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We study in detail the predictions of various theoretical approaches, in particular mode-coupling
theory (MCT) and kinetically constrained models (KCMs), concerning the time, temperature, and
wavevector dependence of multi-point correlation functions that quantify the strength of both in-
duced and spontaneous dynamical fluctuations. We also discuss the precise predictions of MCT
concerning the statistical ensemble and microscopic dynamics dependence of these multi-point cor-
relation functions. These predictions are compared to simulation of model fragile and strong glass-
forming liquids. Overall, MCT fares quite well in the fragile case, in particular to explain the
observed crucial role of the statistical ensemble and microscopic dynamics. KCMs provide a simpli-
fied framework for understanding how these multi-point correlation functions may encode dynamic
correlations in glassy materials. However, our analysis highlights important unresolved questions
concerning the application of KCMs to supercooled liquids.

PACS numbers: 64.70.Pf, 05.20.Jj

I. INTRODUCTION

Dynamic heterogeneity is a well established feature of
the behavior of a diverse class of systems close to their
glass transition temperatures [1–6]. Given the relatively
recent realization of the importance of dynamic hetero-
geneity, it is not surprising that the systematic character-
ization of such spatio-temporal behavior, and the length-
scales associated with it, is far from complete. Much re-
cent effort has been expended to devise correlation func-
tions that effectively and quantitatively probe dynamic
heterogeneity [7–14]. The theoretical understanding of
the behavior of such correlation functions is still in its
infancy. This is to be contrasted with our relatively ma-
ture understanding of bulk structure and dynamics in
supercooled liquids as measured by simple, low order cor-
relation functions (such as intermediate scattering func-
tions) that can only indirectly hint at dynamic hetero-
geneity [1, 15].

In the first paper of this series, denoted in the follow-
ing as I [16], we set out to provide a general understand-
ing of the behavior of a particular class of multi-point
correlation functions that encode information concerning
the growing dynamical lengthscale in supercooled liq-
uids. To set the stage for the present work we briefly
recall some definitions and results obtained in I. Let
f(r, t) = o(r, t)o(r, 0) be the instantaneous value of a
local two-time correlator at position r and time t, and
[f(t)]r = V −1

∫

ddrf(r, t) its spatial average over a large
but finite volume V . The thermal average 〈[f(t)]r〉 is
a standard two-time correlator, such as the intermedi-
ate scattering function when the observable o(r, t) is the
excess density ρ(x, t) − ρ0. A previously defined multi-

point susceptibility is the following four-point dynamic
susceptibility,

χ4(t) = N
〈

[δf(t)]2r
〉

= ρ

∫

ddr 〈δf(r, t)δf(0, t)〉 , (1)

where we introduced the notation δX ≡ X −〈X〉 for the
fluctuations of the observable X . From Eq. (1), we see
that χ4(t) quantifies the strength of spontaneous fluc-
tuations of the dynamical behavior in supercooled liq-
uids by their variance. As shown by the last term in
Eq. (1) fluctuations become larger if this dynamic hetero-
geneity becomes increasingly spatially correlated. Since
χ4(t) is the volume integral of the four-point correlator
G4(r, t) = 〈δf(r, t)δf(0, t)〉 (or, alternatively, in Fourier
space, χ4(t) = limq→0G4(q, t)), it is directly related
to the number of correlated particles, χ4(t) ∼ (ξ/a)df ,
where ξ is the dynamic correlation length, a a molecu-
lar lengthscale, and df is related to the possibly fractal
geometry of the dynamic heterogeneity. The direct link
between χ4(t) and the lengthscale of dynamic heterogene-
ity ξ explains the intensity of the present experimental
effort dedicated to its measurement [17–20].

Recognizing that spontaneous fluctuations are in gen-
eral hard to access experimentally, we have suggested [16,
19] to measure instead the response of the averaged two-
time dynamical correlators to an infinitesimal perturbing
field,

χx(t) =
∂〈[f(t)]r〉

∂x
. (2)

In particular we have dedicated much effort to the cases
where x is either the temperature, x = T , or the density,
x = ρ, focusing therefore on χT (t) and χρ(t). In Ref. [19]
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it was argued that Eq. (2) defines an experimentally ac-
cessible multi-point dynamic susceptibility which is a rel-
evant alternative to χ4(t). There are two important ar-
guments to support this claim, which we summarize for
χT (t). The first one is that, for a classical fluid evolving
via Newton’s equations at constant number of particles,
N , volume V , and energy, E, the following fluctuation-
dissipation theorem holds:

kBT
2χT (t) = V 〈[δf(t)]r[δe(t)]r〉 =

∫

ddr〈δf(r, t)δe(0, 0)〉,
(3)

where [e(t)]r = V −1
∫

ddr e(r, t) is the instantaneous
value of the energy density, and kB the Boltzmann con-
stant. The similarity between Eqs. (1) and (3) is obvi-
ous. The new susceptibility χT (t) quantifies the strength
of correlations between dynamic fluctuations and energy
fluctuations. As shown by the last term in Eq. (3) χT (t)
becomes larger if dynamical and energy fluctuations be-
come increasingly spatially correlated. Since χT (t) is
proportional to the volume integral of the three-point
correlator GT (r, t) = 〈δf(r, t)δe(0, 0)〉 (or, alternatively,
χT (t) = limq→0GT (q, t)), it is also directly related to a
correlation volume, which makes it an equally appealing
quantity. A second argument establishing the relevance
of χT (t) is the fact that χT (t) and χ4(t) can be related
by the following inequality:

χ4(t) ≥
1

cV
T 2χ2

T (t), (4)

where cV = V 〈[δe(t)]2r〉/(ρT 2) is the constant volume
specific heat expressed in units of kB . This result can
be understood by formal consideration about statistical
ensembles (see I), or more simply by noting that the rela-
tion (4) simply stems from the fact that cross-correlations
between two observables (encoded in χT (t)) cannot be
larger than the product of their variances (encoded in
χ4(t) and cV ).

In I, we focused on the thermodynamic ensemble de-
pendence and the dependence on the microscopic dynam-
ics. Using general theoretical arguments, we gave quali-
tative and quantitative guidelines for these dependences.
The ensemble variability of multi-point indicators of dy-
namical heterogeneity is not surprising, given what is al-
ready understood about the ensemble dependence of sim-
pler susceptibilities near standard critical points [21, 22].
Importantly, this ensemble dependence allows for the
derivation of the rigorous bound (4) on χ4(t) that is po-
tentially useful for providing a simple experimental esti-
mate of the lengthscale associated with dynamical het-
erogeneity near Tg. That this bound becomes a good
approximation for χ4(t) above Tg was checked in simu-
lations of both strong and fragile glass forming liquids
in I. The predicted dependence on the underlying nature
of the dynamics is perhaps more surprising, especially
in light of the fact that simulations of simple dynami-
cal correlation functions show no such non-trivial depen-
dence [23–25]. Again, in I we have confirmed this striking
prediction by atomistic simulations.

Having outlined some generic properties of a class of
multi-point indicators of dynamical heterogeneity, and
confirmed these basic predictions in I, we now turn to
the information contained in specific theories of glassy
dynamics. In particular, we address in this paper various
properties of these susceptibilities from the standpoint
of simple mean-field spin-glass models [26], the mode-
coupling theory (MCT) of supercooled liquids [27], and
kinetically constrained models (KCMs) [28]. Our choice
of theoretical models is natural: to our knowledge, only
MCT and KCMs offer a detailed theoretical description
of dynamic heterogeneity in supercooled liquids. We aim
to confront these theories with the general theoretical
properties outlined in I, as well as with simulations of
atomistic glass-forming systems. The outcome of this
exercise will be a greater understanding of the successes
and failures of these theories, which will lead us to for-
mulate a number of questions related to the comparison
of these models with the expectations outlined in I.

This paper is organized as follows. In Sec. II, we
present the results predicted by MCT. This includes gen-
eral scaling behavior, as well as the dynamics and ensem-
ble dependence as derived via a field-theoretical approach
to MCT. Within this approach we can show in particu-
lar that strong ensemble and dynamics dependence of
dynamic fluctuations arises, while no such dependence is
expected for averaged quantities [29]. This section dis-
cusses the wavelength dependence of χ4(t) for liquid state
MCT. In Sec. III we turn to the ensemble and dynam-
ics dependence of χ4(t) and χT (t) in KCMs. Here, we
discuss different models with varying degrees of cooper-
ativity. Interesting unresolved questions, concerning the
relevance of KCMs to model molecular glasses, are out-
lined in this section. In Sec. IV, the prediction of these
various models are compared to atomistic simulations. In
Sec. V, we conclude and we detail the successes and fail-
ures of the theoretical models in light of the comparison
with simulations. We give a summary of these compar-
isons in Table I. Finally, in Appendix A, we discuss the
relationship between χ4(t) and χT (t) within p-spin mod-
els for which MCT is exact.

II. MODE-COUPLING THEORY OF

DYNAMICAL FLUCTUATIONS

A. MCT and dynamic fluctuations

Because it starts from a microscopic description of su-
percooled liquids and ends up with a complete descrip-
tion of its dynamics, MCT is a powerful tool for the in-
terpretation and prediction of the qualitative and quanti-
tative behavior of slow dynamics in glass-forming liquids
and colloids, at least not too close to the glass transi-
tion [27]. The MCT transition is usually described as a
small scale phenomenon, the self-consistent blocking of
the particles in their local cages [27]. This is surpris-
ing since on general grounds a diverging relaxation time
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is expected to arise from processes involving an infinite
number of particles (leaving aside the case of quenched
obstacles) [30]. Actually, the cage mechanism requires
some kind of correlation in space: in order to be blocked
by one’s neighbors, the neighbors themselves must be
blocked by their neighbors and so on until a certain scale
that, intuitively, sets the relaxation timescale of the sys-
tem. The fact that within MCT “cages” are correlated
objects [31] will in fact become clear below.

This “local-cage” point of view was challenged in the
context of mean-field disordered systems by Franz and
Parisi [11]; see also [32, 33] for early results. For these
models the dynamical equations for correlators are for-
mally equivalent to the schematic version of the MCT
equations. Franz and Parisi [11] argued that a dynamical
susceptibility similar to χ4(t) in these models has a di-
verging peak at the dynamical mode-coupling transition.
Although a lengthscale cannot be defined in mean-field
models, a diverging susceptibility is the usual mean-field
symptom for a diverging lengthscale in finite dimensions.
More recently, two of the authors (BB) [34], using a field-
theoretical approach to MCT, clearly showed the exis-
tence of a diverging length within MCT and analyzed
the critical properties of dynamical fluctuations. In that
work the role of conserved quantities, emphasized in I,
was overlooked. As we will show in the following, BB’s
results for χ4(t) are correct either for dynamics without
any conserved variables (as is the case for disordered p-
spin systems with Langevin dynamics), or in ensembles
where all conserved variables are fixed, i.e. NV E for
Newtonian dynamics and NV T for Brownian or Monte-
Carlo dynamics.

When there are conserved variables the four-point cor-
relation function G4(q, t) can be decomposed in two
terms, in agreement with the general considerations of
I. These two terms reflect different physical contribu-
tions for q = 0: one is the contribution in the ensemble
where all conserved variables are strictly fixed, and the
second arises from the fluctuations of dynamically con-
served variables that feed back into the dynamical corre-
lations. The second term is therefore absent in an ensem-
ble where these variables are fixed. This latter term is
the one that yields a lower bound for limq→0G4(q, t), as
expressed in Eq. (4). The bound involves the derivative
χx(t) defined in Eq. (2), where x is a conserved variable.
For example x = ρ for hard-spheres, where the density is
a conserved quantity both for Brownian and Newtonian
dynamics, or x = H (or E), the enthalpy (or the energy),
in cases where temperature is the relevant control param-
eter. One can of course also focus on dynamical responses
with respect to thermodynamic control parameters such
as the pressure or the temperature. One formulation is
related to the other via a trivial thermodynamic change
of variables and the chain rule. In the following, for sim-
plicity, we will always focus on the derivative with respect
to conserved degrees of freedom.

In the next subsections we shall uncover the critical
properties of the dynamical fluctuations and dynamical

responses discussed above, and obtain and analyze quan-
titative predictions for dynamical responses within MCT.
We numerically confirm these results within the p-spin
model in Appendix A.

B. Dynamic scaling and critical behavior

In the following, using the field-theoretical framework
developed in I, we obtain the critical behavior of dynam-
ical fluctuations close to the MCT transition. We focus
in particular on χ4(t), G4(q, t), and χx(t).

1. Ladder diagrams within MCT

Different derivations of MCT follow a common strat-
egy: write down exact or phenomenological stochastic
equations for the evolution of the slow conserved de-
grees of freedom and then use a self-consistent one-loop
approximation to close the equations. For instance, in
the case of Brownian dynamics the only conserved quan-
tity is the density, and the so-called Dean-Kawasaki
equation [35, 36] has been analyzed (see Refs. [37–39]
for a discussion of the different field-theories). Field-
theories are obtained through the Martin-Siggia-Rose-
deDominicis-Janssen method, where one first introduces
response fields enforcing the correct time evolution and
then averages over the thermal noise [40].

The direct derivation of MCT equations starting from
field-theory is difficult and different approaches have been
pursued [38]. It is still unclear how to obtain in a con-
sistent way the standard MCT equations derived by the
Zwanzig-Mori formalism [27, 39, 41]. Indeed, if time-
reversal symmetry is preserved, one-loop self-consistent
equations are not the standard MCT equations, but have
similar qualitative properties [37]. They lead in particu-
lar to the same critical behavior of the correlators. This
issue is not relevant here because we focus on qualitative
properties of dynamic fluctuations which depend only on
the critical properties of the MCT transition.

The starting point for describing dynamic fluctuations
within field theory is the Legendre functional [40, 42,
43] Γ(Ψa, Ga,b) (here and in the following we use the
notations introduced in I):

Γ(Ψa, Ga,b) = −1

2
Tr logG+

1

2
TrG−1

0 [G+ΨΨ]−Φ2PI(Ψ, G),

(5)
where Φ2PI(Ψa, Ga,b) is the sum of all two-particle irre-
ducible Feynman diagrams (namely those that cannot be
decomposed in two disjoint pieces by cutting two lines)
constructed with the vertices of the theory, using the full
propagator G as the lines and Ψ as the sources (G0 is
the bare propagator) [40, 42]. The first derivative of
Γ(Ψa, Ga,b) leads to the self-consistent equations for the
order parameters themselves (including G’s), whereas the
second derivatives lead to the equation for the fluctua-
tions of the order parameters.
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++

+Σ =

Φ =

FIG. 1: Three diagrams approximating Φ2PI (Ψa, Ga,b) within
the MCT approximation. The resulting expression of the self-
energy is also shown. Lines are full propagators, and dots are
conserved variables.

All field-theoretic derivations of MCT consist of one-
loop self-consistent equations for the dynamical structure
factor. At the level of the functional this corresponds to
an approximation of Φ2PI (Ψa, Ga,b) in which only the
first three diagrams of Fig. 1 are considered. They are
constructed from a three-leg vertex that is present in all
field-theories of dense liquids. The black dots represent
the δΨ attached as sources and the lines the full prop-
agators of the theory. The corresponding expression of
the self-energy Σ = δΦ/δG is also shown. Note that the
second diagram is not present in the usual expression
for the self-energy used in the MCT equations because
the solution of the self-consistent equation for Ψ leads to
δΨ = 0. As discussed in I, the reason is that the average
value of the response fields is zero and the bare values of
the physical slow fields are not corrected at any order of
the self-consistent expansion because they correspond to
conserved variables, whose average value is not fixed by
the dynamics but through the initial conditions.

However, when the matrix of second derivatives of Γ is
considered, it is important to keep the second self-energy
diagram because it gives a contribution that cannot be
neglected. The matrix of second derivatives reads:

δ2Γ

δG1,2δG3,4
=

[

G−1
1,3G

−1
2,4 −

δ2Φ2PI

δG1,2δG3,4

]

,

δ2Γ

δΨ1δG2,3
= − δ2Φ2PI

δΨ1δG2,3
,

δ2Γ

δΨ1δΨ2
= (G−1

0 )1,2.

(6)

As in I, we denote these operators respectively as A,
B, and C. The diagrammatic expressions for the sec-
ond derivatives of Φ2PI are shown in Fig. 2. Note
that we show only the contributions that are non-zero
when evaluated for the average quantities (in particular
for δΨ = 0).

All dynamic fluctuations can then be expressed in
terms of A−1, B, C (see I). In particular, the four-point

FIG. 2: Diagrammatic expression of δ2Φ2PI/δΨ1δG2,3 and
δ2Φ2PI/δG1,2δG3,4 within MCT.

δ G

Σ
n

n

G G=δ Σ

FIG. 3: Expression for A−1 within MCT. It consists in
a sum of n-ladders constructed from the elementary block
(δΣ/δG)GG shown in the second line, see Eq. (6-a).

fluctuations
〈{

ψ̃a(x, t)ψ̃b(x
′, t′)−Ψa(x, t)Ψb(x

′, t′)
}

×
{

ψ̃c(y, s)ψ̃d(y
′, s′)−Ψc(y, s)Ψd(y

′, s′)
}〉

c
, (7)

are given by

A−1 + (A−1B){C −B†A−1B}−1(A−1B)†, (8)

evaluated at the matrix element [a, b, x, x′, t, t′;
c, d,y,y′, s, s′]. The explicit expression for A−1, B, C
makes it clear that within MCT the critical properties
of dynamical fluctuations come only from A−1. Indeed,
C is just the inverse of the bare propagator, whereas B
is the bare vertex. These quantities have no critical be-
havior at the MCT transition. Instead, using the general
results of I and the MCT expression of δ2Φ2PI/δGδG,
one finds that A−1 corresponds to the sum of n-ladder
diagrams shown in Fig. 3. As shown in Ref. [34], the
resummation of these diagrams indeed lead to a critical
contribution at the MCT transition.

In particular, they give a contribution to the four
point function 〈δρ−k3(t)δρk3+q(0)δρ−k4(t)δρk4−q(0)〉
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Σ
n

n

FIG. 4: The dynamical response, obtained from Eq. (10) by
noting that the inversion of A = ∂2

GGΓ involves resumming
ladders that close on ∂2

GΨΓ.

that scales as [31, 34]:

1√
ε+ q2

gβ

(

q2√
ε
,
t

τβ

)

, t ∝ τβ ,

1√
ε[
√
ε+ q2]

gα

(

t

τα

)

, t ∝ τα.
(9)

Note that here and in the following we use the standard
MCT notation [27, 41]. In particular ε = |xc − x|/xc is
the reduced distance from the critical point. The function

gβ
(

q2/
√
ε, t/τβ

)

behaves as (t/τβ)
a and (t/τβ)

b for small
and large value of (t/τβ), respectively. Furthermore the
function gα (t/τα) behaves as (t/τα)b for small values of
(t/τα), see also Eqs. (16, 17) below.

Below we show that the critical behavior that emerges
from ladder diagrams underlies all of the critical proper-
ties encoded in the dynamical fluctuations and responses,
as discussed in general terms in I.

2. Dynamical responses

Dynamical response functions, defined in Eq. (2), are
particularly interesting because they provide, through in-
equalities like Eq. (4), an estimate of the relevant dynam-
ical fluctuations, and because they are related to three-
point dynamical correlations, Eq. (3).

An exact expression for dynamical response functions
can be derived noting that G is obtained by setting
∂Γ/∂G ≡ 0. Differentiating this relation with respect to
a conserved variable Ψ one can easily derive the relation
(see Eq. (60) of I):

χΨ =
∂G

∂Ψ
= −

[

∂2Γ

∂G∂G

]−1
∂2Γ

∂G∂Ψ
= A−1B, (10)

which is represented in Fig. 4 using MCT diagrams. Since
the derivative is taken with respect to the average value of
one of the conserved degrees of freedom Ψ, the wavevec-
tor entering into the ladder diagrams is zero. As a con-
sequence, the scaling of dynamical response functions is
given by Eq. (9), setting q = 0:

∼ B(q = 0)√
ε

gβ

(

t

τβ

)

, t ∝ τβ ,

∼ B(q = 0)

ε
gα

(

t

τα

)

, t ∝ τα,
(11)

Σ
n
m

n m

FIG. 5: Representation in term of diagrams of (A−1B){C −
B†A−1B}−1(A−1B)†, see Eq. (8), within MCT. It corre-
sponds, roughly speaking, to ’squaring’ the ladders of Fig.
(3).

where we have dropped the first argument of gβ , equal to
zero here, and B(q = 0) reminds us that there is an ad-
ditional contribution from the vertex B. We show below,
see Eqs. (14, 15, 16, 17), that these results can alter-
natively be obtained analytically using standard MCT
results. However, the field-theoretical derivation shows
more clearly the role of the ladder diagrams, and is
crucial to understand the relationship between dynam-
ical response and dynamic fluctuations. We note that
from the diagrammatic expression for χΨ a clear rela-
tionship with three-point dynamical correlators appears.
The diagrammatic expression of the correlation between
the fluctuation of the dynamical structure factor and
the fluctuation of a conserved variables Ψ reads (see I):
−A−1B{C −B†A−1B}−1, which contains the same dia-
grams as χΨ, with a propagator attached at the end [90].

In order to probe the spatial dependence of dynami-
cal fluctuations related to ladder diagrams, zero-wavector
response functions such as χΨ(t) are not sufficient, and
one should consider instead the response to a spatially
modulated external field [31]. It was recently proved
in Ref. [31] that such a q-dependent dynamical response
function has the same scaling as the one anticipated from
ladder diagrams in Eq. (9).

3. Ensemble and microscopic dynamics dependence of

fluctuations

In the following we illustrate, within MCT, the de-
pendence on statistical ensembles and on microscopic
dynamics of dynamical fluctuations which we have dis-
cussed in full generality in I. In particular, one finds that
although G4(q, t) and its q → 0 limit are ensemble in-
dependent quantities, χ4(t) = G4(q = 0, t) does depend
on the ensemble and on microscopic dynamics. This fact
reflects the subtle nature of global fluctuations when the
thermodynamic limit is taken [22].

Applying the general theory developed in I one finds
that G4(q, t) is given by the ladder diagrams in Fig. 3
plus “squared ladders” as shown in Fig. 5. The ladder
diagrams shown in Fig. 5 are joined by a propagator at
wavector q. In ensembles where all conserved degrees of
freedom are fixed, e.g. Newtonian dynamics in the NV E
ensemble or Brownian dynamics in the NV T ensemble,
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the propagator evaluated at q = 0 vanishes, because con-
served quantities do not fluctuate on the scale of the sys-
tem size (and all propagators related to response fields
are zero because they are proportional to q at small q).
Therefore, in these ensembles, simple ladder diagrams
provide the sole contribution to χ4(t) within MCT, caus-
ing χ4(t) to scale as in Eq. (9) evaluated at q = 0.

Instead, in more general ensembles where at least one
conserved degree of freedom is allowed to fluctuate, e.g.
the NV T orNPT ensembles for Newtonian dynamics, or
the NPT ensemble for Brownian dynamics, the propaga-
tor joining the ladders in Fig. 5 does not vanish, and con-
tributes only to non-critical prefactors. In this case the
diagrams corresponding to “squared ladder” diagrams
dominate, at least close enough to the transition. Note
that their overall scale might however be small, for exam-
ple if the compressibility or the specific heat are large or
if the distance to the critical point becomes large. They
lead to a modified critical behavior for χ4(t) within MCT,
reading:

1

ε
g̃β

(

t

τβ

)

, t ∝ τβ ,

1

ε2
g̃α

(

t

τα

)

, t ∝ τα,
(12)

where g̃α ∝ g2
α and g̃β ∝ g2

β.
These results provide non-trivial relationship between

dynamical fluctuations in different ensembles and differ-
ent microscopic dynamics. Although already suggested
by the general theory developed in I they become sharp
statements within MCT. For instance, the predicted dy-
namic scaling of χ4(t) in the NV T ensemble for New-
tonian dynamics is that of the “squared ladder” dia-
grams of Eq. (12), whereas the predicted scaling of χ4(t)
in the NV T ensemble for Brownian dynamics is that
of Eq. (11), which coincides with the one expected for
Newtonian dynamics in the NV E ensemble. Although
the critical mechanism underlying the dynamical fluctu-
ations is the same for all ensembles and dynamics and is
uniquely encoded in ladder diagrams (indeed the scaling
of the dynamic lengthscale is the same), the coupling to
conserved degrees of freedom may produce a large am-
plification of global fluctuations.

4. Behavior of G4(q, t) and upper critical dimension

The behavior of G4(q, t) is apparently simpler because
it does not depend on the statistical ensemble. Further-
more, all types of diagrams are present in its expression
so that its qualitative critical behavior is independent of
the microscopic dynamics, provided that at least density
is locally conserved. However, since G4(q, t) contains the
two terms discussed previously (ladders and squared lad-
ders) a crossover behavior might be expected. Although
the squared ladders should dominate very close to Tc they
might become sub-dominant far from the critical point.

Therefore one should be cautious when comparing the
present MCT predictions to the behavior of real liquids
where the mode-coupling singularity Tc is replaced by a
smooth crossover towards an activated regime. In order
to judge the relative importance of the two terms (lad-
der and squared ladder), one may focus on their q = 0
value, which corresponds to χNV E4 for ladders and to
kBT

2χ2
T /cV for squared ladders. For example, in the

case of the LJ mixture studied in I, the latter term be-
comes dominant only close to the transition T ' 0.47. As
a consequence, for higher temperatures, the contribution
of the squared ladders can be neglected and G4(q, t) will
have the behavior presented in Eq. (9).

A similar crossover is expected for χ4(t), as confirmed
numerically in I. The important difference with G4(q, t)
is that it is possible, at least in numerical simulations, to
disentangle the different contributions to χ4(t) by work-
ing in different ensembles. This motivates the study of
the dynamical response to spatially modulated fields in-
troduced in [31], for which only the simple ladder dia-
grams contribute. In future work, it would be interest-
ing to compare this response function computed within
MCT [31] to its direct numerical evaluation in a simu-
lated liquid.

Finally we note that, within MCT, the scaling of dy-
namic fluctuations in the most general ensemble is differ-
ent from the one predicted by BB [34]. This implies that
the upper critical dimension of the theory, found to be
dc = 6 in [34], has to be revised accordingly. Focusing on
the β-regime, the fluctuations of the non-ergodicity pa-
rameter in a region of size ξ ∼ ε−1/4 grow as δq ∝ ξ4−d/2,
where d is the space dimension. Imposing, in the spirit
of a Ginzburg criterion, that δq must be much smaller
than the critical behavior of the order parameter, i.e.
qc − q ∼

√
ε, one finds that fluctuations become domi-

nant below the upper critical dimension dc = 8. In [44]
it is shown that this result can be obtained from dia-
grammatic considerations: below dc = 8, corrections to
MCT are found to diverge in the infrared regime.

C. The k-dependence of dynamical fluctuations

within MCT

Several different definitions of χ4(t) have been em-
ployed in the literature [12, 14, 15, 18, 34, 45–48]. Re-
gardless of definition, since two-point density fluctua-
tions must depend on the dynamically probed length-
scale (∼ k−1), the detailed behavior of χ4(t) will also
depend on this lengthscale, see e.g. [48]. Physically, the
dependence of the fluctuations on lengthscale reflects the
coupling or sensitivity of cooperative motion to behavior
on the scale of the measured two-point fluctuations. For
example, the expectation that high-frequency phonons
do not couple strongly to the large lengthscale dynamic
heterogeneity is reflected by the fact that a χ4(t) that
focuses on short lengthscales associated with vibrations
cannot exhibit the sizable normalized peak values that
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are connected to large cooperative lengths (but see the
discussion in [14]). Only at a critical point would one
expect all modes to couple in such a way that the be-
havior of χ4(t) would exhibit truly universal properties.
Since this issue cannot be discussed within p-spin models
which contain no lengthscale (see Appendix A), we turn
in this section to liquid state MCT which contains the
complete wavevector dependences of dynamic functions.

The dependence of χ4(t) as a function of lengthscale
was first discussed by Glotzer and coworkers [46], who
used the definition

χ4(t) =
βV

N2

[

〈Q2(t)〉 − 〈Q(t)〉2
]

, (13)

where N , V and β are the number of particles, the
volume and the inverse temperature, respectively, and
Q(t) =

∑

ij w(|ri(0) − rj(t)|) and w(|r1 − r2|) = 1 for

|r1 − r2| ≤ a and is zero otherwise. Here a is a cutoff
parameter. Lačević et al. explicitly showed that within
this definition of χ4(t), the value of a that maximizes the
peak height is close to the global Debye-Waller ampli-
tude of the mean-square displacement [46]. For values
of the cutoff that are larger or smaller, the absolute am-
plitude of χ4(t) decreases. It can be noted in this work
that the shape of χ4(t) is sensitive to the value of a as
well, although no systematic study of this dependence
was investigated.

Using a different definition of χ4(t), namely that de-
fined by Eq. (50) below, Dauchot et al. noted that for
a weakly sheared granular system, the slope of χ4(t) in-
creases as the wavevector decreases [18]. This particular
dependence has been studied in more detail in a recent
work [48]. From both molecular dynamics simulation and
the direct analysis of a class of kinetic facilitated models,
Chandler et al. have detailed the lengthscale dependence
of a variety of definitions of χ4(t), and have argued that
a generic feature of this dependence is that the growth of
χ4(t) to its peak becomes significantly more rapid as the
intrinsic lengthscale increases. It was also argued [48]
that this result is inconsistent with the predictions of
mode-coupling theory outlined in Ref. [14]. Since the k-
dependent χ4(t) in facilitated models has been discussed
in detail in Ref. [48], we focus below on the predictions of
mode-coupling theory. In particular, we show that, de-
spite statements to the contrary, mode-coupling theory
is at least in qualitative accord with the behavior found
from computer simulation, as detailed in Ref. [48].

An important aspect of the physical content of the k-
dependence of χ4(t) is embodied in the consideration of
the distinction between β- and α-relaxation, and the im-
plication that this distinction holds for the lengthscales
of dynamic heterogeneity. At a given density and tem-
perature, a well-defined plateau in the two-point den-
sity correlator for wavevectors near the first diffraction
peak in the static structure factor S(k) will saturate as
k is decreased. Eventually, as k is decreased further the
hydrodynamic regime is reached, where the local coop-
erative processes associated with dynamic heterogeneity

are averaged out. At a fixed distance from the dynami-
cal transition temperature Tc, as k is decreased first the
β-relaxation window decreases in duration [49]. Con-
comitantly, the stretching exponent of the α-relaxation
increases continuously. Eventually, the crossover is com-
plete when the β-window is no longer observable, and the
stretching exponent saturates at unity, signifying long-
time hydrodynamic behavior.

The theoretical considerations made in Ref. [14] are
based on the asymptotic predictions of mode-coupling
theory. Arbitrarily close to Tc and in systems for which
Tc is not avoided, the predictions of Ref. [14] are nearly
universal in the sense that the effects mentioned above
are only seen in the strict k → 0 limit. By consider-
ing the k-dependence of induced susceptibility χx(t) for
a fixed, finite distance from Tc one gains a qualitative
understanding of how the universal features expected for
k near the first diffraction peak of S(k) are changed as k
decreases.

As discussed in the previous sections dynamical fluc-
tuations encoded in ladder diagrams are visible either in
χ4(t) or in the dynamical response. However, dynamical
responses are accessible to direct quantitative numerical
computations that are an essential tool in order to dis-
cuss the crossover issues discussed above. Let us now,
for completeness and clarity, rederive the results for dy-
namical responses using only standard MCT results [27]
being particularly careful about the k-dependence.

In the α-regime close to the transition, but still in
the liquid phase, the dynamical structure factor scales
like F (k, t) ' fkα(t/τα(ε)) where τα = ε−γ and γ =
1/2a+1/2b. Thus, we find that in the α-regime χx(k, t) =
∂F (k, t)/∂x reads:

χx(k, t) '
1

ε
gkα(t/τα), gkα(x) = −x

γ

dfkα
dx

. (14)

We temporarily change notation to emphasize the k-
dependence, namely, we promote χx(t) to χx(k, t). In the
β-regime and close to the transition F (k, t) ' S(k)q(k)+
S(k)h(k)

√
εfβ(t/τβ) where τβ = ε−1/2a, q(k) is the non-

ergodic parameter and h(k) is the critical amplitude.
Thus, we find that in the β-regime χx(k, t) reads:

χx(k, t) '
h(k)S(k)√

ε
gβ(t/τβ),

gβ(x) = −fβ(x) −
x

2a
f ′
β(x).

(15)

Analyzing the β-regime with a large but not diverging
time and matching the α-regime with the β-regime im-
poses constraints on the large and small x behavior of
gβ(x) and gkα(x). Requiring that in the early β-regime
the ε dependence should drop out of χx(k, t), we find:

χx(k, t) ∼ ta 1� t� τβ . (16)

Analogously, matching the α- and β-regimes leads to:

χx(k, t) ∼ ε(b−a)/2atb τβ � t� τα, (17)
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interpolating between χx ∼ ε−1/2 for t = τβ and χx ∼
ε−1 for t = τα, before decaying back to zero for t� τα.

All these results are valid close enough to the transi-
tion but, as discussed previously, we expect crossovers
as a functions of k and time. In order to study this is-
sue numerically, we solve the full, wavevector-dependent
mode-coupling equations for the self-intermediate func-
tion Fs(k, t) for a dense colloidal suspension, which are
directly coupled to the collective density fluctuations
F (k, t) as

∂Fs(k, t)

∂t
+D0k

2Fs(k, t)

+

∫ t

0

dt′ Ms(k, t− t′)
∂Fs(k, t

′)

∂t′
= 0,

(18)

where D0 is the bare diffusion constant, and Ms(k, t) is
the self-memory function that can be expressed as

Ms(k, t) =
ρ0D0

(2π)3

∫

dk′
{

k̂ · k′c(k′)
}2

Fs(|k−k′|, t)F (k′, t).

(19)

Here, ρ0 = N/V is the number density, k̂ = k/|k|, c(k)
is the direct correlation function, ρ0c(k) = 1 − 1/S(k).
This equation must be solved simultaneously and self-
consistently with mode-coupling equations for the full
density fluctuations

∂F (k, t)

∂t
+
D0k

2

S(k)
F (k, t)+

∫ t

0

dt′ M(k, t−t′)∂F (k, t′)

∂t′
= 0,

(20)
where

M(k, t) =
ρ0D0

(2π)3

∫

dk′ |V (k,k′)|2F (|k− k′|, t)F (k′, t),

(21)

and V (k,k′) = k̂ · k′c(k′) + k̂ · (k− k′)c(|k− k′|). These
equations are solved for a model hard-sphere suspension
with input from S(k) calculated from the Percus-Yevick
closure at various volume fraction φ. The wavevector
cutoff is taken to be kc = 50 in units of the particle size,
and the grid number is taken to be 100. The equations
of motion are integrated with the algorithm of Fuchs et

al. [49]. The induced susceptibility

χφ(k, t) =
∂Fs(k, t)

∂φ
, (22)

is computed via numerical differentiation. In Fig. 6 the
induced susceptibility is shown for different values of
wavevector from those higher than the first peak in S(k)
to those significantly below. The behavior of χφ(k, t) for
k close to the first diffraction peak displays the two power
law regimes described in Sec. II. When k is decreased the
power law describing how χφ(k, t) reaches its peak clearly
shows an increasing value. This behavior is qualitatively
compatible with the one found in simulations [48] and
experiments [18] on granular materials. It makes clear

t

χ
φ
(k

,t
)

10610410210010−2

104

102

100

FIG. 6: Dynamic susceptibility χφ(k, t), Eq. (22), predicted
by MCT for hard spheres at fixed volume fraction above the
glass transition, φc − φ = 10−3 for various wavevectors from
k = 19.35 to k = 0.75 (in particle size units) from left to right.
Power laws for the largest k are the asymptotic results ta and
tb with a = 0.312 and b = 0.583, while χφ(t) ∼ t describes
well the data at small k (rightmost curve).

that corrections to the critical behavior are different de-
pending on k. In particular, the limit k → 0 and T → Tc
clearly do not commute.

Note that, although the critical behavior is expected
to be the same for χφ(k, t) and χ4(t) in the NV E en-
semble, the corrections to the critical scaling might not
be the same. However, the same qualitative considera-
tions regarding time and wavevector dependences should
hold. Furthermore, using the bounds derived in I the
present results yield direct quantitative predictions for
the behavior of the dynamic susceptibility χ4(t) in the
hard sphere system since its scaling behavior is the same
as to the one of χ2

φ(k, t), which obviously follows from

Eqs. (14, 15, 16, 17).

III. DYNAMIC SUSCEPTIBILITY AND

DIVERGING LENGTHSCALES IN KCMS

A. Models and observables

In this section we proceed with the computation of the
dynamic susceptibility χT (t) and its comparison to the
previously studied χ4(t) in kinetically constrained models
(KCMs) [28]. Our motivation here stems from the fact
that the study of KCMs has greatly contributed to our
present understanding of the dynamically heterogeneous
dynamics of supercooled liquids [13, 14, 28, 47, 48, 50–
55, 85]. Moreover, the variety of available models allows
one to grasp the variety of possible behaviors that could
possibly be encountered in real materials. Finally the
relative simplicity of the models makes them suitable to
large scale numerical simulations, which might help data
analysis in real materials, while scaling laws and exact
results can be obtained by standard theoretical tools of
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statistical mechanics.
KCMs are spin models (lattice gas versions also ex-

ist [56]) generically described by a simple, usually non-
interacting Hamiltonian, and a set of dynamic rules with
non-trivial constraints forbidding some of the transitions
and therefore making the overall dynamics glassy. In the
following we will focus on spin models characterized by
the Fredrickson-Andersen Hamiltonian [51],

H =
N

∑

i=1

ni, (23)

where ni = 0, 1 is a binary variable defined on each point
of a hypercubic lattice in dimension d. Physically, ni = 0
(ni = 1) represents a site i which is immobile (mobile),
and has therefore an energy which is smaller (larger) than
the average energy, given by

〈ni〉 = c(T ) =
1

1 + e1/T
. (24)

The spins evolve with a single spin flip dynamics, so that
the model dynamics is entirely defined by the transition
rates between states 1 and 0,

ni = 0

Ci c−−−−−→
←−−−−−
Ci (1−c)

ni = 1, (25)

where Ci is a kinetic constraint on site i which can become
0 depending on the local environment of site i, therefore
prohibiting some specific transitions. We shall study in
detail two different spin facilitated models where the ki-
netic constraint takes the following forms,

Ci = 1−
∏

j

(1− nj), (26)

and

Ci = 1−
∏

j,k

(1− njnk), (27)

for 1- and 2-spin facilitated models, respectively. In the
expressions for Ci the products are over nearest neighbors
of site i. The constraints respectively become equal to 1
when, respectively, at least 1 or 2 of their nearest neigh-
bors is mobile, therefore capturing the idea of dynamic
facilitation: mobile regions locally favor the creation of
more mobility [13, 51].

Due to the presence of a heat bath, the dynamics of
KCMs do not conserve energy. Physically this means
that heat can be locally provided to a spin to allow the
creation of a mobility excitation without the need to bor-
row energy from the neighboring sites. In principle the
results obtained from KCMs should then be compared to
the NV T dynamics of molecular liquids. As opposed to
the MCT results described above, no prediction can be
made from KCMs concerning the role of a conservation
law for the energy. For kinetically constrained lattice

gases, a quantitative comparison between spontaneous
fluctuations, χ4(t), and fluctuations induced by a change
of density, χρ(t), can be performed [48].

A second important consequence of the presence of a
heat bath is that neither the fluctuation-dissipation rela-
tion in Eq. (3) nor the inequality Eq. (4) apply to KCMs,
and we are therefore left with three independent dynamic
quantities, namely

χT (t) =
∂〈P (t)〉
∂T

,

CPE(t) = N〈δP (t)δe(0)〉,
χ4(t) = N〈δP 2(t)〉,

(28)

where we have defined the instantaneous value of the
energy density,

e(t) =
1

N

N
∑

i=1

ni(t). (29)

Following earlier works on KCMs we choose to work with
the persistence function as the relevant two-time dynam-
ical object,

P (t) =
1

N

N
∑

i=1

Pi(t), (30)

where Pi(t) denotes the persistence of the spin i between
times 0 and t. Its thermodynamic average, 〈P (t)〉, has
recently been the subject of a number of theoretical stud-
ies [13, 47, 54, 57–59]. Note that for KCMs, the Cauchy-
Schwarz inequality could still be of some use. For the
present variables this leads to

χ4(t) ≥
C2
PE(t)

T 2cV
, (31)

where cV (T ) = dc/dT = e1/T /[T 2(1 + e1/T )2] is the spe-
cific heat. The main difference between the inequalities
(31) and (4) is that the right hand side of (31) is given by
a correlation function which is not easily accessible in ex-
periments, contrary to the susceptibility χT (t) appearing
in (4). Of course, CPE(t) can be measured in numerical
experiments, as shown below.

At the level of the spatial correlations, two distinct
correlators also need to be studied,

GT (r, t) = 〈δPi(t)δni+r(0)〉, (32)

G4(r, t) = 〈δPi(t)δPi+r(t)〉. (33)

Their Fourier transforms, G4(q, t) and GT (q, t), can
equivalently be studied, and it is obvious that G4(q =
0, t) = χ4(t) and GT (q = 0, t) = CPE(t), these quantities
representing the volume integrals of the spatial correla-
tions G4(r, t) and GT (r, t), respectively.
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B. Results for 1-spin facilitated FA models

The one-spin facilitated FA model has been studied nu-
merically and analytically in various spatial dimensions
in much detail [13, 14, 28, 47, 48, 54, 57–59]. These stud-
ies have shown that the model exhibits dynamic hetero-
geneity and large spontaneous fluctuations of the two-
time dynamics, although relaxation timescales grow only
in an Arrhenius fashion as temperature is decreased,

τα ∼ c−∆ ∼ exp(∆/T ), (34)

with ∆ = 3 for d = 1 and ∆ = 2 for d > 2. Interestingly,
these works suggest that even strong material should dis-
play dynamic heterogeneity. This was confirmed by sim-
ulations [60] and experiments [61] which reported devia-
tions from the Stokes-Einstein relation, although the FA
model itself presents no such deviations for d ≥ 2.

As usual, the four-point susceptibility χ4(t) is found
to have non-monotonic time dependence. Therefore it
shows a peak, χ?4(T ) = χ4(t ∼ τα), whose position shifts
to larger times and whose height increases when temper-
ature decreases. One finds dynamic scaling [13, 47, 57],

χ?4 ∼ c−γ ∼ exp(γ/T ) ∼ τγ/∆α , (35)

with γ = 1 in all spatial dimensions. The correspond-
ing spatial dynamic correlations have also been studied.
Analytically, one can compute these quantities approxi-
mately by making the assumption that the system can
be described as an assembly of defects which diffuse in-
dependently with diffusion constant D = c. This was
called “independent defect approximation” in Ref. [14].
In three dimensions, one finds

G4(q, t) ≈ χ4(t)G4[q
2ξ24(t)], (36)

with a diffusively growing lengthscale,

ξ4(t) =
√
ct, (37)

and the scaling function

G4(x) = 2
x− 1 + e−x

x2
. (38)

Additionally the four-point dynamic susceptibility be-
haves as follows,

χ4(t) ≈
c2
2c

(

t

τα

)2

exp

(

− 2t

τα

)

, (39)

with c2 a numerical factor. These predictions are in good
agreement with direct simulations of the FA model, the
only discrepancy being that the scaling function G4(q, t)
shows deviations from its 1/q2 predicted large q behavior
when times become very large, t� τα.

The computation of χT (t) is easy given that the av-
erage persistence obeys time temperature superposition,
〈P (t)〉 = f(t/τα), the scaling function f(x) being well

described, for times which are not too long [59], by
a stretched exponential form, f(x) = exp(−xβ), with
β = 1/2 for d = 1 and β = 1 for d > 2. Therefore one
immediately gets,

χT (t) = −∆β

T 2

(

t

τα

)β

exp

[

−
(

t

τα

)β
]

. (40)

This shows that χT (t) displays a non-monotonic time de-
pendence with a peak arising at time t ∼ τα, diverging
as χ?T ∼ −1/T 2 when T goes to zero. Finally, the be-
havior of χT (t) before the peak, t � τα, is a power law,
χT (t) ∼ tβ , β being the value of the stretching exponent
characterizing also the α-relaxation.

If one considers the quantity T 2χ2
T /cV appearing in

the inequality (4), one finds at the peak,

T 2

cV
(χ?T )2 ∼ c−1 ∼ exp(1/T ) ∼ χ?4, (41)

so that both sides of the inequality (4) have similar scal-
ing properties at low temperatures in this model. This is
not an obvious result given that these quantities are not
related by the thermodynamic relations and inequalities
outlined in Sec. I.

Notice, however, that this similarity appears coinci-
dental because the whole divergence of the first term in
Eq. (41) is due to the very strong temperature depen-
dence of the specific heat at low temperature which itself
results from the non-interacting FA Hamiltonian (23). In
real materials, the specific heat is almost temperature in-
dependent when the glass transition is approached and
the growth of the term T 2χ2

T /cV is mainly due to the
growing susceptibility χT (t) itself.

Following steps similar to those described in Ref. [14] it
is possible to compute both the correlator in Eq. (32) and
its volume integral in Eq. (28) within the independent
defect approximation. In three dimensions, one finds for
GT (q, t) a scaling form very similar to Eq. (36),

GT (q, t) ≈ CPE(t)GT [q2ξ2T (t)], (42)

with

CPE(t) ≈ c1
(

t

τα

)

exp

(

−c1t
τα

)

, (43)

where c1 is a numerical factor, the corresponding corre-
lation lengthscale

ξT (t) =
√
ct, (44)

and the scaling function

GT (x) =
1− e−x2

x2
. (45)

These calculations show that, within 1-spin facilitated
models, the physical content of the correlators G4 and
GT is essentially the same. Physically, this is because two
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sites are dynamically correlated, and therefore contribute
to G4(r, t), if they are visited by the same diffusing mo-
bility defect. Similarly, two sites contribute to GT (r, t)
if one of them contains at time 0 the first defect which
will visit the second one for t > 0. This implies that the
correlation lengthscales ξ4 and ξT both reflect the simple
activated diffusion of point defects, and therefore con-
tain the same physical information; Eqs. (37) and (44)
show that they are indeed equal. Additionally, the spa-
tial correlatorsG4(q, t) and GT (q, t) are found to differ in
their detailed expression, Eqs. (38, 45), but they have the
same asymptotic behaviors, GT (qξT � 1) ∼ const and
GT (qξT � 1) ∼ 1/q2, reminiscent of an Ornstein-Zernike
form.

An additional piece of information derived from
Eqs. (40) and (43) is the similar time dependence
and scaling with temperature found for the quantities
T 2χT (t) and CPE(t), despite the fact a fluctuation-
dissipation relation such as Eq. (3) does not hold. Nu-
merically we indeed find that both terms quantitatively
differ, although merely by a numerical factor.

The independent defect approximation is thought to
be a good representation of the 1-spin facilitated model
above its critical dimension, d > 2, as confirmed by
our numerical simulations in d = 3. We provide addi-
tional numerical evidence that these findings are correct
in d = 1 in Fig. 7. The top figure shows that the time
dependence and scaling with temperature of three dif-
ferent quantities, χ4(t), C

2
PE(t)/(T 2cV ) and T 2χ2

T (t)/cV
are the same. Moreover, the Cauchy-Schwarz inequal-
ity (31) is satisfied by our numerics, at it should be,
while the inequality (4) derived for Newtonian dynam-
ics is found to be violated, by a factor which is about 2
at the peak. The bottom panel in Fig. 7 shows G4(q, τα)
and GT (q, τα) for the FA model in d = 1. As predicted
from the independent defect approximation, both corre-
lation functions are slightly different in their shape but
share a common behavior, a plateau at small q and a 1/q2

decay at large q. We have checked that the equivalence
ξ4(t) ∼ ξT (t) also holds in numerical simulations, con-
firming that dynamic-dynamic and dynamic-energy spa-
tial correlations are essentially equivalent quantities in
the context of non-cooperative KCMs. This is physically
expected since by definition of the kinetic constraints
in (26), it is those regions with high potential energy
which trigger the dynamics of the nearby sites: this is
the essence of the dynamic facilitation idea.

We conclude this section on one-spin facilitated mod-
els by briefly discussing the case of the East model [50],
which is defined with the same FA Hamiltonian (23) and
is also a 1-spin facilitated model where the kinetic con-
straint is defined similarly to Eq. (26), the only differ-
ence being that the product appearing in (26) is now
restricted to only one neighbor in each spatial direction.
This “hyper”-East model was called the North-or-East-
or-Front (NEF) model in d = 3 [62]. This direction-
ality of the constraint makes the dynamics of the East
model slower than that of the FA model, and relaxation
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FIG. 7: Dynamic susceptibilities and spatial correlations in
the one-spin facilitated FA model in one dimension. Top:
Various dynamical susceptibilities are shown as a function
of time for temperatures T = 1.0, 0.5 and 0.2 (from left to
right). They behave similarly with time, and their peak scale

as τ
γ/∆

α = τ
1/3

α , as shown with dots. Bottom: Dynamic struc-
ture factors G4(q, t) and GT (q, t) at time t = τα for T = 0.3.
Both functions behave as a constant at small q, and as 1/q2

at large wavevectors, as shown with a dashed line.

timescales now grow in a super-Arrhenius fashion, so that
the exponent ∆ appearing in (34) becomes temperature
dependent, ∆(T ) ∼ − ln c(T ). The East model is there-
fore a KCM for fragile glasses. Additionally, time tem-
perature superposition does not hold. Relaxation is still
described by stretched exponentials but the stretching
exponent is also temperature dependent, with β(T ) ∼ T
at low temperature [63, 64]. Despite these qualitative
differences between strong and fragile models, our main
conclusions still hold. The three dynamic susceptibilities
shown in Fig. 7 also track each other, and this is again
the result of subtle compensations between the scaling
of correlations functions and the strong temperature de-
pendence of the defect concentration. Similarly, the two
different lengthscales ξ4 and ξT also bear the same physi-
cal content, although they now grow sub-diffusively with
time [14]. This subdiffusive behavior affects the approach
of the dynamic susceptibilities to their maximum. In
the d = 1 East model, one finds that before the peak
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χT (t) ∼ tb(T ), where the exponent b(T ) ≈ β(T ) should
decrease slowly when T decreases. We find numerical
values b ≈ 0.2 − 0.4 in the time window of our Monte
Carlo simulations, where relaxation timescales increase
from τα ∼ 104 to τα ∼ 108.

C. Results for a 2-spin facilitated FA model

By comparison with one-spin facilitated models, much
less is known about the behavior of 2-spin facilitated
models, because relaxation does not proceed by activated
diffusion (or even sub-diffusion) of point defects [51, 52].
In some cases, asymptotic mechanisms have been de-
scribed which show that relaxation timescales grow very
rapidly when temperature is decreased, although no fi-
nite temperature divergence is found [52, 55]. In these
mechanisms, relaxation occur via the diffusion of “super-
defects” whose concentration decreases when T decreases
and whose size is itself an increasing function of tem-
perature. For this reason these models are sometimes
called “cooperative KCMs”. Very recently, a KCM was
specifically engineered to yield an example of a finite tem-
perature singularity, but we do not discuss this example
further [65].

An additional point of theoretical interest of coop-
erative KCMs is that, when studied on Bethe lattices,
they display a dynamical transition at finite tempera-
ture which is reminiscent of the mode-coupling singular-
ity described in Sec. II. Moreover, dynamic fluctuations
can be studied in some analytic detail in the Bethe limit,
while no analytic study of dynamic fluctuations on finite
dimensional lattices is available.

We now focus on the 2-spin facilitated model in di-
mension d = 2, the “22FA model”, as a specific exam-
ple of a cooperative model. Our choice is motivated by
the relatively large number of earlier studies dedicated to
this model [51, 52, 55], the fact that its Bethe limit was
also considered [85], and that it is sufficiently far from
its mean-field limit that deviations from mean-field be-
havior are clearly observed. It was indeed realized early
on that the model does not display a power law diver-
gence of its relaxation time at finite T [51, 52], contrary
to more constrained models where numerics seemed to
indicate the presence of a mean-field like singularity [56],
now discarded [55, 66].

Adapting the general results of Ref. [55] to the spe-
cific example of the 22FA model, we expect the following
scaling results. The relaxation time grows as

τα ∼ exp
(a

c

)

∼ exp

[

a exp

(

1

T

)]

, (46)

where a is a numerical factor. The double exponential
divergence makes the 22FA a very fragile glass-former
model.

The scaling of the four-point dynamic susceptibility is
obtained as follows. At a given temperature, relaxation
occurs via the diffusion of super-defects of size `(T ). By

coarse-graining the system up to size `, relaxation then
resembles the diffusion of independent defects, and the
results of the independent defect approximation can be
carried out. Therefore, we expect χ?4 ∼ c−1

` , where c` is
the concentration of super-defects. Using the results of
Ref. [55], we get

χ?4 ∼ exp
(a

c

)

∼ τα. (47)

We evaluate the leading divergence of χT (t) by as-
suming time temperature superposition, i.e. χT (t) =
∂f(t/τα)/∂T . Using (46) we get χ?T ∼ exp(a/c)/(T 2c),
up to an irrelevant numerical prefactor. As a conse-
quence, the right hand side of the inequality (4) scales
as

T 2

cV
(χ?T )2 ∼ c−3 ∼ (ln τα)3. (48)

By comparing Eqs. (48) and (47), we conclude that
the dynamic heterogeneity quantified through χ4(t) and
T 2χ2

T (t)/cV are very different, since χ4(t) is predicted to
diverge as a power of τα, while the term involving χT
should diverge only logarithmically with τα. For coop-
erative models, the “coincidental” compensation due to
the specific heat arising in non-cooperative model is not
effective.

Since these results are expected to hold only very close
to T = 0, we have performed numerical simulations of the
22FA model. In these Monte Carlo simulations, we cover
the temperature regime T = 2.6 down to T = 0.43, which
corresponds to about 7 decades of relaxation timescales.
In this temperature window, τα cannot be fitted with
an inverse power law τα ∼ (T − Tc)−α as in the Bethe
limit, showing that strong non-mean-field effects are in-
deed present. However, the form (46) is not completely
successful either, suggesting that the true asymptotic
regime is beyond the realm of numerical simulations (see
[67] for a discussion of this point in a similar context), and
that the numerical regime lies somewhat in the crossover
regime.

In Fig. 8 we compare the evolution of the peak of χ4(t)
and the corresponding peak in T 2χ2

T (t)/cV for the entire
temperature range we have been able to access. Quite
strikingly we find that both functions scale very simi-
larly on the whole temperature range. A similar result
was recently reported for a cooperative constrained lat-
tice gas in two-dimensions [48]. This similarity holds also
at the level of the whole time dependence (not shown).
From numerical simulations only, we would therefore con-
clude that the coincidence between the two terms already
found for non-cooperative models also applies in cooper-
ative models. This numerical evidence is contradicted by
the asymptotic analytic arguments given above. A pos-
sible way to reconcile these results is to assume that the
temperature regime we have studied in the simulations is
still too close to the mean-field Bethe lattice limit, where
the scaling χ4 ∼ T 2χ2

T /cV is indeed expected to hold.
This argument is however clearly weakened by the fact



D
S

M
/S

P
h

T
-T

06
/1

21
 h

ttp
://

w
w

w
-s

ph
t.c

ea
.f

r/
ar

tic
le

s/
T

06
/1

21
/ 

13

����������
	��

 �

���������

�����

���

�

�����

q−2

GT

G4

q
10

0
10

−1

10
3

10
1

10
−1

FIG. 8: Dynamic susceptibilities and spatial correlations in
the 2-spin facilitated FA model in two dimensions. Top: Com-
parison between the peak values of χ4 and T 2χ2

T /cV for dif-
ferent temperatures covering about 7 decades in relaxation
timescales. The full line represents the proportionality be-
tween both quantities. Bottom: Dynamic structure factors
G4(q, t) and GT (q, t) at time t = τα ∼ 106 for T = 0.428.
Both functions behave as a constant at small q, but have dif-
ferent large q behaviors since the 1/q2 dashed line is consistent
with G4 only.

that many observables (timescales, persistence functions,
and others, see Ref. [68]) show visible deviations from
their mean-field limit in the same temperature regime.

In the bottom panel of Fig. 8, we also show the com-
parison of the spatial correlations (32) and (33) measured
in Fourier space. Whereas both correlators were found
to be very similar for non-cooperative models, numerics
clearly reveals that the shapes of the dynamic structure
factors G4 and GT differ. While G4 ∼ 1/q2 seems to hold
at large wavevectors, qξ4 � 1, we find a different behav-
ior for GT , namely GT ∼ 1/q1.3. Note that this fit is
not very satisfactory, revealing a more complex structure
of this correlator, possibly related to the presence of two
lengthscales in the model: the size of the super-defects,
and the typical distance separating them. We conclude
that dynamic-dynamic and dynamic-energy correlations
might contain slightly distinct physical information in co-
operative KCMs. This is physically expected because an
isolated defect, which represent a positive local fluctua-

tion of the energy, cannot diffuse and relax the neighbor-
ing sites. Therefore the correspondence between energy
fluctuations and dynamical fluctuations is not one-to-one
as in, e.g., the 1-spin FA model. By this argument one
can predict that GT (r, t) < G4(r, t) at small r, and there-
fore a faster initial decay of GT (r, t) with r. In Fourier
space, this means a slower large q decay of GT (q, t) than
that of G4(q, t), as observed in Fig. 8.

Nevertheless, a dynamic correlation lengthscale can be
defined from both G4(q, t) and GT (q, t) as the inverse of
the wavevector above which structure factors start to de-
cay. The data shown in Fig. 8 clearly indicate that these
two lengthscales are very close. A possible interpretation
is that despite their complex structure, the super-defects
are associated with positive energy fluctuations, so that
the lengthscale extracted from three- and four-point func-
tions could indeed be equivalent, as in the case of non-
cooperative models. A similar situation was encountered
in our atomistic simulations in I.

D. Remarks and open questions on ensemble and

dynamics dependence and KCMs

We have studied in the context of kinetically con-
strained spin models (KCMs) the dynamic susceptibil-
ity χT (t) and the associated three-point dynamics-energy
spatial correlations, and their link with the more stan-
dard four-point susceptibility χ4(t). Although the ther-
modynamic relations derived in I for supercooled liquids
do not hold for kinetically constrained spin models (be-
cause energy is not dynamically conserved), they seem to
be approximately valid.

The underlying reason is that in non-cooperative
KCMs the energy fluctuations that are important for the
dynamics are effectively conserved because of the kinetic
constraint. This is clearer in the example of the 1-spin fa-
cilitated FA model where a facilitating spin can disappear
only by annihilation with another facilitating spin. Simi-
larly, a facilitating spin can be created only by branching
from another facilitating spin. But these two processes
happen very rarely (see Refs. [47, 57, 58] for a detailed
analysis and discussion of timescales). Therefore, the
main relaxation mechanism is diffusion of the facilitat-
ing regions (energy fluctuations) which are conserved in
an effective way, as assumed in the independent defect
approximation.

Comparing our results for KCMs to the general the-
oretical considerations of I opens interesting issues re-
lated to the applicability of KCMs to supercooled liq-
uids. Since dynamical fluctuations strongly depend on
statistical ensembles and microscopic dynamics, this im-
mediately raises important questions:

• For which ensemble are the dynamical fluctuations
of real liquids supposed to be described by KCMs?

• What type of liquid dynamics should one choose to
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compare real dynamical fluctuations to the predic-
tion of KCMs?

These questions are clearly related to the coarse-
graining procedure that is often invoked [51, 54, 69],
but never truly performed, to map real liquids to KCMs.
Were this procedure known, the answer to the previous
questions would be clear. Unfortunately, this formidable
task has not yet been accomplished. On the other hand,
our results show that this is a crucial issue in order to
compare, even qualitatively, the prediction of KCMs for
dynamical fluctuations to experimental and numerical re-
sults on realistic models.

For kinetically constrained spin models, the answer to
the first of the above questions seems fairly easy even
without the coarse graining procedure. Only in the most
general ensemble where all conserved quantities fluctu-
ate does one have limq→0G4(q, t) = G4(0, t). Since this
equality holds in KCMs, we conclude that KCMs should
apply to real liquids in the most general statistical en-
semble, i.e. NPT for most practical purposes.

The second question is instead much more subtle.
From a general point of view since there is no conserved
quantities in spin models, KCMs could be thought as rep-
resentative of a dynamics without conserved quantities.
Of course all physical dynamics should at least conserve
density. However, if one considers Brownian dynamics
for supercooled liquids for which temperature is the rele-
vant control parameter, while density plays a minor role
(see section II.E.3 in I), it might be reasonable to expect
that density fluctuations do not couple strongly to dy-
namical fluctuations. One is then tempted to conclude
that KCMs are models of real liquids with Brownian or
stochastic dynamics.

However, this tentative answer is contradicted by sev-
eral facts. First, real supercooled liquids obviously evolve
with Newtonian dynamics. Second, we just discovered
that the inequality (31) provides a good approximation
to χ4(t) for KCMs. A similar result holds for liquids with
Newtonian dynamics in the NPT ensemble (see I) but
not for liquids with stochastic dynamics [70].

Taking the opposite view that KCMs represent, for
some unclear reason, liquids with Newtonian dynamics
is also unsatisfactory because the saturation of the in-
equality (31) in KCMs is principally due to the behavior
of the specific heat that decreases exponentially fast as
temperature decreases. But a very small specific heat
is incompatible with experimental measurements of the
thermodynamics of supercooled liquids [71]. Correcting
for this fact as in Ref. [72] then leads to poor estimates
of χ4(t) via dynamic response functions, in disagreement
with atomistic simulations [16, 19].

The case of kinetically constrained lattice gases is less
problematic if taken as models of glass/jamming transi-
tion in hard sphere systems, rather than molecular liq-
uids. In this case, the only conserved quantity that mat-
ters is the density and therefore there are no ambiguities
since density is conserved both in kinetic lattice gases
and in real systems.

KCMs provide a natural mechanism explaining corre-
lations between energy fluctuations and dynamic hetero-
geneity. However, in order to compare even qualitative
predictions of KCMs with experimental or numerical re-
sults for dynamical fluctuations, one has to understand
clearly in what ensemble and for what dynamics KCMs
predictions hold. This certainly highlights the impor-
tance of a microscopic derivation and more detailed jus-
tification of KCMs.

IV. RESULTS FOR TWO MOLECULAR

GLASS-FORMERS

A. Models and technical details

In this section we report our numerical calculations of
the dynamic susceptibility χT (t) in two molecular glass-
formers which have been extensively studied in numerical
simulations: a binary Lennard-Jones (LJ) mixture [73],
considered as a simple model system for fragile super-
cooled liquids [6], and the Beest, Kramer, and van Santen
(BKS) model, which is a simple description of the strong
glass-former silica [60, 74]. For both models we have
investigated the behavior of the dynamical fluctuations
performing microcanonical simulations at constant en-
ergy, E, number of particles, N , and volume, V , by solv-
ing Newton’s equations of motion [75]. For the LJ sys-
tem we have also simulated stochastic dynamics, namely
Brownian and Monte-Carlo dynamics [75].

We follow the dynamical behavior of the molecular liq-
uids through the self-intermediate scattering function,

Fs(k, t) =

〈

1

Nα

Nα
∑

j=1

eik·[rj(t)−rj(0)]

〉

, (49)

where the sum in Eq. (49) runs over one of the species
of the considered liquid (A or B in the LJ, Si or O
for silica). We denote by f̄s(k, t) the real part of the
instantaneous value of this quantity, so that we have
Fs(k, t) = 〈f̄s(k, t)〉.

As usual, the four-point susceptibility, χ4(t), quantifies
the strength of the spontaneous fluctuations around the
average dynamics by their variance,

χ4(t) = Nα
[

〈f̄2
s (k, t)〉 − F 2

s (k, t)
]

. (50)

In principle, χ4(t) in Eq. (50) retains a dependence on
the scattering vector k. Since the system is isotropic,
we circularly average (49) and (50) over wavevectors of
fixed modulus, and we will mainly consider results for
|k| = 7.21 for the LJ system, and |k| = 1.7 Å−1 for the
BKS. These values respectively represent the typical dis-
tance between A particles, and the size of the SiO4 tetra-
hedra. Finally, we use finite difference to evaluate the
temperature derivatives involved in

χT (t) =
∂

∂T
Fs(k, t). (51)
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FIG. 9: (a) and (b) respectively show the self-intermediate scattering functions Fs(k, t) as a function of time for various
temperatures in a binary Lennard-Jones mixture and the BKS model for silica, obtained from molecular dynamics numerical
simulations. (a) T = 2.1, 2.0, 1.05, 1.0, 0.75, 0.72, 0.61, 0.6, 0.51, 0.5, 0.47, 0.46, 0.435 and 0.43 from left to right. (b) T = 6100,
5900, 4700, 4600, 4000, 3920, 3580, 3520, 3250, 3200, 3000, 2960, 2750, and 2715 K from left to right. The arrows illustrate
how χT = ∂Fs/∂T is obtained by finite difference for each temperature. (c) and (d) show the resulting normalized χT for both
models. We have taken the absolute value since χT is a negative quantity. Power law fits of the time dependence are discussed
in detail in Sec. IV. The value of the exponents at short and long times are 0.32 and 0.45 in (c), 0.3 and 0.5 in (d).

We have given an extensive account of the models, nu-
merical details and parameters used in I. Therefore, we
refer readers interested in the technical details concerning
the simulations to I [16].

B. Time dependence of dynamic susceptibilities

1. Time behavior of χT (t)

Our results for the averaged dynamics, Fs(k, t), and
dynamic susceptibilities, χT (t), are presented in Fig. 9
for both the LJ and BKS models. The average dy-
namics was discussed in detail in Refs. [60, 73]. For a
given temperature, the qualitative time dependence of
χT (t) observed in Fig. 9 resembles the one already re-
ported for χ4(t): χT (t) presents a peak for a timescale
close to τα. This is very natural since by definition
χT (t = 0) = χT (t → ∞) = 0, and it is for times
t ≈ τα that the dynamics is most sensitive to temper-
ature changes. We have shown the quantity |χT (t)| in
these figures, as χT (t) is obviously a negative quantity:

raising the temperature makes the dynamics faster, and
hence two-time correlators smaller, so that ∂Fs/∂T < 0.

More quantitatively, we expect the two-timescale re-
laxation of the averaged dynamics to lead to a com-
plex time behavior of χT (t), similar to that predicted
for χ4(t) [14]. Within MCT, we expect (see Sec. II) two
distinct power laws, χT ∼ ta followed by χT ∼ tb, to
describe the approach to the maximum of χT , the ex-
ponents a and b being already constrained to the val-
ues they take when fitting the averaged dynamics using
MCT. From the study of KCMs only the approach to
the peak can be predicted since the short-time dynamics
contains no clear relaxation towards a plateau due to the
coarse-grained nature of the models [14, 48, 62]. Again,
a power law approach to the peak is expected.

In Fig. 9 we compare our numerical results for χT (t)
to power law behaviors shown as dashed lines. On the
restricted time window of the simulations there is obvi-
ously some freedom in the fitting procedure so the ex-
ponents we report should be considered as an empiri-
cal quantitative description of the true time dependence
of these functions. As discussed already in the case of
χ4(t) [14], corrections to the asymptotic scaling laws de-
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rived by theoretical approaches should be expected in the
reduced time regime of the molecular simulations. In the
LJ system we find that the time behavior of χT (t) can be
described by the exponents a ≈ 0.32 and b ≈ 0.45 with
the tendency that these exponents very slowly decrease
when T decreases. For the BKS system we find a simi-
lar quality of the fits with a ≈ 0.3 and b ≈ 0.5 with no
systematic dependence in temperature.

The values of these exponents compare reasonably well
with the MCT predictions obtained above. For the LJ
system, the von-Schweidler exponent is estimated to be
b ≈ 0.51 from fitting the averaged dynamics in the β-
relaxation regime [73], while direct computations pre-
dict b = 0.62 [76]. Both values are close to our finding,
b ≈ 0.45, although they both slightly overestimate it.
The exponent a describing the dynamics in the early β-
regime was not directly fitted, but using the known rela-
tions between MCT exponents its value is predicted to be
a = 0.29 (for b = 0.51) and a = 0.32 (for b = 0.62). This
is again consistent with our finding for χT (t), a ≈ 0.32,
in this time regime. From the point of view of MCT, we
suggest that focusing on χT is a more powerful way to di-
rectly measure the exponent a (this might be interesting
from an experimental point of view as well). Finally for
BKS, fitting of the average dynamics provides the value
b = 0.62, from which a = 0.32 is deduced from known
MCT relations [60]. These two values again compare
relatively well with the time behavior found for χT (t),
namely a ≈ 0.3 and b ≈ 0.5.

Applying results from KCMs to real liquids, one would
predict the time dependence of χT (t) when approaching
the peak to be χT (t) ∼ t for an Arrhenius liquid mod-
elled by the 1-spin facilitated model in three dimensions,
while χT (t) ∼ tb(T ) is predicted for fragile liquids mod-
elled by the East model. Our numerical results for BKS
silica are not consistent with the FA model predictions
and are, quite unexpectedly, more compatible with the
smaller exponents observed in the fragile East model re-
ported in Section III B. The small b(T ) exponents of the
East model compare however well with the behavior of
χT (t) found in the LJ system. In particular, the fact that
b(T ) decreases with decreasing T is correctly predicted by
fragile KCMs, as opposed to the constant b predicted by
MCT. For a summary of these results, see Table I.

2. Comparison between χ4(t) and χT (t)

It is interesting to compare the exponents found nu-
merically for χT (t) to the ones of χ4(t) measured in
the NV E ensemble for Newtonian dynamics since the-
ory predicts some relations between them. The latter
exponents were already studied in Ref. [14] for the LJ.
Numerically no power law behavior χ4(t) ∼ ta is found
in the short-time behavior of χ4(t) in the Newtonian dy-
namics of both the LJ and BKS systems. This is due
to the fact that thermal vibrations strongly affect the
short-time dynamics of these liquids. Two power law
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FIG. 10: Top: Four-point susceptibility χ4(t) in the binary LJ
mixture with Monte-Carlo dynamics for T = 2.0, 1.0, 0.75,
0.6, 0.5, 0.47, 0.45 and 0.43 (from left to right), the lowest
temperature being highlighted with open circles. Power laws
χ4 ∼ t0.37 and χ4 ∼ t0.7 are indicated with dashed lines in
the early and late β-regimes, respectively. Bottom: χ4(t)
is shown for T = 0.45 for NV E Newtonian, Brownian and
Monte Carlo dynamics as a function of a rescaled time chosen
so that all χ4’s overlap near the alpha relation. We chose
t̃ = t for NV E Newtonian dynamics, t̃ = t/24 for Brownian
dynamics, t̃ = t/100 for Monte Carlo dynamics. No rescaling
of the vertical axis is performed: The agreement between the
3 types of dynamics is remarkable.

regimes are however clearly observed in the stochastic
simulations where phonons are either overdamped (Brow-
nian dynamics), or absent (Monte-Carlo dynamics). Our
Monte-Carlo results for χ4(t) in the LJ are presented in
Fig. 10 (top) where we have fitted the early and late β
regimes with two power laws with exponents a ≈ 0.37 and
b ≈ 0.7, respectively. For the BKS we performed New-
tonian dynamics simulations only. Hence, we only have
results on the exponent b from χ4 measurements, which
is found to increase from 0.65 to 0.85 upon lowering the
temperature: this is an opposite behavior compared to
the LJ where b decreases. This suggests a very different
temperature behavior of b in strong and fragile liquids.
This trend is partly captured by KCMs.

MCT predicts that χT (t) and χNV E4 (t) have the same
critical scaling. KCMs predictions are ambiguous so we
follow the numerical results obtained in Sec. III, i.e.
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Observable LJ BKS MCT (LJ) MCT (BKS) KCM (1FA) KCM (East)

θ (χT ) 0.33 0.14 0.43 0.43 0.25 ∝ T

θ (χNV E
4 ) 0.39 0.18 0.43 0.43 0.5∗ ∝ T

a (χT ) 0.32 0.3 0.29-0.32 0.32 NA NA

a (χNV E
4 ) 0.371 NA 0.29-0.32 0.32 NA NA

b (χT ) 0.45 0.5 0.51-0.62 0.62 1 β(T ) ∝ T

b (χNV E
4 ) 0.7 0.65-0.85 0.51-0.62 0.62 2∗ β(T ) ∝ T

TABLE I: Summary of the different results for exponents θ, a and b, describing the peak amplitude and the time dependence
of T |χT |/

√
cV and χNV E

4 (see text). NA: not applicable; 1: Obtained from MC dynamics; ∗: Ambiguous – do KCMs describe

χNV T
4 Newtonian or χNV T

4 Brownian (= χNV E
4 )?

χ4(t) ∼ χ2
T (t). In both LJ and BKS systems, the expo-

nent a is the same for both susceptibilities, as predicted
by MCT. The results for b are more difficult to interpret:
although b for χ4 is systematically larger than for χT ,
the ratio between the two exponents is not 2 either, so
that neither MCT nor KCMs approaches really describe
this aspect of our numerical results. For a summary of
these results, see Table I.

What comes nicely out of the simulations, however,
is the fact, predicted on general grounds in I and
within MCT above, that NV E Newtonian, Brownian
and Monte Carlo dynamics display similar time depen-
dences for the dynamic susceptibility χ4(t). This is strik-
ingly illustrated in Fig. 10 (bottom) which shows χ4(t) at
a single temperature, T = 0.45. The results for the three
dynamics almost perfectly overlap for timescales larger
than the plateau regime in Fs(k, t).

C. Peak amplitude of dynamic fluctuations

We now focus on the amplitude of the peak observed
in the various susceptibilities. In Fig. 11, we present
our numerical results for χNVE4 , T 2χ2

T /cV and their sum
χNV T4 obtained from the Newtonian dynamics of both
the LJ and BKS models. When temperature decreases,
all peaks shift to larger times and track the α-relaxation.
Simultaneously, their height increases, revealing increas-
ingly larger dynamic fluctuations as the glass transition
is approached.

The main observation from the data displayed in
Fig. 11, already made in Ref. [19] and in I, is that in
both LJ and BKS systems the term T 2χ2

T /cV while be-
ing small, ∼ O(10−1), above the onset temperature of
slow dynamics, grows much faster than χNV E4 when the
glassy regime is entered. As a consequence, there exists
a temperature below which the temperature derivative
contribution to the four-point susceptibility χNV T4 dom-
inates over that of χNVE4 . This crossover is located at
T ≈ 0.45 in the LJ system, T ≈ 4500 K for BKS sil-
ica. Remarkably, the conclusion that T 2χ2

T /cV becomes
larger than χNVE4 at low temperatures holds for both
strong and fragile glass-formers. Experimental and the-
oretical consequences of this observation were discussed

T 2χ2

T
/cV

χNV E
4

χNV T
4

τα

10
6

10
4

10
2

10
0

10
2

10
1

10
0

10
−1

T 2χ2

T
/cV

χNVE
4

χNVT
4

τα (ps)
10410310210110010−1

101

100

10−1

FIG. 11: Various susceptibilities in the binary LJ mixture
obtained from the A particles dynamics (top) and the BKS
model for silica from the Si ions dynamics (bottom). Dashed
lines indicate power law behavior with exponents 0.46, 0.39
and 0.67 (from top to bottom in the LJ system), and 0.27 and
0.18 (from top to bottom in the BKS model). In all cases,
T 2χ2

T /cV is smaller than χNV E
4 at high temperature, but in-

creases faster and becomes eventually the dominant contribu-
tion to χNV T

4 in the relevant low temperature glassy regime.

in Refs. [16, 19].
Following Ref. [47] we have chosen to present the evo-

lution of the amplitude of the dynamic susceptibilities
as a function of τα rather than T because it is in this
representation that dynamic scaling might emerge. For
the LJ system we find that all susceptibilities can be de-
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scribed by power laws, χ ∼ τ θα, in some intermediate, and
therefore subjectively defined, temperature regime with
following exponents: θ ≈ 0.39 for χNVE4 , θ ≈ 0.46 for
χNV T4 and θ ≈ 0.67 for T 2χ2

T /cV . For the BKS model,
we find θ ≈ 0.27 for both χNV T4 and, in a more restricted
time window, T 2χ2

T /cV while we find θ ≈ 0.18 for χNVE4 .

The theoretical considerations given above show that
these exponents should be related, within MCT, to the
exponent γ describing the divergence of τα close to
Tc. The prediction is that θ = 1/γ for χNV E4 and
TχT/

√
cV [91] while θ = 2/γ for χNV T4 and T 2χ2

T /cV .
Fitting of the relaxation times has shown that γ ≈ 2.35
for both LJ and BKS systems, so the exponents 1/γ =
0.426 and 2/γ = 0.851 should be observed in Fig. 11.
The exponent for χNVE4 is reasonably well described by
MCT predictions in the LJ system, an agreement already
reported in Refs. [34, 70] (see Table I). The agreement
deteriorates somewhat for TχT/

√
cV . The MCT predic-

tions fail however strongly in the BKS system, for which
the value 0.18 is found instead of the expected 0.426 for
χNVE4 and χT , although in a temperature regime where
Arrhenius behavior is already observed. No clear power
law can be seen in the mode-coupling regime seen in [60].
In principle, the behavior of χT (t) is completely tied to
the one of the average two-time correlators already stud-
ied in [60], but χT (t) provides a more detailed analy-
sis of the dynamics with no fitting procedure required.
Therefore the failure of MCT to capture the behavior of
χT (t) suggests that MCT, despite the claims of [60], does
not satisfactorily describe the dynamical behavior of this
strong glass-former.

Finally we find that T 2χ2
T /cV and χNV T4 behave some-

what differently in the temperature regime where power
law fits are performed. This is not surprising. We have
extensively discussed in I the fact that simulations are
typically performed in the relatively high temperature
regime where both terms contributing to χNV T4 are com-
parable. Since they are predicted to have different scal-
ing behaviors, the intermediate value for the exponent θ
reported for χNV T4 simply results from this crossover.

The power law regimes we have discussed do not de-
scribe the whole temperature range studied for the LJ
system. For T . 0.47 the growth of all dynamic sus-
ceptibilities with τα becomes much slower, perhaps loga-
rithmically slow, but we do not have a sufficient range of
timescales in this low temperature regime to draw more
quantitative conclusions. We have moreover checked that
this saturation is not the finite size effect expected if fluc-
tuations are computed in too small a system size [66],
see I. Interestingly, no such saturation can be observed
in the BKS system. Therefore we do not know how to ex-
trapolate the present numerical results towards the glass
transition temperature, and compare our simulations to
the result, reported in Ref. [19], that dynamic susceptibil-
ities have typically the same value at Tg for liquids with
very different fragilities. We can simply state from our re-
sults that this fragility-independence cannot hold at all
temperatures since Fig. 11 clearly shows that dynamic

susceptibilities grow at different rates in different sys-
tems. We are currently investigating this point in more
detail.

The saturation of the LJ dynamic susceptibilities ob-
served at low T seems consistent with the theoretical ex-
pectation [14, 33, 62, 69, 77–79], and the experimental
confirmation [19, 80–82] that dynamic fluctuations and
lengthscales grow only slowly when T is decreased to-
wards Tg. From the fragile KCMs perspective, one would

for instance expect that χ4 ∼ τ
θ(T )
α with an exponent

θ(T ) which decreases linearly with T [62, 69], while loga-
rithmic growth, χ4 ∼ (log τα)ψ , is predicted by activation
based theories [33, 77, 79].

V. CONCLUSIONS AND PERSPECTIVES

This paper describes the second part of our investiga-
tions of dynamical susceptibilities started in I [16]. In this
second work we have illustrated the general conclusions of
I by making explicit the predictions of MCT and KCMs
concerning spontaneous dynamical fluctuations (encoded
in χ4(t)) and induced one (given by χx(t)). These theo-
ries predict the detailed dependence of these two quan-
tities both as a function of time and of temperature (or
density). As discussed in I, special care must be devoted
to the choice of statistical ensemble and microscopic dy-
namics, with the rather spectacular prediction of MCT
that χ4(t) should coincide for Newtonian dynamics in
the NV E ensemble and for Brownian dynamics in the
NV T ensemble, but differ from the result for Newtonian
dynamics in the NV T ensemble. The predictions com-
ing from KCMs are much less clear about this particular
point, since there is some intrinsic ambiguity about which
ensemble and which dynamics these models are supposed
to describe.

We have compared these predictions with numerical
simulations of models of supercooled liquids. Overall,
as shown in Table I, MCT fares reasonably well at ac-
counting for the detailed shape of χ4(t) and χT (t) of
the Lennard-Jones system, in a restricted temperature
region where MCT can be applied. Quite remarkably,
the exponents used to fit these higher order correlations
are compatible with those measured on two-point cor-
relation functions, with quantitative variations that can
perhaps be attributed to preasymptotic effects. Further-
more, the predicted ensemble dependence of these quan-
tities is very clearly highlighted by our numerical results.
We have also shown that the wave-vector dependence of
χ4(t) can be qualitatively accounted for within MCT. On
the other hand, the features of the dynamical suscepti-
bility of the BKS model for the strong silica glass are not
quantitatively well explained by MCT. Similarly KCMs
fail to describe quantitatively the results obtained in the
BKS model, but the systematic temperature dependence
of the exponents describing χ4(t) appears somewhat nat-
ural from this perspective.

Among open problems, we should primarily emphasize
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the major problem of extending MCT to allow for acti-
vated events. A detailed prediction of χ4(t) and of the ge-
ometry and exponents of dynamically correlated regions
in the deeply supercooled region would be important to
compare with future experiments (see [14, 31, 83] for pre-
liminary elements in that direction). The generalization
of these predictions to the aging regime would also cer-
tainly be relevant to analyze the cooperative dynamics of
deeply quenched glasses.
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Appendix A. DYNAMIC SUSCEPTIBILITIES IN

THE p-SPIN MODEL

A.1. General discussion and results

Much intuition concerning dynamic heterogeneity has
been gleaned from the study of mean-field spin-glasses.
In particular, Franz and Parisi first pointed out that a
quantity analogous to χ4(t), which can be computed ex-
actly in mean-field p-spin models, should show non-trivial
features [11], which prompted the study of dynamic fluc-
tuations in simulations of atomistic glass-forming liq-
uids [12]. The growth of a dynamic susceptibility in this
model was properly interpreted in terms of a growing dy-
namical length scale, which diverges at Tc. The same sce-
nario, complete with a temporal behavior of χ4(t) iden-
tical to that in the p-spin models, exists in mean-field
models that have no underlying thermodynamic critical
point [84, 85]. It should also be noted that this scenario
is perhaps more general than appreciated, since it ap-
pears to also exist in models on compact lattices with no
quenched disorder and short-ranged interactions, at least
in the limit of large dimensionality [86], and models with
long-ranged, Kac-like interactions [87, 88].

Applying the above diagrammatic analysis to p-spin
models for which no conserved quantities exist, one finds,
in agreement with BB, that χ4(t) is determined by lad-
der diagrams only. Hence, its critical behavior has to
be the same one of the dynamical response χT (t) and
is given by Eq. (11). Similarly the susceptiblity χFP(t)
introduced by Franz and Parisi is found to follow the
same scaling behaviour. As discussed below, Franz and
Parisi [11] study the quantity χFP(t) = dC(t)/dε, where
C(t) = 〈si(t)si(0)〉 and ε is an infinitesimal field cou-
pling the system’s configuration at time t to its initial

χT

χFP

t
10

16
10

12
10

8
10

4
10

0

10
8

10
4

10
0

FIG. 12: Time dependence of the dynamic susceptibilities
χT (t) (thick lines) and χFP(t) (thin lines) in the p = 3 mean-
field p-spin model for temperatures approaching Tc from
above. Note the wide range of timescales covered in this
graph. From left to right, (T − Tc)/Tc = 10−2, 10−4, 10−6,
10−8. The asymptotic power law regimes are shown as dashed
lines. The susceptibilities grow as t2, ta and tb in the micro-
scopic, early and late beta regimes, while the height of the
maxima scale with their as χ? ∼ τ 1/γ . For p = 3, one has
a = 0.395, b = 1 and γ = 1.765.

state at time 0. Using linear response theory they ar-
gue that dC(t)/dε and χ4(t) are equal. We find in-
stead that dC(t)/dε is equal to the sum of χ4(t) and an-
other non-vanishing contribution. However dC(t)/dε =

χFP (t) = N−1
∑

ij

∫ t

0 dt
′〈si(t)si(0)sj(t

′)ŝj(t
′+)〉, where

ŝi(t) are the response field. Hence, it is given by ladder
diagrams similar to the ones contributing to χ4(t). Thus
we expect that χFP (t) and χ4(t) behave similarly close
to the critical point.

In the following, we shall present a careful numerical
comparison between the dynamic susceptibility χFP(t)
and χT (t) integrating the integro-differential equations
derived in [11] for p-spins models. This comparison de-
cisively confirms the previous analytical results. A much
smaller time window was studied in [34], and it was not
clear that asymptotic regimes had been observed.

One technical difficulty is that it is numerically diffi-
cult to calculate χFP(t) very close to Tc. Here, we modify
the method developed by Kim and Latz for the aging p-
spin model [89] to accurately integrate the equations on
χFP(t) derived in Ref. [11] much closer to Tc than has
been reported in previous work. The dynamical equa-
tions are presented in Appendix A A.2, while the details
of the methodology are outlined in Appendix A A.3. In
the p-spin case, one can use an alternative way to com-
pute χFP(t) based on power counting in N−1, the inverse
number of spins. This provides a complementary way
to show that dynamical fluctuations are indeed given by
ladder diagrams.

Let us now present our numerical results. In Fig. 12,
we show a comparison of χFP(t) and χT (t) for various
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temperatures approaching Tc from above. Clearly, χT (t)
is remarkably similar to χFP(t) in this regime, exhibit-
ing a well defined regime at short times that grows as
a power-law with the critical mode-coupling exponent
a = 0.395, and a well defined power-law at later times
that grows with the von Schweidler exponent b = 1. Note
also that the height of the peak scales as τ 1/γ (where τ
is the relaxation time) for both functions, as predicted.
When the transition temperature is approached from the
non-ergodic phase, only the first regime of slow growth
with the exponent a can be observed (not shown). These
results represents a useful benchmark for the compari-
son with real liquids. Indeed, as presented in Fig. 10,
χ4(t) for Monte-Carlo dynamics in a binary Lennard-
Jones mixture (where vibrational modes that may ob-
scure the exponent a are absent) shows features strikingly
similar to those of the p-spin model, complete with a rea-
sonably defined regimes showing both a and b exponents
close to Tc.

A.2. Exact dynamical Equations

Following Franz and Parisi [11], we consider the dy-
namic of a perturbed p = 3 spherical p-spin model evolv-

ing with the Hamiltonian Htot(S) = H(S) − εĈ(S, S0),

where St is the spin state at time t, Ĉ(S, S′) ≡
N−1

∑

i SiS
′
i is the overlap function, and H(S) =

∑

i<j<k JijkSiSjSk is the unperturbed p-spin Hamilto-
nian. The Franz-Parisi susceptibility is defined as the
linear response of the two-point correlation function eval-
uated in the presence of the perturbation, Cε(t, 0) ≡
〈Ĉ(St, S0)〉ε, as

χFP(t) =
∂Cε(t, 0)

∂ε
. (A.1)

The equations of motion for Cε(t, t
′) and the associated

response function Gε(t, t
′) are derived using a standard

MSR-approach [11, 40].



























∂Cε(t, t
′)

∂t
=− µ(t)Cε(t, t

′) +

∫ t

0

ds f ′′(Cε(t, s))Gε(t, s)Cε(s, t
′) +

∫ t′

0

ds f ′(Cε(t, s))Gε(t
′, s)

+ βf ′(Cε(t, 0))Cε(t
′, 0) + εCε(t

′, 0),

∂Gε(t, t
′)

∂t
=− µ(t)Gε(t, t

′) +

∫ t

t′
ds f ′′(Cε(t, s))Gε(t, s)Gε(s, t

′)

(A.2)

with the damping coefficient

µ(t) = T + εCε(t, 0) + βf ′(Cε(t, 0))Cε(t, 0)

+

∫ t

0

ds {f ′′(Cε(t, s))Gε(t, s)Cε(t, s) + f ′(Cε(t, s))Gε(t, s)}
(A.3)

and f(x) = x3/2. We have numerically solved these
equations using the method described below. In the limit
of ε→ 0, we retrieve the equation of motion for the sta-
tionary state;

∂C(t)

∂t
=− TC(t) +

1

2

∫ t

0

ds C2(t− s)∂C(s)

∂s
, (A.4)

where C(t) = Cε=0(t, 0).
The temperature derivative χT (t) = ∂C(t)/∂T is eval-

uated by simple numerical differentiation of C(t) with
finely spaced temperature points.

A.3. Numerical algorithm

In the following, we elucidate the technical detail to
solve Eq. (A.2). This is a natural generalization of an
efficient algorithm to solve equilibrium mode-coupling
equation developed by Fuchs et al. [49] to nonstation-
ary systems. The method given here can be also applied
for the aging dynamics [89].

First, we shall introduce a new quantity, Qε(t, t
′) by

Qε(t, t
′) ≡ 1− Cε(t, t′)−

∫ t

t′
ds Gε(t, s), (A.5)

where the subscript ε has been omitted for simplifica-
tion. This function monitors the degree of violation of
the fluctuation-dissipation theorem. With this new func-
tion, the MCT equation, Eq. (A.2) can be rewritten as
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∂Cε(t, t
′)

∂t
=− µ′(t)Cε(t, t

′)−
∫ t

t′
ds

[

f ′(t, s)
∂Cε(s, t

′)

∂s
− f ′′(t, s)

∂Qε(t, s)

∂s
Cε(s, t

′)

]

+ Pε(t, t
′),

∂Qε(t, t
′)

∂t
=− 1 + µ′(t)− µ′(t)Qε(t, t

′)−
∫ t

t′
ds

[

f ′(t, s)
∂Qε(s, t

′)

∂s
+ f ′′(t, s)

∂Qε(t, s)

∂s
{1−Qε(s, t′)}

]

− Pε(t, t′)
(A.6)

with µ′(t) = 1 + Pε(t, t) and

Pε(t, t
′) = εCε(t

′, 0),

+

∫ t′

0

ds

[

f ′(t, s)
∂Qε(t

′, s)

∂s
+ f ′′(t, s)

∂Qε(t, s)

∂s
Cε(t

′, s)

]

,

(A.7)
where f(t, t′) ≡ f(Cε(t, t

′)). In the above expression, the
temperature T was absorbed to time, so that all quan-
tities in the equations are dimensionless. Integration of
eq.(A.6) can be implemented by discretizing the two di-
mensional plane of the times (t, t′) with t ≥ t′ into a
cubic lattice of the grid size δ . Note that Eqs. (A.6,
A.7) consist of four types of time integrals;



























































I(1)(t, t′) =

∫ t

t′
ds A(t, s)

∂B(s, t′)

∂s
,

I(2)(t, t′) =

∫ t

t′
ds A(t, s)

∂B(t, s)

∂s
C(s, t′),

I(3)(t, t′) =

∫ t′

0

ds A(t, s)
∂B(t′, s)

∂s
,

I(4)(t, t′) =

∫ t′

0

ds A(t, s)
∂B(t, s)

∂s
C(t′, s).

(A.8)

These integrals are evaluated by discretizing the time as
ti = iδ and slicing into pieces as follows. I (1)(t = ti, t

′ =

tj) ≡ I(1)
ij (i > j), for example, is written as

I
(1)
ij =

∫ ti

tm

ds A(ti, s)
∂B(s, tj)

∂s
+

∫ tm

tj

ds A(ti, s)
∂B(s, tj)

∂s

=Ai,mBm,j −Ai,jBj,j +
i

∑

l=m+1

∫ tl

tl−1

ds A(ti, s)
∂B(s, tj)

∂s

−
m

∑

l=j+1

∫ tl

tl−1

ds
∂A(ti, s)

∂s
B(s, tj),

(A.9)
where m = [(i−j)/2] is the integer closest to but smaller
than (i− j)/2. Using an approximation,

∫ t2

t1

ds
∂A(s)

∂s
B(s) ≈ {A(t2)−A(t1)} ×

1

δ

∫ t2

t1

ds B(s),

(A.10)

which is exact up to O(δ2) [49], we arrive at

I
(1)
ij = Ai,mBm,j −Ai,jBj,j

+

i
∑

l=m+1

(Bl,j −Bl−1,j)dA
(v)
i,l −

m
∑

l=j+1

(Ai,l −Ai,l−1)dB
(h)
l,j ,

(A.11)
where

dA
(h)
ij =

1

δ

∫ ti

ti−1

ds A(s, tj),

dA
(v)
ij =

1

δ

∫ tj

tj−1

ds A(ti, s)

(A.12)

are the integrals over the horizontal and vertical lattice
bond, respectively (we refer to them as bond integrals).
Likewise, other integrals can be approximated as follows.

I
(2)
ij =

i
∑

l=m+1

1

2
dA

(v)
i,l (Bi,l −Bi,l−1)(Cl,j + Cl−1,j)

+

m
∑

l=j+1

1

2
(Ai,l +Ai,l−1)(Bi,l −Bi,l−1)dC

(h)
l,j ,

I
(3)
ij =AijBjj −Ai,0Bj,0 −

j
∑

l=1

(Ai,l −Ai,l−1)dB
(v)
j,l ,

I
(4)
ij =

j
∑

l=1

1

2
(Ai,l +Ai,l−1)(Bi,l −Bi,l−1)dC

(v)
j,l .

(A.13)
With this discretization, the nonlinear integro-
differential equation, eq.(A.6), can be written in a
form of a simultaneous nonlinear equation as

Vi = Mi · Fi(Vi) + Ni, (A.14)

where Vi = (Ci0, · · · , Cii, Qi0, · · · , Qii) and Fi(Vi) =
(f ′(Ci0), · · · , f ′(Cii), f

′′(Ci0), · · · , f ′′(Cii)) are (2i+ 2)-
dimensional vectors. The matrix Mi and the vector Ni

are functions of the friction coefficient µ′, the vectors at
the earlier times (Vl,Fl) with l < i, and a set of bond
integrals W = (dC(h), dC(v), dQ(h), dQ(v), df ′(h), df ′(v),
df ′′(h), df ′′(v)). Eq.(A.14) can be solved self-consistently
using the following procedure.

1. First, prepare the array of exact Vi, Fi, and W

for 0 ≤ j ≤ i ≤ Nt/2 with a very small time grid
δ such that Ntδ � 1 by short time expansion of
Eq. (A.6).
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2. For i = Nt/2 + 1 and for j very close to but
smaller than i, we import the values of the pre-
vious time, expecting the short time dynamics at
(i − j)δ � 1 is not affected by the perturbed
field or by aging. More specifically, we choose
an integer Nshort � Nt/2 and assign the values

Ci,j = Ci−1,j−1, dC
(h)
i,j = dC

(h)
i−1,j−1 and so forth

for i−Nshort ≤ j ≤ i.

3. For i = Nt/2 + 1 and for 0 ≤ j < i − Nshort, we
solve Eq. (A.14) self-consistently by iteration. The
iteration is done by choosing the initial array as
Vi = Vi−1. The bond integrals are calculated us-
ing











dA
(h)
i,j =

δ

12
(−Ai−2,j + 8Ai−1,j + 5Ai,j) ,

dA
(v)
i,j =

δ

12
(−Ai,j+2 + 8Ai,j+1 + 5Ai,j) .

(A.15)

At every iterations of eq.(A.14) for Vi, all elements

of the bond integrals dA
(h,v)
i,j and, thus M and N,

are updated using Eq. (A.15).

4. Keep the procedure 2 and 3 for Nt/2 ≤ i ≤ Nt.

5. Once all solution for 0 ≤ i ≤ Nt are obtained, we
decimate the number of variables by half in order
to save the memory space to explore further for the
longer time. We discard half variables and renew
all variables by the following rules; For V = (C,Q),

V2i,2j → Vi,j . (A.16)

For bond integrals,











1

2

(

dA
(h)
2i,2j + dA

(h)
2i−1,2j

)

→ dA
(h)
i,j

1

2

(

dA
(v)
2i,2j + dA

(v)
2i,2j−1

)

→ dA
(v)
i,j .

(A.17)

Then, the time grid is doubled.

2δ → δ. (A.18)

6. Repeat the procedures 2-5 with the doubled grid
size.

We have checked that, in order to obtain a stable result
up to the order of t = 1016 as shown in the present work,
we need the number of grid ofNt = 1024 andNshort = 32,
starting the initial grid size of δ = 10−10.
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