Geometry and 1/N expansion of Matrix models

Luminy conference july 2006

Work, done in collaboration with N. Orantin (Saclay).

Outline:
e introduction, matrix models, counting discrete surfaces.
e Schwinger-Dyson equations — algebraic curve
e tau function of an algebraic curve

e conclusion
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1 Some matrix integrals.

e 1 Matrix Model: Zivim = | dM e~ NTrV(M)
V(M) =Y oty teM*

e 2 Matrix Model: Zovm = [ dMid My o~ N Tr (Vi (M1)+Va(Mz)— M Ma)
Vi(My) =SS0t by ME L Va(M) = St i ME

e Kontsevitch integral: Zx = [dMe —N Tr (45 —A2M)
lr = % Tr A_k

e Generalized Kontsevitch integral: ok = [ dM e~ NTr (V(M)—Q(A)M)
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2 Topological expansions.

In all cases: topological expansion: InZ =73 "2 N*"% F9)
o 9 _ S gna  ynatr pr(g)
1IMM n3,M4,...,Nd+1 3 " vd+1 ni,na,...,nNd+1

ngf?n%,,,,nd ., = number of discrete surfaces of genus g, with ns triangles, ...

ni k—gones,... (we assume t; = 0 and t5 = %)

(9) _ ni na+1 —+(9)
. FK T an,ng,...,nd+1 tl U td—|—1 Inlan27“'7nd+1

LS%’L),%,,,,” .1 = intersection number of moduli space of surfaces of genus g,
with n = ) . n; marked points.

e similar interpretation for F2(1€/EM, Fc(}g&.

0-2



3 Double scaling limit.

Continuous surfaces < surfaces with a very large number of polygons
O 1ln Fl(f/[)M

Example average number of triangles: < ng >=t3 57

i.e. singularity of F 1(1%\4:

e 9 4 subleading , FY) — lim(ts, — t3) Ve FY)
DSL 1MM

F1(1€4)M ~ (t3c — t3)79 Fygr,

(V]

One finds: v, = (2 —2¢)(1 — 2), set Kk = N(tgc — t3)'~

Define: -
Fpsr = Z /fQ_QgFl(ags)L
g=0

F](DQS>L ~ generating function for counting continuous surfaces of genus g.
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4 Schwinger—Dyson equations.

Infinitesimal change of variable: M — M + edM.
Jac = 1+ e6J(M) + O(€?)
Tr V(M) — Tr V(M) +eTr M V' (M) 4+ O(€?)

— Schwinger-Dyson equation: (0J(M)) = N {Tr V(M) M)

Example: 1MM, oM = x_lM gives:

%<Trx—1M Trx—1M>:V;(Vx)<Trx—1M>_%<TrV/(2:]‘\Z(M)>

0-4



5 Schwinger—Dyson equation of the 1MM.

%<Trx—1M Trg;_lM>:V;ffx)<Trw—1M>_%<TrV/(xfz:X4/(M)>

Introduce notations: Resolvent = W (x) = % <TI' x_l i >7

Pi_y(z) = <Tr V,(xx):AV;(M)> = polynomial of degree d — 1 in x.

Wy(z,2') = <Tr LTy ﬁ> ~ N2W ()W (),

The Schwinger-Dyson equations reads:

W2(x) + %Wg(x, x) =V ()W (z) — Py_1(x)

Additional equation: fixed filling fractions:

7{ W (x)dx = —2ime; : i=1,...,d—1
C;
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6 Classical spectral curve of the 1MM.

Drop the 1/N? connected term in the Schwinger-Dyson equation:

W?(x) + %Wg(ﬂf, v) =V (2)W(x) — Py_1(x)

Large N limit = algebraic equation:
W2 -V (2)W + Pi_i(x) =0

Rename: W = 1V'(z) — y, and get the classical spectral curve:

1 :
0= FEivm(z,y) =y° — ZV’Q(:U) — Py 1(x) : 7{ ydr = 2ime;
C

(2
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7 Classical spectral curve of the 2MM.

Changes of variables oM = - 1 Vé(y)_VQ/(MQ), oMy = —L— give Schwinger Dyson

; —M1 y—M2 CIJ—Ml
equations:

Fov (2, Y () :%Ul (.Y (z), 7)

where Y (z) = V{(z) — ~ <TI‘ :,3_1M1 >7

Pd1—1,d2—1(1‘,y) — % <TI' Vi (wgz:j\vjl(Ml) Vs, (y;:]\Vj;MQ) >,

Uy(z,y,2') = <Tr x—lMl Vg'(yziij‘\/j’z(Mﬂ Tr x,_lMl >C, and:

Eovm(z,y) = (Vi(z) —y)(Va(y) — %) — Pay 1.4, -1(2,y) + 1

Classical spectral curve:

Eovm(z,y) =0 : 7{ ydx = 2ime;
C

0-7



8 Classical spectral curve of G-Kontsevitch.

Let S(y) = det(y — Q(A)), the change of variables M = —— S(yg:g((%/\)) gives:

Eox(e.4) = (V'(2) — )8(y) — % <Tr V’(xi = ]‘\/4/(M) s(y; - g((cigz\)) >

e Kontsevitch case, V(M) = M Q(A) = A? gives:

Eic(z.9) = (2%~ 9)S(1) — <Tr (& + M)

Rational parametrization:
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9 Classical spectral curve of DSL.

F fng is singular when the classical curve Einm(z,y) = 0 is singular.
Consider a p/q singularity at t3 = t3.:

Yy—Yo~ (af—ﬂﬁo)p/q
Consider § = (t3. — t3) small but non zero, i.e. the singularity is smoothed:

{ x(z) =xo+ 0% Ty(2/6%) + ...
Y(z) =yo + 0P T,(2/0%) + ...

T, and T}, are polynomials of degree p and ¢, which obey (Poisson):

4T (2) Tyl=) — pT(2) Tylz) = 1

.

where o = p—

Deﬁne: EDSL(p,q) (Qj, y) = Resultent(x _ Tq(Z), y o Tp(Z)) _ { xXr = quz)

y =Ty(2)
Example: if p = ¢ + 1, then T},,T,, =Tchebychev’s polynomials:
EDSL(p,q) (z,y) = Tp(z) - Tq(y)-
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10 Basics of algebraic geometry.

Consider an arbitrary embedded algebraic curve given by its equation:
E(z,y) =0 E = polynomial
For this talk only assume the curve has genus zero — rational parametrization:

x(p) = rational function of p
y(p) = rational function of p

Branchpoints a; = solutions of z’(a;) = 0 (vertical tangent).

Assume the curve is non-singular, i.e. =’ has only simple zeroes and y’(a;) # 0.

e If p lies near the branch-point a;, there exists a unique other point p # p, which
is also in the vicinity of a;, such that:

z(p) = x(p)

Notice that p may depend on 1.
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11 Definition of correlation functions.

Define the following functions:

w9 (p) =0 : W3 (p,q) = (p —1q)2
() 1 N (¢ —q)dq
Wil (b {px}) = Z 2 -0 — @)@

— h
W T )+ S W (0 W @ (pre/ )]
h=0JCK

where K = {i1,49,...,it} and {px} = {pi;, iy, - -, Pi, }- 1-€.
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12 Definition of Free energies.

Similarly, define for g > 1:

g dq fq deC
FO(E) = 9 — 29 Z 2 qui (¢) —y(q))2'(q) [
Wég_l)(q,@ T Z Wl(h)(Q)Wl(g_h) (G)}

h=0

There is also a similar algebro-geometric definition for F(©) and F(1).

R (A@e(a@-)f Hm(ai))
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13 Topological expansions.

Theorem:
o Py = F9 (Eyy)
o Fyily = F9(Eanm)
o FY = Fl)(Ey)
o FY) = F9(Egk)

o B\ = F)(Epgr)

Remark: FY9) (E) commutes with the double scaling limit: imF(9)(E) = F9) (limFE)
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14 Properties of FUY(F)

Theorem of symplectic invariance:
Vg, FU9(E) is invariant under the following changes of curves E:

e y — y+ R(x) where R(x) = any rational function of x.

° y—>ay,x—>%x,a€€*.
® Yy — —Y, T — .
o y«— x.eg. (pq)=(q,p) duality.
= transformations which conserve the symplectic form 4 dx A dy.
o Tn(E) =exp (Y .-, N*29F9)(E)) satisfies some Hirota equation.

e Modular invariance: 7n(FE) changes in a way similar to a 6 function.
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15 Conclusion

e We have found the general solution of Virasoro constraints.

e We have some explicit formulae for the topological expansion of matrix models
and their DSL. The same formula works for all cases.

e To every algebraic curve E(x,y) = 0, we can associate a sequence of symplectic
invariants F'(9)(E) and a 7-function 7y (F).

e From the classical spectral curve E(x,y) = 0, we reconstruct perturbatively
the full quantum integrable system En(z,y) =0=_", N—29E9) (z,y).

e There is probably an underlying quantum field theory, for which those diagrams
are the Feynman diagrams. Chiral supersymmetric Chern Simons theory 7

e What are the F9)(E) for other algebraic curves E ?
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17 Virasoro constraints.

Partition function
7 =e NF ._ /dM e~ Ntr V(M) . /dM e_NZj t; Tr M’

satisfies the Virasoro constraints:
Dy..Z =0 for £ > —1

with the Virasoro generators
degV

D !
b N2 Zat 875,” Z”atkﬂ

Dk, Dj] = (k — j)Dg+;

Schwinger—Dyson equations:

k
1 1 E: ' k—1q 1 k+1 y//

0-17



