Geometry and $1 / N$ expansion of Matrix models

Luminy conference july 2006

B. Eynard, SPhT Saclay

Work, done in collaboration with N. Orantin (Saclay).

Outline:

- introduction, matrix models, counting discrete surfaces.
- Schwinger-Dyson equations \rightarrow algebraic curve
- tau function of an algebraic curve
- conclusion

1 Some matrix integrals.

- 1 Matrix Model: $\quad Z_{1 \mathrm{MM}}=\int d M \mathrm{e}^{-N \operatorname{Tr} V(M)}$
$V(M)=\sum_{k=0}^{d+1} t_{k} M^{k}$
- 2 Matrix Model: $\quad Z_{2 \mathrm{MM}}=\int d M_{1} d M_{2} \mathrm{e}^{-N \operatorname{Tr}\left(V_{1}\left(M_{1}\right)+V_{2}\left(M_{2}\right)-M_{1} M_{2}\right)}$ $V_{1}\left(M_{1}\right)=\sum_{k=0}^{d_{1}+1} t_{k} M_{1}^{k} \quad, \quad V_{2}\left(M_{2}\right)=\sum_{k=0}^{d_{2}+1} \tilde{t}_{k} M_{2}^{k}$
- Kontsevitch integral: $\quad Z_{\mathrm{K}}=\int d M \mathrm{e}^{-N \operatorname{Tr}\left(\frac{\mu^{3}}{3}-\Lambda^{2} M\right)}$ $t_{k}=\frac{1}{N} \operatorname{Tr} \Lambda^{-k}$
- Generalized Kontsevitch integral: $\quad Z_{\mathrm{GK}}=\int d M \mathrm{e}^{-N \operatorname{Tr}(V(M)-Q(\Lambda) M)}$

2 Topological expansions.

In all cases: topological expansion: $\ln Z=\sum_{g=0}^{\infty} N^{2-2 g} F^{(g)}$

- $F_{1 \mathrm{MM}}^{(g)}=\sum_{n_{3}, n_{4}, \ldots, n_{d+1}} t_{3}^{n_{3}} \ldots t_{d+1}^{n_{d+1}} \mathcal{N}_{n_{1}, n_{2}, \ldots, n_{d+1}}^{(g)}$
$\mathcal{N}_{n_{1}, n_{2}, \ldots, n_{d+1}}^{(g)}=$ number of discrete surfaces of genus g, with n_{3} triangles, \ldots $n_{k} k$-gones,... (we assume $t_{1}=0$ and $t_{2}=\frac{1}{2}$).
- $F_{\mathrm{K}}^{(g)}=\sum_{n_{1}, n_{2}, \ldots, n_{d+1}} t_{1}^{n_{1}} \ldots t_{d+1}^{n_{d+1}} \mathcal{I}_{n_{1}, n_{2}, \ldots, n_{d+1}}^{(g)}$
$\mathcal{I}_{n_{1}, n_{2}, \ldots, n_{d+1}}^{(g)}=$ intersection number of moduli space of surfaces of genus g, with $n=\sum_{i} n_{i}$ marked points.
- similar interpretation for $F_{2 \mathrm{MM}}^{(g)}, F_{\mathrm{GK}}^{(g)}$.

3 Double scaling limit.

Continuous surfaces \leftrightarrow surfaces with a very large number of polygons
Example average number of triangles: $<n_{3}>=t_{3} \frac{\partial \ln F_{1 \mathrm{MM}}^{(g)}}{\partial t_{3}}$
i.e. singularity of $F_{1 \mathrm{MM}}^{(g)}$:
$F_{1 \mathrm{MM}}^{(g)} \sim\left(t_{3 c}-t_{3}\right)^{\gamma_{g}} F_{\mathrm{DSL}}^{(g)}+$ subleading $\quad, \quad F_{\mathrm{DSL}}^{(g)}=\lim \left(t_{3 c}-t_{3}\right)^{-\gamma_{g}} F_{1 \mathrm{MM}}^{(g)}$
One finds: $\gamma_{g}=(2-2 g)\left(1-\frac{\gamma}{2}\right)$, set $\kappa=N\left(t_{3 c}-t_{3}\right)^{1-\frac{\gamma}{2}}$.
Define:

$$
F_{\mathrm{DSL}}=\sum_{g=0}^{\infty} \kappa^{2-2 g} F_{\mathrm{DSL}}^{(g)}
$$

$F_{\mathrm{DSL}}^{(g)} \sim$ generating function for counting continuous surfaces of genus g.

4 Schwinger-Dyson equations.

Infinitesimal change of variable: $M \rightarrow M+\epsilon \delta M$.

$$
\mathrm{Jac}=1+\epsilon \delta J(M)+O\left(\epsilon^{2}\right)
$$

$$
\operatorname{Tr} V(M) \rightarrow \operatorname{Tr} V(M)+\epsilon \operatorname{Tr} \delta M V^{\prime}(M)+O\left(\epsilon^{2}\right)
$$

\rightarrow Schwinger-Dyson equation:

$$
\langle\delta J(M)\rangle=N\left\langle\operatorname{Tr} V^{\prime}(M) \delta M\right\rangle
$$

Example: $1 \mathrm{MM}, \delta M=\frac{1}{x-M}$ gives:

$$
\frac{1}{N^{2}}\left\langle\operatorname{Tr} \frac{1}{x-M} \operatorname{Tr} \frac{1}{x-M}\right\rangle=\frac{V^{\prime}(x)}{N}\left\langle\operatorname{Tr} \frac{1}{x-M}\right\rangle-\frac{1}{N}\left\langle\operatorname{Tr} \frac{V^{\prime}(x)-V^{\prime}(M)}{x-M}\right\rangle
$$

5 Schwinger-Dyson equation of the 1MM.

$$
\frac{1}{N^{2}}\left\langle\operatorname{Tr} \frac{1}{x-M} \operatorname{Tr} \frac{1}{x-M}\right\rangle=\frac{V^{\prime}(x)}{N}\left\langle\operatorname{Tr} \frac{1}{x-M}\right\rangle-\frac{1}{N}\left\langle\operatorname{Tr} \frac{V^{\prime}(x)-V^{\prime}(M)}{x-M}\right\rangle
$$

Introduce notations: Resolvent $=W(x)=\frac{1}{N}\left\langle\operatorname{Tr} \frac{1}{x-M}\right\rangle$,

$$
P_{d-1}(x)=\frac{1}{N}\left\langle\operatorname{Tr} \frac{V^{\prime}(x)-V^{\prime}(M)}{x-M}\right\rangle=\text { polynomial of degree } d-1 \text { in } x
$$

$$
W_{2}\left(x, x^{\prime}\right)=\left\langle\operatorname{Tr} \frac{1}{x-M} \operatorname{Tr} \frac{1}{x^{\prime}-M}\right\rangle-N^{2} W(x) W\left(x^{\prime}\right)
$$

The Schwinger-Dyson equations reads:

$$
W^{2}(x)+\frac{1}{N^{2}} W_{2}(x, x)=V^{\prime}(x) W(x)-P_{d-1}(x)
$$

Additional equation: fixed filling fractions:

$$
\oint_{C_{i}} W(x) d x=-2 i \pi \epsilon_{i} \quad, \quad i=1, \ldots, d-1
$$

6 Classical spectral curve of the 1 MM .

Drop the $1 / N^{2}$ connected term in the Schwinger-Dyson equation:

$$
W^{2}(x)+\frac{1}{N^{2}} W_{2}(x, x)=V^{\prime}(x) W(x)-P_{d-1}(x)
$$

Large N limit $=$ algebraic equation:

$$
W^{2}-V^{\prime}(x) W+P_{d-1}(x)=0
$$

Rename: $W=\frac{1}{2} V^{\prime}(x)-y$, and get the classical spectral curve:

$$
0=E_{1 \mathrm{MM}}(x, y)=y^{2}-\frac{1}{4} V^{\prime 2}(x)-P_{d-1}(x) \quad, \quad \oint_{C_{i}} y d x=2 i \pi \epsilon_{i}
$$

7 Classical spectral curve of the 2 MM .

Changes of variables $\delta M_{1}=\frac{1}{x-M_{1}} \frac{V_{2}^{\prime}(y)-V_{2}^{\prime}\left(M_{2}\right)}{y-M_{2}}, \delta M_{2}=\frac{1}{x-M_{1}}$ give Schwinger Dyson equations:

$$
E_{2 \mathrm{MM}}(x, Y(x))=\frac{1}{N^{2}} U_{1}(x, Y(x), x)
$$

where $Y(x)=V_{1}^{\prime}(x)-\frac{1}{N}\left\langle\operatorname{Tr} \frac{1}{x-M_{1}}\right\rangle$,
$P_{d_{1}-1, d_{2}-1}(x, y)=\frac{1}{N}\left\langle\operatorname{Tr} \frac{V_{1}^{\prime}(x)-V_{1}^{\prime}\left(M_{1}\right)}{x-M_{1}} \frac{V_{2}^{\prime}(y)-V_{2}^{\prime}\left(M_{2}\right)}{y-M_{2}}\right\rangle$,
$U_{1}\left(x, y, x^{\prime}\right)=\left\langle\operatorname{Tr} \frac{1}{x-M_{1}} \frac{V_{2}^{\prime}(y)-V_{2}^{\prime}\left(M_{2}\right)}{y-M_{2}} \operatorname{Tr} \frac{1}{x^{\prime}-M_{1}}\right\rangle_{c}$, and:

$$
E_{2 \mathrm{MM}}(x, y)=\left(V_{1}^{\prime}(x)-y\right)\left(V_{2}^{\prime}(y)-x\right)-P_{d_{1}-1, d_{2}-1}(x, y)+1
$$

Classical spectral curve:

$$
E_{2 \mathrm{MM}}(x, y)=0 \quad, \quad \oint_{C_{i}} y d x=2 i \pi \epsilon_{i}
$$

8 Classical spectral curve of G-Kontsevitch.

Let $S(y)=\operatorname{det}(y-Q(\Lambda))$, the change of variables $\delta M=\frac{1}{x-M} \frac{S(y)-S(Q(\Lambda))}{y-Q(\Lambda)}$ gives:

$$
E_{\mathrm{GK}}(x, y)=\left(V^{\prime}(x)-y\right) S(y)-\frac{1}{N}\left\langle\operatorname{Tr} \frac{V^{\prime}(x)-V^{\prime}(M)}{x-M} \frac{S(y)-S(Q(\Lambda))}{y-Q(\Lambda)}\right\rangle
$$

- Kontsevitch case, $V(M)=\frac{M^{3}}{3}, Q(\Lambda)=\Lambda^{2}$ gives:

$$
E_{\mathrm{K}}(x, y)=\left(x^{2}-y\right) S(y)-\frac{1}{N}\left\langle\operatorname{Tr}(x+M) \frac{S(y)-S\left(\Lambda^{2}\right)}{y-\Lambda^{2}}\right\rangle
$$

Rational parametrization:

$$
\left\{\begin{array}{l}
y(z)=z^{2} \\
x(z)=z+\frac{1}{2 N} \operatorname{Tr} \frac{1}{\Lambda} \frac{1}{z-\Lambda}=z-\frac{1}{2} \sum_{k=0}^{\infty} t_{k+2} z^{k}
\end{array}\right.
$$

9 Classical spectral curve of DSL.

$F_{1 \mathrm{MM}}^{(g)}$ is singular when the classical curve $E_{1 \mathrm{MM}}(x, y)=0$ is singular. Consider a p / q singularity at $t_{3}=t_{3 c}$:

$$
y-y_{0} \sim\left(x-x_{0}\right)^{p / q}
$$

Consider $\delta=\left(t_{3 c}-t_{3}\right)$ small but non zero, i.e. the singularity is smoothed:

$$
\left\{\begin{array}{l}
x(z)=x_{0}+\delta^{\alpha q} T_{q}\left(z / \delta^{\alpha}\right)+\ldots \\
y(z)=y_{0}+\delta^{\alpha p} T_{p}\left(z / \delta^{\alpha}\right)+\ldots
\end{array}\right.
$$

where $\alpha=\frac{1}{p+q-1}, T_{p}$ and T_{q} are polynomials of degree p and q, which obey (Poisson):

$$
q T_{p}^{\prime}(z) T_{q}(z)-p T_{q}^{\prime}(z) T_{p}(z)=1
$$

Define: $\quad E_{\mathrm{DSL}(p, q)}(x, y)=\operatorname{Resultent}\left(x-T_{q}(z), y-T_{p}(z)\right)=\left\{\begin{array}{l}x=T_{q}(z) \\ y=T_{p}(z)\end{array}\right.$
Example: if $p=q+1$, then $T_{p}, T_{q}=$ Tchebychev's polynomials:
$E_{\mathrm{DSL}(p, q)}(x, y)=T_{p}(x)-T_{q}(y)$.

10 Basics of algebraic geometry.

Consider an arbitrary embedded algebraic curve given by its equation:

$$
E(x, y)=0 \quad E=\text { polynomial }
$$

For this talk only assume the curve has genus zero \rightarrow rational parametrization:

$$
\left\{\begin{array}{l}
x(p)=\text { rational function of } p \\
y(p)=\text { rational function of } p
\end{array}\right.
$$

Branchpoints $a_{i}=$ solutions of $x^{\prime}\left(a_{i}\right)=0$ (vertical tangent).
Assume the curve is non-singular, i.e. x^{\prime} has only simple zeroes and $y^{\prime}\left(a_{i}\right) \neq 0$.

- If p lies near the branch-point a_{i}, there exists a unique other point $\bar{p} \neq p$, which is also in the vicinity of a_{i}, such that:

$$
x(p)=x(\bar{p})
$$

Notice that \bar{p} may depend on i.

11 Definition of correlation functions.

Define the following functions:

$$
\begin{aligned}
& W_{1}^{(0)}(p)=0 \quad, \quad W_{2}^{(0)}(p, q)=\frac{1}{(p-q)^{2}} \\
W_{k+1}^{(g)}\left(p,\left\{p_{K}\right\}\right)= & -\frac{1}{2} \sum_{i} \operatorname{Res}_{q \rightarrow a_{i}} \frac{(q-\bar{q}) d q}{(p-q)(p-\bar{q})(y(q)-y(\bar{q})) x^{\prime}(\bar{q})}[\\
& \left.W_{k+2}^{(g-1)}\left(q, \bar{q},\left\{p_{K}\right\}\right)+\sum_{h=0}^{g} \sum_{J \subset K} W_{|J|+1}^{(h)}\left(q,\left\{p_{J}\right\}\right) W_{k-|J|+1}^{(g-h)}\left(\bar{q},\left\{p_{K / J}\right\}\right)\right]
\end{aligned}
$$

where $K=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{p_{K}\right\}=\left\{p_{i_{1}}, p_{i_{1}}, \ldots, p_{i_{k}}\right\}$. i.e.

12 Definition of Free energies.

Similarly, define for $g>1$:

$$
\begin{aligned}
F^{(g)}(E)= & \frac{1}{2-2 g} \sum_{i} \frac{1}{2} \operatorname{Res}_{q \rightarrow a_{i}} \frac{d q \int_{\bar{q}}^{q} y d x}{(y(q)-y(\bar{q})) x^{\prime}(\bar{q})}[\\
& \left.W_{2}^{(g-1)}(q, \bar{q})+\sum_{h=0}^{g} W_{1}^{(h)}(q) W_{1}^{(g-h)}(\bar{q})\right]
\end{aligned}
$$

There is also a similar algebro-geometric definition for $F^{(0)}$ and $F^{(1)}$.

$$
F^{(1)}=-\frac{1}{24} \ln \left(\Delta\left(x\left(a_{i}\right)\right)^{2} \prod_{i} y_{1}\left(a_{i}\right)\right)
$$

13 Topological expansions.

Theorem:

- $F_{1 \mathrm{MM}}^{(g)}=F^{(g)}\left(E_{1 \mathrm{MM}}\right)$
- $F_{2 \mathrm{MM}}^{(g)}=F^{(g)}\left(E_{2 \mathrm{MM}}\right)$
- $F_{\mathrm{K}}^{(g)}=F^{(g)}\left(E_{\mathrm{K}}\right)$
- $F_{\mathrm{GK}}^{(g)}=F^{(g)}\left(E_{\mathrm{GK}}\right)$
- $F_{\mathrm{DSL}}^{(g)}=F^{(g)}\left(E_{\mathrm{DSL}}\right)$

Remark: $F^{(g)}(E)$ commutes with the double scaling limit: $\lim F^{(g)}(E)=F^{(g)}(\lim E)$

14 Properties of $F^{(g)}(E)$

Theorem of symplectic invariance:
$\forall g, F^{(g)}(E)$ is invariant under the following changes of curves E :

- $y \rightarrow y+R(x)$ where $R(x)=$ any rational function of x.
- $y \rightarrow \alpha y, x \rightarrow \frac{1}{\alpha} x, \alpha \in \mathbf{C}^{*}$.
- $y \rightarrow-y, x \rightarrow x$.
- $y \leftrightarrow x$. e.g. $(p, q)=(q, p)$ duality.
$=$ transformations which conserve the symplectic form $\pm d x \wedge d y$.
- $\tau_{N}(E)=\exp \left(\sum_{g=0}^{\infty} N^{2-2 g} F^{(g)}(E)\right)$ satisfies some Hirota equation.
- Modular invariance: $\tau_{N}(E)$ changes in a way similar to a θ function.

15 Conclusion

- We have found the general solution of Virasoro constraints.
- We have some explicit formulae for the topological expansion of matrix models and their DSL. The same formula works for all cases.
- To every algebraic curve $E(x, y)=0$, we can associate a sequence of symplectic invariants $F^{(g)}(E)$ and a τ-function $\tau_{N}(E)$.
- From the classical spectral curve $E(x, y)=0$, we reconstruct perturbatively the full quantum integrable system $E_{N}(x, y)=0=\sum_{g=0}^{\infty} N^{-2 g} E^{(g)}(x, y)$.
- There is probably an underlying quantum field theory, for which those diagrams are the Feynman diagrams. Chiral supersymmetric Chern Simons theory ?
- What are the $F^{(g)}(E)$ for other algebraic curves E ?

16 More references

- Hermitean matrix model free energy: Feynman graph technique for all genera, (L. Chekhov, B. E.), JHEP/009P/0206/5, hep-th/0504116.
- Topological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula, (B. E., N. Orantin), JHEP 0512 (2005) 034, math-ph/0504058.
- Free energy topological expansion for the 2-matrix model., (L. Chekhov, B. E., N. Orantin), math-ph/0603003.
- Genus one contribution to free energy in hermitian two-matrix model, (B.E., D. Korotkin, A. Kokotov), Nucl.Phys. B694 (2004) 443-472, hep-th/0403072.
- Breakdown of universality in multi-cut matrix models, (G. Bonnet, F. David, B.E.), J.Phys. A33 6739-6768 (2000).

17 Virasoro constraints.

Partition function

$$
Z:=\mathrm{e}^{-N^{2} F}:=\int d M \mathrm{e}^{-N \operatorname{tr} V(M)}:=\int d M \mathrm{e}^{-N \sum_{j} t_{j} \operatorname{Tr} M^{j}}
$$

satisfies the Virasoro constraints:

$$
D_{k} \cdot Z=0 \quad \text { for } k \geq-1
$$

with the Virasoro generators

$$
\begin{gathered}
D_{k}=\frac{1}{N^{2}} \sum_{j=0}^{k} \frac{\partial}{\partial t_{j}} \frac{\partial}{\partial t_{k-j}}+\sum_{j=1}^{\operatorname{deg} V} j t_{j} \frac{\partial}{\partial t_{k+j}} \\
{\left[D_{k}, D_{j}\right]=(k-j) D_{k+j}}
\end{gathered}
$$

Schwinger-Dyson equations:

$$
\frac{1}{N^{2}} D_{k} \cdot Z=\frac{1}{N^{2}}\left\langle\sum_{j=0}^{k} \operatorname{Tr} M^{j} \operatorname{Tr} M^{k-j}\right\rangle-\frac{1}{N}\left\langle\operatorname{Tr} M^{k+1} V^{\prime}(M)\right\rangle=0
$$

