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Covariant transport theory approach to elliptic flow in relativistic heavy ion collision
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We present a new direct simulation Monte Carlo method for solving the relativistic Boltzmann equation. We
solve numerically the two-dimensional Boltzmann equation using this new algorithm. We find that elliptic flow
from this transport calculation smoothly converges toward the value from ideal hydrodynamics as the number of
collisions per particle increases, as expected on general theoretical grounds but in contrast with previous transport
calculations.
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Ultrarelativistic nucleus-nucleus collisions at the Relativis-
tic Heavy Ion Collider (RHIC) have been argued to create
a “perfect liquid” with an extremely low viscosity [1]. The
essential piece of evidence is the large magnitude of elliptic
flow at RHIC [2], which is as large as predicted by ideal-
fluid models (which assume zero viscosity). Elliptic flow is
an azimuthal asymmetry in the momentum distribution of
particles, projected onto the plane transverse to the beam
direction (z axis): in a collision between two nuclei with
nonzero impact parameter, more particles are emitted parallel
to impact parameter (x axis) than perpendicular to it (y axis).
This asymmetry results from the almond shape of the overlap
region between the colliding nuclei, which is transformed into
a momentum asymmetry by pressure gradients [3]: microscop-
ically, elliptic flow results from the interactions between the
produced particles and is therefore a key observable of the
dense matter produced at RHIC.

In the microscopic language of particle physics, ideal
fluid and low viscosity translate into small mean free path
of a particle between two collisions or, equivalently, large
rescattering cross sections between the “partons” created in a
collision. The description of the system in terms of partons
is itself questionable at the early, dense stage of the collision,
but it is nevertheless a helpful, intuitive picture. The natural
question that arises then is how large must the partonic cross
section be to achieve ideal-fluid behavior, i.e., local thermal
equilibirum? How many partonic collisions are needed?

In this article, we address this issue by solving numerically
a relativistic Boltzmann equation and comparing the results
with relativistic hydrodynamics. It is well known that the
Boltzmann equation reduces to hydrodynamics when the mean
free path is small (see Ref. [4] for a rigorous proof in the
relativistic case). Numerically, however, it has been found [5]
that hydrodynamics produces larger elliptic flow (by 30–40%)
than the Boltzmann equation. In this article, we address this
issue using a different method. A possible explanation for the
discrepancy found in Ref. [5] is suggested at the end of this
article.

The primary limitation of the Boltzmann equation is that it
applies only to a dilute system, where the mean free path of
a particle is much larger than the distance between particles,
so one need consider only two-body collisions, many-body
collisions occurring at a much lower rate. There is no reason
to believe that the RHIC liquid is dilute: interactions are

nonperturbative, so both the mean free path and the distance
between particles are of order 1/T , where T is the temperature.
Clearly, the Boltzmann equation cannot be used to directly
simulate a heavy-ion collision; nevertheless, it has the potential
of giving us a grasp on deviations to thermalization.

The relativistic formula for the collision rate between two
beams of particle densities n1 and n2, and arbitrary velocities
v1 and v2 can be written as [6]:

dNcoll

dtd3x
= σn1n2

√
|v1 − v2|2 − |v1 × v2|2/c2, (1)

where σ is the scattering cross section. There are several
methods for implementing this collision rate in Monte Carlo
algorithms. The most widely used method [7,8] is the ZPC
algorithm [9]: this algorithm treats particles as hard spheres,
which collide when their distance in the center-of-mass frame
is smaller than r ≡ √

σ/π . An alternative method is the
stochastic collision algorithm proposed by Xu and Greiner
[10].

Here, we implement a new algorithm, where relativistic
effects are incorporated in a physically transparent way. The
second term under the square root in Eq. (1) is the relativistic
correction. It is simply understood, in the case of colliding hard
spheres, as a geometrical effect resulting from the Lorentz
contraction of the spheres. We take this contraction into
account, in the Monte Carlo simulation, by replacing spheres
with oblate spheroids, whose polar axis is the direction of
motion. As with the other algorithms, Lorentz covariance
and locality are broken in the sense that collisions occur
instantaneously at a finite distance. However, these violations
are small if the system is dilute [8], which is required by the
Boltzmann equation. The difference with the ZPC algorithm is
that the collision time is determined directly in the laboratory
frame, not in the center-of-mass frame.

For sake of simplicity, we consider a two-dimensional gas
of massless particles in the transverse plane (x, y). We thus
neglect an important feature of the dynamics of heavy-ion
collisions, the fast longitudinal expansion. As will be shown
below, this is not crucial for elliptic flow, which is essentially
unaffected by the longitudinal expansion. Initial conditions
for the N particles are generated randomly according to a
Gaussian distribution in coordinate space, and an isotropic,
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FIG. 1. Picture of a collision between a particle 1 of size σ = 2r

and a pointlike particle 2. The impact parameter d , as defined in
Eq. (3), is negative.

thermal distribution in momentum space:

dN

d2xd2p
= N

4π2RxRyT 2
exp

[
− x2

2R2
x

− y2

2R2
y

− pt

T (x, y)

]
,

(2)

with Ry > Rx and pt ≡
√
p2

x + p2
y . The temperature T (x, y)

is determined as a function of the local particle density n

according to n ∝ T 2, the equation of state of a massless ideal
gas in two dimensions.

Particles interact via 2 → 2 elastic collisions. We assume
for simplicity that the total elastic cross section σ is inde-
pendent of the center-of-mass energy s. This is implemented
in a Monte Carlo calculation by treating each particle as a
rod (due to Lorentz contraction) of length r perpendicular to
the velocity. Equivalently, for each pair of colliding particles,
one can assume that particle 1 has length 2r and particle 2 is
pointlike (see Fig. 1). The impact parameter of the collision is

d = −ez · [(x2 − x1) × (v2 − v1)/c]

1 − v1 · v2/c2
. (3)

This quantity is Lorentz invariant. Our collision algorithm
is deterministic: the scattering angle in the center-of-mass
frame θ∗ is determined as a function of d, as in classical
mechanics. The results presented here are obtained with an
isotropic differential cross section, i.e., θ∗ = π (1 − d/r). This
prescription ensures that particles move away from each other
after the collision and do not collide again. The total cross
section (which has the dimension of length in two dimensions)
is σ = 2r .

We now define two dimensionless numbers relevant to this
problem. The average particle density per unit surface n is1

n = N

4πRxRy

. (4)

The typical distance between two particles is n−1/2, whereas
the mean free path of a particle between two collisions is
λ = 1/(σn). The ratio of these two lengths is the dilution
parameter D:

D ≡ n−1/2

λ
= σn1/2. (5)

1Note that the surface thus defined is a factor of 2 larger than
in Ref. [11] and a factor of 4 larger than in Ref. [12]. This new
prescription gives the correct result for a uniform density profile, as
pointed out by A. Poskanzer (private communication). The average
particle densities quoted in this article are thus lower by a factor of 2
than in Tables I and II of Ref. [11].

As explained above, applicability of Boltzmann theory re-
quires D � 1. In addition, locality and covariance require
that the interaction length be much smaller than the mean free
path [8,9]. In two dimensions, the interaction length is σ , and
σ/λ = D2: locality and covariance are thus recovered in the
limit D � 1.

The second dimensionless number is the Knudsen number
Kn, which characterizes the degree of equilibration by com-
paring λ with the system size R. The latter quantity can be
measured by any average of Rx and Ry . A natural choice for
elliptic flow is [11]

R ≡
(

1

R2
x

+ 1

R2
y

)−1/2

. (6)

The Knudsen number is then defined as

Kn ≡ λ

R
= 1

σnR
. (7)

Hydrodynamics is the limit Kn � 1, whereas the limit Kn � 1
corresponds to free-streaming particles. The values of D and
Kn can be tuned by varying the cross section σ and the number
of particles N .

Note that the mean free path is a local quantity that depends
on space-time coordinates: in particular, it increases as the
system expands. Strictly speaking, D and Kn defined by
Eqs. (5) and (7) are initial values. Dimensional analysis
suggests that they are the relevant control parameters for this
problem.

Solving the Boltzmann equation in the hydrodynamic limit
requires both D � 1 and Kn � 1. This in turn requires a
huge number of particles N in the Monte-Carlo simulation:
inverting the above equations, one obtains (assuming Rx � Ry

for simplicity)

N � 8π

D2Kn2 . (8)

Because the computing time scales grows with N like N3/2,
one cannot implement arbitrarily small values of D and Kn.
Instead, we choose to study numerically the dependence of
elliptic flow on D and Kn, and extrapolate to the hydro limit
D = Kn = 0.

Figure 2 presents our results for the average elliptic flow
v2 ≡ 〈cos 2φ〉 = 〈(p2

x − p2
y)/(p2

x + p2
y)〉. The aspect ratio of

the initial distribution is Ry = 1.5Rx , and the Monte Carlo
simulation has been pushed to very large times (t = 100R),
so that all collisions are taken into account. Quite naturally,
v2 decreases monotonically to 0 as Kn increases toward the
free-streaming limit Kn → +∞. For a given value of D, the
variation with Kn is very well described by the simple formula
proposed in Ref. [11]:

v2 = vh
2

1 + Kn/Kn0
, (9)

where the parameters vh
2 and Kn0 are fit to our Monte

Carlo results. vh
2 is the limiting value of v2 when Kn → 0,

expected to coincide with v2 from hydrodynamics in the limit
D → 0. Surprisingly, the value of vh

2 depends very little on
D: vh

2 = 0.102 ± 0.003. This means that the hydrodynamic
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FIG. 2. Variation of the elliptic flow v2 with the Knudsen number,
Kn, for several values of the dilution parameter D. The statistical error
on each point is δv2 = 7 × 10−4. For each value of D, Monte Carlo
results are fitted using Eq. (9).

limit is more general than the Boltzmann equation and applies
even if the system is not dilute. Unlike vh

2 , the parameter Kn0

strongly depends on D. We do not have a simple explanation
for this dependence. However, only the limit D � 1 has a
well-defined physical interpretation, as it corresponds to the
Boltzmann equation. For larger values of D, locality and
causality are broken, and the physical interpretation of the
results is less clear. For D � 1, our fit gives Kn0 = 0.70 ±
0.03.

An independent hydro calculation with the same initial
conditions was done using the same code as in Ref. [3]. For
sake of consistency [5], the equation of state of the fluid
is that of a two-dimensional ideal gas (i.e., the equation of
state of a dilute gas, as modeled by the Boltzmann equation),
whose velocity of sound is cs = c/

√
2 [13]. The average v2 at

t = 100R is v
hydro
2 = 0.101 ± 0.003 (the error bar in the hydro

calculation is due to the fact that the calculation is pushed
to very large times). This is compatible with the value vh

2
obtained from the Boltzmann calculation: Boltzmann transport
theory and ideal hydrodynamics agree in the limit Kn → 0, as
expected.

The Knudsen number is closely related to the average
number of collisions per particle n̄coll. From the definition,
Eq. (7), one expects that the number of collisions per particle is
∼1/Kn. The proportionality constant can be computed exactly
for a Gaussian distribution in the limit Kn � 1 [14], which
yields the relation

n̄coll ≡ 2Ncoll

N
= 4

√
2

π3/2
√

1 + ε
K

(
2ε

1 + ε

)
Kn−1 � 1.6

Kn
,

(10)

where the factor 2 means that each collision involves two
particles, ε = (R2

y − R2
x)/(R2

y + R2
x) is the initial eccentricity,

and K(x) is the complete elliptic integral of the first kind. We
used this formula to check numerically that our algorithm
produces the right number of collisions for large Kn. In
addition, our numerical results show that the product n̄collKn
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FIG. 3. Time dependence of the average elliptic flow v2 from
the transport model, from the corresponding two-dimensional hydro
calculation, and from usual three-dimensional hydro with Bjorken
longitudinal expansion.

is remarkably constant for all values of Kn, so that Eq. (10)
is accurate to a few percent. Using Eq. (9), this shows that an
average of 2.3 (resp. 9.1) collisions per particle are required to
achieve 50% (resp. 80%) of the hydrodynamic “limit” on v2.

Figure 3 compares the time dependence of elliptic flow in
hydro and in the transport model. The subtle point is that the
convergence of v2(t) toward hydro as Kn → 0 is not uniform:
for a given value of Kn, deviations from hydro are large at
early times and tend to decrease afterwards. More precisely,
it can be shown, following the same methods as in Ref. [14],
that the early-time behavior is v2 ∝ t3 in the transport model
and v2 ∝ t2 in hydro. This is compensated by the late-time
behavior: v2 decreases slowly at large times in hydro (not
seen in the figure), whereas v2 from the transport model stays
constant after the last collision has occurred.

Can our two-dimensional results be used in the context
of heavy-ion collisions? The essential difference in three
dimensions is the fast longitudinal expansion due to the
strong Lorentz contraction of the colliding nuclei. Elliptic
flow, however, is a purely transverse observable that is
little affected by the longitudinal expansion: Fig. 3 displays
a comparison between the average elliptic flow computed
in two-dimensional hydro and in three-dimensional hydro
with Bjorken longitudinal expansion (the initial time in this
calculation is τ0 = R/4, corresponding to τ0 � 0.4 fm/c in a
semicentral Au-Au collision) [15]. Both yield similar results
for the magnitude and the time-dependence of v2.

One can reasonably expect that deviations from hydro are
similar in two dimensions and in three dimensions. The number
of collisions per particle, n̄coll, is not the right quantity for
carrying out the comparison (neither the transport opacity
[8]): in three dimensions, n̄coll is large at early times (with
a fixed partonic cross section, n̄coll diverges like ln τ−1

0 as
the initial time τ0 goes to 0), but these collisions do not
produce much elliptic flow (see Fig. 3). As argued in Ref. [11],
the Knudsen number should be evaluated at the time when
elliptic flow develops t ∼ R/cs , with cs � 1/

√
3 in the quark-

gluon plasma phase. The mean free path is λ = 1/σn with
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TABLE I. Expected values of v2 for semicentral
Au-Au collisions at RHIC. For each value of the
cross section, we quote the value of the equivalent
Debye-screened, leading-order quantum chromodynam-
ics (QCD) cross section [5].

Isotropic
σ [mb]

Debye-screened
σ [mb]

Kn v2/v
hydro
2

3 7 0.72 0.49
8 19 0.27 0.72
20 47 0.11 0.87

n = (1/t)(1/S)(dN/dy) and S = 4πRxRy , hence

1

Kn
= σ

1

S

dN

dy

cs

c
. (11)

dN/dy is the total (charged+neutral) multiplicity. For a
semicentral Au-Au collision at RHIC, (1/S)(dN/dy) �
0.8 mb−1. With this definition of Kn, we expect that Eq. (9)
should hold approximately in three dimensions, with Kn0 ∼
0.7. Table I gathers numerical estimates obtained using the
same values of σ as in Ref. [5]. For σ = 20 mb, corresponding
to a QCD cross section of 47 mb, the transport result should
be only �10–15% below hydro.

For this value of the cross section, Molnar and Huovinen
find that v2 from the transport calculation is lower by 30%
than v2 from hydro [5]. Furthermore, the dependence of their
results on σ is at variance with our results. Using Eqs. (9)
and (11), the deviations from ideal hydro should decrease as
1/σ as σ increases. This is very general: dissipative effects are
expected to be linear in the viscosity η, which scales like 1/σ .
The discrepancy with hydro should be at least twice smaller
with σ = 47 mb than with σ = 20 mb, which is clearly not
the case in Fig. 1 of Ref. [5]. In our opinion, this cannot be
attributed to dissipative effects.

The origin of the problem may be the dilution condi-
tion D � 1, which is not satisfied in previous transport

calculations. The trick to reduce D in the ZPC cascade
algorithm is the “parton subdivision technique”: one multiplies
the number of particles N by a large number l, and one divides
the partonic cross section σ by l so the Knudsen number Kn is
unchanged. The distance between particles in three dimensions
is n−1/3, which replaces n−1/2 in Eq. (5). Taking parton
subdivision into account, one obtains D = σn2/3l−1/3. The
average particle density in a semicentral Au-Au collision at
time t = R/cs is 2.5 fm−3 [11]. With σ = 20 mb and l = 180
[5], D � 0.65, which is not very small compared to unity.
The situation is worse at early times due to the longitudinal
expansion: D � 1.1 at τ0 = 0.6 fm/c. For Kn = 0.11, carrying
out the calculation with D � 1 leads to overestimate the
deviation from hydro by at least a factor of 2 (see Fig. 2). The
reason why previous calculations were done with such large
values of D is that small values are hard to achieve numerically:
in three dimensions, Eq. (8) is replaced with N ∝ D−3Kn−3,
and the computing time grows like N4/3 ∝ D−4Kn−4. This
was our motivation for studying first the two-dimensional
case.

In summary, we have implemented a new algorithm for
solving the relativistic Boltzmann equation. We have studied
the convergence of the relativistic Boltzmann equation to
relativistic hydrodynamics. Because this requires both a dilute
system (D � 1) and a small mean free path (Kn � 1), which
is costly in terms of computer time, we have restricted our
study to two dimensions. This preliminary study has only
addressed the average value of the elliptic flow; differential
results as a function of pt , as well as results on v4, will be
presented in a forthcoming publication. We have shown that
the average elliptic flow computed in the transport algorithm
converges smoothly toward the hydrodynamics value as the
strength of final-state interactions increases. Isotropic partonic
cross sections of 3 and 20 mb should produce, respectively,
∼50% and ∼90% of the hydro value for v2.
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and Zhe Xu for useful comments on the manuscript.
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