fluctuations. When returns
are accidentally large, this may cause spurious apparent correlations and substantial
overestimation of the largest eigenvalue of C. Let us be more specific and assume, as above,
that one particular return, say xτ

α, is exceptionally large, equal to S. A generalization
of the above self-consistent perturbation theory shows that, whenever S ≤ (NT )1/4, the
largest eigenvalue remains stuck at λmax = (1 + Q−1/2)2, whereas when S > (NT )1/4, the
largest eigenvalue becomes:

λmax =

(
1

Q
+

S2

T

) (
1 +

T

S2

)
. (5)

This result again enables us to understand the statistics of λmax as a function of the tail
exponent μ. For N times series of i.i.d. random variables, of length T each, the largest
element is of order (NT )1/μ. For μ > 4, this is much smaller than (NT )1/4 and, exactly
as above, we expect the largest eigenvalue of C to be Tracy–Widom, with possibly large
finite size corrections [20]. For μ < 4, large ‘spikes’ in the time series dominate the
top eigenvalues, which are of order λmax ∼ N4/μ−1Q2/μ−1 and distributed according to
a Fréchet distribution of index μ/2. In the marginal case μ = 4, as above, λmax has a
finite probability to be equal to the Marčenko–Pastur value, and with the complementary
probability it is distributed according to a transformed Fréchet distribution of index 2,
with a T and N independent scale. The structure of the corresponding eigenvectors can
also be investigated and is again found to be partly localized when S > (NT )1/4. Finally,
we expect similar results to hold for the random singular value problem studied in [21],
where rectangular matrices corresponding to cross-correlations between different sets of
time series are considered.

3. Directed polymers, KPZ/KPP equations and pinned manifolds

Quite remarkably, the Tracy–Widom distribution for the largest eigenvalue of complex
sample covariance matrices has deep links with the directed polymer (DP) problem in
(1+1) dimension, defined as follows: consider a two-dimensional square lattice, such that
on each site one independently draws a random energy e(x, y) from a given distribution
p(e). The zero-temperature directed polymer is the directed walk starting from (0, 0) and
only allowed to move North-East, such that the sum of encountered energies is minimum.
When e is an exponential variable, there is an exact mapping to the Tracy–Widom
problem [13]. Thanks to this mapping, the DP in (1 + 1) dimension can be considered
as a rare example of an exactly soluble disordered system in finite dimensions, for which
not only the scaling exponents but the full distribution of the ground state energy can
be completely characterized in terms of the Tracy–Widom distribution. In particular, the
scaling between the sample-to-sample fluctuations of the ground state energy ΔE and the
length of the path L is ΔE ∼ L1/3 and the typical width of the optimal path is given by
W ∼ L2/3. These conjectured scalings, based on physical arguments, are therefore exact
for a certain class of random energy distributions p(e). In the spirit of the above discussion,
it is quite natural to wonder about the universality class of such results [22].
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The question is all the more interesting that the DP problem maps onto a non-linear
stochastic partial differential equation describing non-equilibrium surface growth, the so-
called Kardar–Parisi–Zhang equation [23]:

∂h(�r, t)

∂t
= νΔh +

Λ

2
(�∇h)2 + η(�r, t), (6)

where h is the height of the interface, �r the coordinates along the d-dimensional interface
and η a white noise term, mapping to the random energy e in the DP problem. (The
(1 + 1) DP problem corresponds to d = 1.) This equation can in turn be interpreted as

a Burgers equation on the quantity �u = −�∇h, which corresponds to the effective force
acting on the end point of the directed polymer. But since the Burgers equation is a
toy model for turbulence, the question of the relevance of the distribution of the external
forcing term �∇η on the statistics of the velocity field is particularly interesting. KPZ-like
equations may also describe very different physical situations, such as, for example, the
propagation of crack fronts in disordered materials [24]; the robustness of the results with
respect to the nature of the randomness is therefore quite important.

It is clear that it is the presence of a non-linear term in the KPZ/Burgers equation,
responsible for the appearance of shocks in the velocity field, which makes the problem
non-trivial. For a linear KPZ equation Λ = 0, called the Edwards–Wilkinson equation in
this context, it is easy to show that the long time statistics of h(�r, t) is Gaussian provided
η(�r, t) has a finite second moment, again thanks to the Central Limit Theorem for sums.
The interplay between non-linearity and fat tails does, however, lead to rather unexpected
results, as suggested by a simple Flory argument in the case where p(e) decays, for large
negative e, as p(e) ∼ |e|−1−μ. The Flory argument compares the energy of the best
‘bounty’ site in a volume V = W dL to the elastic stretching energy the polymer has to
pay to get there, of order W 2/L. Using extreme value theory in the Fréchet case, one
gets Emin ∼ −V 1/μ, leading to W ∼ L(1+μ)/(2μ−d) and ΔE ∼ Emin ∼ L(2+d)/(2μ−d). Of
course, this reasoning is only valid if the extreme bounty site is worth the trip, i.e. if the
distortion W is larger than in the absence of tails in the distribution of e. Calling ζd the
exponent relating W to L in the ‘thin tail’ case, one expects the results to be strongly
affected by the power-law tail of p(e) as soon as μ is smaller than:

μ < μc =
1 + dζd

2ζd − 1
. (7)

The exponent ζd is only known exactly in d = 1, with only numerical estimates available
in d > 1 and still a very controversial situation concerning the value of the upper critical
dimension dc above which ζd takes the trivial random walk value ζ = 1/2. In any case,
for d = 1, ζ1 = 2/3, leading to μc = 5. In other words, the Flory argument suggests
that, as soon as the fifth moment of the local energy distribution diverges, the Tracy–
Widom scaling breaks down, contrary to the naive expectation that the DP exponents are
universal as long as the variance of the local disorder is finite. The value μc = 5 is also
different from the critical value μc = 4 found for the statistics of the top eigenvalue of
random matrices, showing that a general mapping between the two problems, if it exists,
is more subtle.

Summarizing, the Flory argument suggests that, in (1 + 1) dimensions, the energy
fluctuations should scale as L1/3 and by Tracy–Widom for μ > 5, and as L3/(2μ−1) for

doi:10.1088/1742-5468/2007/07/P07019 8

http://dx.doi.org/10.1088/1742-5468/2007/07/P07019


J.S
tat.M

ech.
(2007)

P
07019

Extreme value problems in random matrix theory and other disordered systems

2 < μ < 5 with a new type of limiting distribution (the case μ < 2 corresponds to a
complete stretching of the polymer and was recently solved in [25]). We have conducted
new numerical simulations of this problem which indeed confirm that, for μ > 5, the
ground state energy scales as L1/3 with Tracy–Widom fluctuations, while for μ < 5 the
above Flory prediction is very accurate. The distribution P of ground state energy can
be well fitted by a geometric convolution of Fréchet distributions, suggested by the Flory
argument with a finite number of dominant sites: P = (1−p)(F +pF �F +p2F �F �F +· · ·),
different from the pure Fréchet distributed reported above for the largest eigenvalue for
μ < 4.

At this stage, a number of comments should be made. First, equation (7) shows that
μc diverges when d → ∞. This is perfectly in line with the Derrida–Spohn solution for
the DP on a tree [26], which indeed breaks down completely as soon as p(e) decays slower
than exponentially when e → ∞. This, in turn, is related to the problem of fronts in the
Kolmogorov–Petrovsky–Piscounov (KPP) equation when the initial condition decays too
slowly into the unstable phase. Whereas for localized initial conditions, the front between
the stable and unstable phase propagates at a well defined velocity (which determines
the free-energy of the DP [26, 27]), the case of slowly decaying initial conditions has, to
our knowledge, not been carefully investigated. The very notion of a propagating ‘front’
might disappear altogether, much like in models of epidemic propagation with infected
individuals performing Lévy flights, discussed in this context in [28].

Another intriguing property of equation (7) is that μc diverges whenever ζd = 1/2,
independently of dimension. If a critical dimension exists such that the strong disorder
fixed point has ζd = 1/2 for d > dc, then this fixed point should be unstable against power-
law tailed disorder with arbitrarily high exponent μ. Since all moments of the disorder still
exist in this case, it is difficult to see how perturbative methods can grasp such a strange
behaviour. More generally, it is not obvious to see how perturbative renormalization group
methods for pinned systems (including the functional RG) can deal with high moment
anomalies which change the scaling exponents. This seems to us to be a very interesting
technical challenge; its resolution might indirectly shed light on the still elusive nature
of the strong disorder fixed point of the DP/KPZ problem in high dimensions [29]. A
case where progress is possible is the problem of pinned manifold in the mean-field limit,
which maps onto a deterministic Burgers equation for the effective force acting on the
manifold [4]. Disorder is now entirely contained in the initial condition, which represents
the (bare) microscopic pinning force. The statistics of the renormalized force, in particular
the density and amplitude of the ‘jumps’ (Burgers shocks) responsible for the famous cusp
in the renormalized correlation function predicted by the functional RG, follows in this
case the simple extreme value classification for independent random variables [4, 30]. In
particular, the case of a Gaussian pinning field is indeed in a different universality class
than any power-law tailed disorder. Interestingly, the functional RG has recently been cast
in the form of a functional Burgers equation for the effective force in full generality [31];
this might provide a way to understand the importance of the statistics of the microscopic
disorder in the general case as well.

Finally, the presence of so-called ‘temperature chaos’ [32, 33] might be quite sensitive
to power-law tails in the microscopic disorder. Temperature chaos is associated with the
fact that the free energy of the DP at non-zero temperatures scales as L1/3, whereas both
energy and entropy fluctuations are dominated by small scale fluctuations and therefore
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scale as L1/2 
 L1/3. This implies that, when temperature changes by a small amount
δT , polymers of length L > L∗, with δTL∗1/2 = L∗1/3 must rearrange and find another
equilibrium configuration. One finds L∗ ∼ (δT )−6, in good agreement with numerical
work [33] and exact results on Migdal–Kadanoff lattices [34]. Interestingly, as long as
μ > 2, entropy fluctuations should still scale as L1/2, whereas free energy scales as L3/(2μ−1)

when μ < 5. Hence, when 2 < μ < 7/2, small temperature changes, or small disorder
changes at zero temperature, are not strong enough perturbations to induce large scale
rearrangements.

4. Diffusion in a random potential

On the failure of perturbative RG to grasp the potential relevance of ‘fat tails’, it is
interesting to mention the case of Langevin diffusion in a random potential, i.e. the
long-time behaviour of 〈x2(t)〉, where �x obeys:

d�x

dt
= −�∇U(�x) + �η(�x, t), (8)

where η is again a thermal noise and U(�x) a random potential with short range
correlations, over a length ξ. When U is Gaussian, one can show that diffusion is always
normal, i.e. limt→∞〈x2(t)〉/t = D > 0. Exact formulae for the value of D are available in
one and two dimensions. Perhaps surprisingly, these formulae are exactly reproduced by
a simple RG scheme, as independently proposed by Deem and Chandler [35], and Dean
et al [36]. Physically, the time spent in a given region of space is τ(�x) ∝ exp−U(�x)/T ;
because the potential has Gaussian tails the average of τ(�x) is finite, and hence the
diffusion normal, with D ∼ ξ2/〈τ〉. But as soon as the disorder has tails decaying slower
than exponential, the same argument leads to an infinite average trapping time and to
subdiffusion. In the special case where p(U) ∼ exp(−U/Tg), the model is similar to
the trap model [37, 38]; one expects to find a critical temperature below which diffusion
becomes anomalous, and 〈x2(t)〉 ∼ tμ with μ < 1. This result was indeed recently
confirmed exactly [39]; however, the RG scheme which leads to such an accurate result for
Gaussian potentials is totally blind to the tails of the disorder and is unable to reproduce
the above phase transition and subdiffusive behaviour. It would be very interesting
to see how to adapt the RG scheme of [35, 36] to subexponential tails; this might be
an important technical breakthrough to address quantitatively the issue of activated
dynamics in supercooled glasses below the mode-coupling temperature.

5. Spin-glasses and non-standard RSB

In this final section we address the emblematic spin-glass problem, in particular the
mean-field Sherrington–Kirkpatrick (SK) model, from the point of view of extreme value
statistics. The SK model is defined by the following mean-field Hamiltonian:

H = − 1√
N

∑
i,j

JijSiSj , Si = ±1, (9)

where Jij are independent Gaussian random variables. It is now proven mathematically
that the full replica symmetry broken solution invented by Parisi provides the exact
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solution fo the SK model and encodes in a rather magical way the complexity of the spin-
glass phase [40]. Much insight into the meaning of Parisi’s hierarchical construction is
provided both by the cavity approach and by the random energy model. One understands
that RSB is essentially a algebraic way to capture the Gumbel–Fisher–Tippett statistics
of low lying energy states, which become relevant below the spin-glass transition [4]. The
symptoms signalling that the replica symmetric (RS), one-phase solution is unstable are
well known: its entropy becomes negative below a certain temperature (and remains
negative at zero temperature) and the spin-glass susceptibility, which measures the
correlation of spin fluctuations, assumed to be negligible in the RS description, in fact
diverges below the spin-glass transition temperature. One of the striking predictions of
the RSB solution is the pseudo-gap in the distribution of local magnetic fields h, which
vanishes linearly when h → 0: P (h) ∼ Ah at T = 0, in contrast with the Gaussian
distribution of h found in the RS phase. Interestingly, this pseudo-gap is intimately
related to the marginal stability of the ground state configuration [41] and is the close
analogue of the Efros–Shklovskii gap in Coulomb glasses [42]. As a consequence of the
vanishing of P (h) for small h’s, the specific heat of the spin-glass grows as T 2 at small T ,
rather than the naively expected linear-in-T behaviour.

How are these results affected by non Gaussian disorder? It is easy to be convinced,
for example using the cavity method [43], that the SK results are universal provided the
central limit theorem holds, i.e. the variance of the Jijs is finite and correlations can be
neglected. One knows that introducing strong correlations between the Jijs, as is the
case of the random orthogonal model, may change the nature of the solution, for example
from full RSB to one-step RSB [44]. When the Jijs are i.i.d. variables with a power law
tail |Jij|−1−μ with μ < 2 such that the variance is infinite, interesting effects appear,
related to the fact that some bonds become extremely strong compared to others, thereby
decreasing the frustration in the system. For example, there is a ‘trivial’ spin-glass phase,
i.e. a phase where the Edwards–Anderson parameter is non-zero and the RS solution is
stable [45]. RS is broken below a second transition temperature TAT; however, the precise
nature of the RSB phase is still unknown. The puzzle is that one naively expects the
distribution of low-energy states to be governed by Fréchet statistics, since the energy is
a sum of power-law distributed random variables. One knows from the study of the REM
with power-law distributed energies that the solution in that case cannot be the standard
Parisi replica symmetry breaking scheme [4], which—as mentioned above—describes the
Gumbel universality class5. Things might, however, be more subtle: the energy of low
lying states might be of the form E0 + eα, where E0 is indeed Fréchet but common to all
states, and a Gumbel residue eα, restoring the Parisi scheme. This should be associated
with a distribution of overlaps q which does not extend down to q = 0.

Even in the absence of a detailed solution below TAT, one can argue [45] that
the distribution of local fields again develops a gap when 1 < μ < 2, of the form
P (h) ∼ Aμhμ−1. Correspondingly, the specific heat now grows as T μ. The situation
becomes quite interesting below μ = 1 since in this case replica symmetry appears to be
restored at zero temperature, and the gap in P (h) disappears. The hierarchy between
bonds is so strong for μ < 1 that only very weak bonds appear to be frustrated in that

5 The same remark applies to problems where the ground state energy is strictly bounded, such as the number
partitioning problem, falling into the Weibull universality class [46].
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case, unable to generate a large number of different states. It would be very interesting
to characterize in detail the solution of this ‘Lévy’ SK model, and decide whether or not
one needs to invent a non-standard RSB scheme for this problem.

We again end this section by multifarious remarks. First, the Tracy–Widom problem
of the largest eigenvalue of random matrices can be seen as the statistics of the ground state
energy of the p = 2 spherical spin-glass. It is very natural to ask about the statistics of the
ground state energy of the (hard-spin) SK model. Interestingly, this problem is still open.
Numerically, it is known that the average ground state energy per spin converges towards
the asymptotic, N = ∞ result predicted by the Parisi solution with N−2/3 corrections, as
for the Tracy–Widom problem. Whether or not this is a coincidence is not understood;
one should note that the sample-to-sample fluctuations of this ground state energy are
not of the order of N−2/3 (and not described by a Tracy–Widom distribution [47]) but
of order N−ω with ω ≈ 3/4 > 2/3. Again, there are no theoretical consensus on the
value of ω [48, 49]; only qualitative arguments for ω ≡ 3/4 exist. The generalization of
these arguments to Lévy spin-glasses suggest, for 1 < μ < 2, ω = 1 − 1/μ2; it would
be interesting to have numerical data to test this prediction. Another natural extension
of the Tracy–Widom problem within the context of spin-glasses is the statistics of the
ground state energy of the spherical p-spin-glass, which leads to a non-linear eigenvalue
problem. In the p = 3 case, one should find the largest eigenvalue of

N∑
jk=1

Jijkφjφk = Eφi, (10)

where Jijk are Gaussian random variables of variance 1/N2. It would be interesting to
compute the scaling exponent describing the fluctuation of this new type of extreme value
problem. Could this problem also be mapped to the directed polymer problem in higher
dimension?

Finally, we note that, in finite dimensions, the role of the distribution of Jij on the
universality class of the spin-glass transition was numerically investigated by Campbell et
al [50]; the consensus is, however, that (at least for fast-decaying) distribution, the critical
exponents should be universal, with possibly large sub-leading corrections. However, the
situation might change for power-law distributed couplings, as suggested by a Migdal–
Kadanoff approach to the excitation energy exponent [48].

6. Conclusion and open problems

In summary, we reviewed several examples where the detailed shape of the distribution
of randomness matters more than naively anticipated on the basis of the central limit
theorem. The tail of the distribution is obviously important when one is concerned by
extreme value problems, such as the statistics of the largest eigenvalue of heavy tailed
random matrices, a problem we have discussed in detail. Another problem where the tails
of the noise are crucial is the problem of barrier crossing and the Arrhenius law. This is
not surprising: since barrier crossing is itself a rare event, its occurrence may be much
enhanced by the present of anomalous, non-Gaussian tails in the thermal noise. Note that
the relevance of extreme value statistics to barrier height in disordered systems dates back
to Rammal [51], see also [52].
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More surprising, at least at first sight, is the importance of these tails for the statistics
of fields obeying a non-linear differential equation, such as the Burgers, KPZ or KPP
equations, either with a stochastic forcing or with a stochastic initial condition. This
includes the example of the directed polymer in random environments or diffusion in a
random potential; the scaling exponents of these problems is extremely sensitive to the
tails of the disorder, an unusual feature from a field theoretical point of view. We have
insisted on the technical challenges associated with this phenomenon: how should one
generalize the (functional) RG to account for non-Gaussian tails? Since the problem
of pinned manifold can also be addressed using a replica field theory, one can similarly
wonder if and how the Parisi replica symmetry breaking scheme has to be generalized in
these cases. We have underlined several other open problems and conjectures, such as
the general relation between top eigenvalues and directed polymers, the statistics of the
ground state energy of the SK model, the nature of the low temperature phase of Lévy
spin-glasses, etc. The solution to these problems, beyond their mere technical interest,
could shed some light on the subtleties and surprises of the physics of disordered systems
(see [53] for more examples).
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