loPscience

Universal distribution of random matrix eigenvalues near the 'birth of a cut' transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
J. Stat. Mech. (2006) PO7005
(http://iopscience.iop.org/1742-5468/2006/07/P07005)

The Table of Contents and more related content is available

Download details:
IP Address: 132.166.22.147
The article was downloaded on 06/10/2009 at 11:18

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1742-5468/2006/07
http://iopscience.iop.org/1742-5468/2006/07/P07005/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact

ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

Universal distribution of random matrix
eigenvalues near the ‘birth of a cut’
transition

B Eynard

Service de Physique Théorique de Saclay, F-91191 Gif-sur-Yvette Cedex, France
E-mail: eynard@spht.saclay.cea.fr

Received 1 June 2006
Accepted 27 June 2006
Published 17 July 2006

Online at stacks.iop.org/JSTAT /2006/P07005
doi:10.1088 /1742-5468,/2006,/07 /POT005

Abstract. We study the eigenvalue distribution of a random matrix, at a
transition where a new connected component of the eigenvalue density support
appears away from other connected components. Unlike previously studied
critical points, which correspond to rational singularities p(z) ~ 2P/4 classified
by conformal minimal models and integrable hierarchies, this transition shows
logarithmic and non-analytical behaviours. There is no critical exponent; instead,
the power of N changes in a sawtooth behaviour.

Keywords: conformal field theory, matrix models

ArXiv ePrint: math-ph/0605064

(©2006 IOP Publishing Ltd and SISSA 1742-5468/06/P07005+33$30.00


mailto:eynard@spht.saclay.cea.fr
http://stacks.iop.org/JSTAT/2006/P07005
http://dx.doi.org/10.1088/1742-5468/2006/07/P07005
http://arxiv.org/abs/math-ph/0605064

Universal distribution of random matrix eigenvalues near the

‘birth of a cut’ transition

Contents
1. Introduction 3
2. Setting
3. Classical limits 7
3.1. The large n resolvent . . . . . . . . ... 7
3.2. Derivatives with respect toT" . . . . . . . . ..o 8
3.3. Poles of the potential . . . . . . . . .. ... 9
3.4. One-cut case . . . . . . . 10
3.5. Two-cut case . . . . . . .. 10
4. The birth of a cut critical point 12
4.1. Example v =1 . . . . . .. 13
4.2. At the critical point T'="T, . . . . . . . . . . .. ... 13
4.3. Variations near the critical point, 7' <7, (one cut) . . .. ... ... ... 14
4.4. Variations near the critical point, 7' > T, (two cuts) . . . . . . . ... ... 15
4.5. Order of the transition . . . . . . . . . . . . . 18
5. Mean field asymptotics for the partition function 19
5.1. Mean field theory . . . . . . . . . .. 19
5.2. Computation of the derivatives . . . . . . . . . ... ... ... ... ... 21
5.3. Result . . . . o . 22
5.4. The effective matrix model . . . . . . . . . ... 23
5.5. Partition function . . . . . . . . .. 24
5.6. Orthogonal polynomial . . . . . . . . ... ... ... ... ... 24
5.7. Hilbert transforms . . . . . . . . .. 25
5.8. Computation of Bnip . . . . o o oL 25
6. Asymptotic regimes 26
6.1. Possible asymptotic regimes for the partition function . . . . . . . . . . .. 26
6.2. Possible asymptotic regimes for the orthogonal polynomials . . . . . . . . . 27
6.3. Asymptotics in the regime u > 0, and u not integer or half-integer . . . . . 28
6.3.1. Coefficient v,,. . . . . . . . .. 28
6.3.2. Coefficient G,. . . . . . . . .. 28
6.3.3. Orthogonal polynomials. . . . . . . . .. ... ... ... .. .... 29
6.3.4. Hilbert transforms. . . . . . . . . . ... 29
6.3.5. Matrix form. . . . . . . 30
6.3.6. Kernel. . . . . . . . 30
6.3.7. Large w limit. . . . . . . . . .. Lo 30
7. Conclusion 31
Acknowledgments 31
Appendix A: The Stirling formula and other asymptotics 31
Appendix B: Elliptical functions 32
References 32
doi:10.1088 /1742-5468 /2006,/07 /PO7005 2


http://dx.doi.org/10.1088/1742-5468/2006/07/P07005

Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition

1. Introduction

Random matrix models [20, 13] have been studied in relationship with many areas of
physics and mathematics. The reason for their success in most of their applications is
their ‘universality’ property, i.e. the fact that the eigenvalue statistical distribution of a
large random matrix depends only on the symmetries of the matrix ensemble, and not on
the detailed Boltzmann weight (characterized by a potential). Although this universality
property has been much studied for generic potentials, some universality should also hold
for critical potentials. Different kinds of critical potentials have been studied, and their
universality classes have been found to be in correspondence with non-linear integrable
hierarchies (KdV, MKdV, KP,...) [2,3,7,21,6,12], and with the (p, ¢) rational minimal
models of conformal field theory [8]. They correspond to rational singularities of the
equilibrium density:

pla) ~ (& — )P/, (L1)

In the Hermitian 1-matrix model, we have only ¢ = 2 and p arbitrary; thus we get only
half-integer singularities (hyperelliptical curves), which are related to the KdV hierarchies,
whereas a 2-matrix model allows us to have any rational singularity (p, q) [8]. The specific
heat near such a rational singularity obeys a Gelfand-Dikii-type equation (Painlevé I
equation for (p,q) = (3,2)). A well known case is the edge of the spectrum where
(p,q) = (1,2), which gives the Tracy~Widom law [23], and which is governed by the
Painlevé II equation. Another well known case is the merging of two cuts (Bleher and
Its [2,1]), where (p,q) = (2,1), which is also governed by a Painlevé I equation as well
(indeed, (p,q) and (g, p) are known to be dual to each other [14]).

Here, we shall study a kind of critical point which has been mostly disregarded
(because usual methods do not apply to it): ‘the birth of a cut critical point™.

Such a critical point is characterized by the fact that when a parameter of the model
(let us call it temperature) is varied, a new connected component appears in the support
of the large N average eigenvalue density. When the temperature 7" is just above the
critical temperature T,, the number of eigenvalues in the newborn connected component
is small (see figures 1 and 2), and thus, many usual large n methods do not work in that
case.

Our goal is to study the eigenvalue statistics in the vicinity of the critical point, and
find its universality class.

For this purpose, we shall start from the partition function, treat the eigenvalues in
the other cuts with mean field approximations, and reduce the problem to an effective
partition function for eigenvalues in the newborn cut only, in a method similar to that
of [4].

We find that, unlike for rational critical points, the birth of a cut critical point does not
correspond to power law behaviours or transcendental differential equations, but exhibits
logarithmic behaviours, and discontinuous functions.

The matrix model is associated with a family of orthogonal polynomials, whose zeros
lie inside the connected components of the density [20,22,10]. Our goal is also to study
the asymptotic behaviour of the orthogonal polynomials in the vicinity of the newborn
cut.

! The name was suggested by P Bleher who initiated this work.
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\{:ff (x)

Figure 1. The ‘birth of a cut’ critical potential is such that one of the potential
wells of the effective potential is just at the Fermi level. At a vth order critical

point, the effective potential behaves like Vog(e) + (1/2V!)‘/;(§V)(6) (x—e)® 4.

pKx)

Figure 2. The ‘birth of a cut’ density of eigenvalues is such that one of the
connected components of the support contains a very small number of eigenvalues
(«n).

Outline of the article:

e In section 2 we introduce definitions and notation for orthogonal polynomials and
associated quantities.

e In section 3 we recall classical results of random matrix theory: the semiclassical
behaviours of free energy, density, correlation functions, orthogonal polynomials, valid
away from critical points.

e In section 4 we study the analytical continuation of the previous semiclassical
approximations, near the ‘birth of a cut’ critical point (divergencies at critical point).

e In section 5 we compute the partition function with mean field theory for eigenvalues
not in the newborn cut, and derive an effective partition function for the newborn
cut eigenvalues.

doi:10.1088,/1742-5468,/2006 /07 /PO7005 4
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e In section 6 we use the results of section 5 to deduce the asymptotic behaviours of
correlation functions and orthogonal polynomials in the vicinity of the critical point.

e Section 7 is the conclusion.

e In the appendix, we recall Stirling’s formula and its consequences, and we recall some
elliptical function basics.

2. Setting

Given an integer n (we will later consider the limit n — o), a real polynomial V' (z) called
the potential:

V(z) :=go + Z %xk, degV =d+1 (2.1)

of even degree and positive leading coefficient (g4y1 > 0), and a temperature 7" > 0, we
define the partition function:

n

Zn(T,\V) = i/ dzy ... dz, (A(z;))? He_("/T)V(“) (2.2)
R

n!
i=1

(where A(z;) = [[;;(#; — ;) is the Vandermonde determinant) and the free energy
F,(T,V):

Zn (T, V
e_(n2/T2)Fn(T7V) = (H ) (23)
where H,, is a combinatorial normalization:
2 2/2 342n_1 2 _n2/2 2283/4n2
H, = (2m)"2 234 [ Kt = 272 7 /2= i (2.4)
k=0

and U, is the volume of the group U(n)/U(1)".
Then we define the resolvent:

T 1 2 ~(n/T)V ()

Wz, T, V) :=

and its first moment:

T 9 .
__ - o , I I —(n/T)V(z:)
TTV) = v / do - di  A%(:) 119
1 OF,(T,V)
% xr n(xv 7V) x 8{]1 ( 6)
Notice that more generally for k£ > 0:
OF,(T,V) 1 k
—_— = — W T ) 2.

doi:10.1088,/1742-5468,/2006 /07 /PO7005 5
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Then, given a temperature 7., and an integer N, we define?:
Znia(Te(n+1)/N), V)
Zn(Te(n/N), V) ’

hy, = (2.8)

and

| hh | Zyi(T((n+ 1)/N), V) Zy A (Te((n — 1)/N), V)
T i \/ s \/ Z2(Te(n/N),V) B

and

N n+1 n T. 0lnh,

Notice that Z,(T,V), h, and =, are strictly positive for all n, in particular they do not
vanish.
We also introduce the functions [22, 20, 10]:

Zo(To(n/N),V(z) — (T./N)In (£ — z)) (&) —vm)vie) (2.11)

which form an orthogonal family of monic polynomials (degm, = n):
/ 7 (&) (§)e™ N TNVE AE = Ry, (2.12)

and which satisfy the three-term recursion relation:
Ema(€) = M1 (&) + B () + 77 T (€)- (2.13)

And we introduce the functions:
7€) = Znt1(Te((n+1)/N),V(z) + (Ic/N)In (§ — 2))
" Zy(Te(n/N), V) ’

~ &) vem v
bn(§) = N

which are the Hilbert transforms of the m,(x):

7n () :/dixﬁn(x')ev(m/), (2.15)

x—

(2.14)

and which satisfy the same three-term recursion relation, with an initial term:

We also define the kernel:
n—1
1 _
Ko(§y) =) o mi(€)m(y) e VIOV EVD, (2.17)
j=0 "

2 We introduce two integers n and N, because for instance we will be interested in Zn_1, Zny and Zn+1, and
it is more convenient to compute Z, for arbitrary values of n not necessarily linked to N. n is the degree of

the orthogonal polynomial under consideration, and NN is the weight in the exponential measure of orthogonality
—NV (x)
e .
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and it is well known that all correlation functions can be expressed in terms of that kernel
(Dyson’s theorem [15,20]):

pale) = =Ko, 2)

pu(T,y) = % (K, (z,2)K,(y,y) — K, (z,y) K, (y, 7)) (2.18)

and that we have the Christoffel-Darboux theorem:

Ko(z,y) = hl T (2)T0-1(y) — Tt (@) T () o~ (N/2T)(V(@)+V () (2.19)
n—1 r—y

Our goal is to study vy, B, Tn, Tp, in the vicinity of N — oo, and |n — N| < N, and
with T, chosen such that we are at a special critical point described below.
For the moment, let us study the large N limits away from the critical point.

3. Classical limits

It is well known that in the semiclassical limit N — oo, and |[n — N| < N, if T' # T, the
free energy has a large n limit [11, 16,4, 19, 13]:

F,(T,V) — F(T,V) + O(1/n?) (3.1)
and so has the resolvent W, (x, T, V):
Wz, T,V) — W(z, T,V)+ O(1/n). (3.2)

3.1. The large n resolvent

It is well known that, if the potential is such that V’'(x) is a rational fraction, with its
poles outside the cuts (that assumption will become clear below), the large n resolvent
W(x,T,V) can be written as the solution of an hyperelliptical equation [13,5]:

W, T,V) = L (V’(x) — M(z,T,V)\/o(z, T, V)) (3.3)

where o is a monic even degree (2s > 2) polynomial with distinct simple zeros only:

o(x) :H(:p—ai)(:p—bi), < < by <agg <--- (3.4)
i=1

whose zeros are called the end points, and (J;_,[a;,b;] is called the support, and M is

a rational function with the same poles as V’. If one assumes that s and o are known,

M (z,T,V) is determined by the condition that W (x, T, V) is finite (in the physical sheet)

when z — oo and when z approaches the poles of V'(z).

The large n limit of the density of eigenvalues is then:

o2, T.V) = %LTM@,T, V=@ TV, e bl (3.5)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 7
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We also define the effective potential:

Ve (2, T, V) :=V(z) — 2T Inx — 2/36 (W(x,T, V) — Z) dz. (3.6)

0o Xz

Notice that its derivative is V'(z) — 2W (2, T,V) = M (x, T,V )\/o(z,T, V).
So far, we have not explained how to determine s and the polynomial o. If one
assumes that s is known, o(z, T, V) is determined by the conditions:

W(z,T,V) x:wg +0(1/2?) (3.7)

if s > 1, ‘v’izl,...,s—l, ‘/eff(bi):‘/eff(ai+1).

The large n free energy is then given by:
1 1
F(T.V) = j’{ W, T,V)V(x) de + STVer(b) (3.9)
i

where the integration contour is an anticlockwise circle around oo.
The number of end points s = s(T,V) (we have 1 < s < d) is determined by the
condition that the free energy is minimum (one can prove that s(7,V) < (d+1)/2) [9].

3.2. Derivatives with respect to T’

Let us introduce:
T T
Oz, T,V) = W, T.V) _ Qo(x,T.V) (3.9)
or o(z,T,V)

where Qq(z, T, V') is a monic polynomial of degree s — 1, determined by the conditions:
it QQ(.T,T, V) d
N0 ) =
b Vol(z, T, V)

In algebraic geometry, 2 is called a ‘normalized Abelian differential of the third
kind’ [18,17].
We introduce the multivalued function A(x, T, V):

A, T, V) = exp ( /b jQ(x’,T, V) d:c') (3.11)

ifs>1, Vi=1,...,s—1, 0. (3.10)

and
s
= i _— 12
W V) = lm T (3:12)

Then we have the following derivatives:

OF
T ‘/eff(bs) (3 3)
O°F

_ 14
gz~ 2y (3.14)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 8
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méffT(”:) — —2In (vA(z)) (3.15)
0T 1
T = 2 x Q) dz (3.16)

where 7 = Res W (z) was defined in equation (2.6).
Notice that:
1

Var(b) = 51~ f Q2)V () dz — 2T In~. (3.17)
17T
3.3. Poles of the potential

Assume that V'(z) has a simple pole at z = £, with residue r (it may have other poles
t0o); then we define the function:

Hn &, T,V) = @W%; V) _ 2¢i<7> ( o(as; - (@)

where Qg (z,€) is a monic polynomial in z, of degree s — 1, determined by the conditions:

— Qu(z, é)) (3.18)

ot QH('T7§7T7 V) + O'(f)/l’ - de —

if s > 1, Vi=1,...,s—1, r=0. (3.19)
by o(x, T, V)
We also define its (multivalued) primitive:
In E(x,¢§) ::/ H(2' &) da’. (3.20)
Notice that it is finite near the end points and near x = £. In algebraic geometry,

(x — &)/ E(x,§) is related to the ‘prime form’ [18,17].
Then we have:

8%5;(:6) =In(z—¢§) =2 E(z,§) (3.21)
T 1

a7 = 5 P rH(,E)dz (3.22)
OF 1

5, = 5 V(@) = Ver(2))l,— (3.23)
O*F

o — 1 (A(E)) = (€ = by) — 2In B (b, €). (3.24)

If V'(z) has simple poles at x = & with residue r; and at z = & with residue ry, we
have:
O*F
87’187’2
and thus it is clear that In £ has some symmetry properties: In F(z,y) = In E(y, x).

= E(&1, &) (3.25)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 9
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3.4. One-cut case

If W(z,T,V) has one cut [a(T,V),b(T,V)] with a < b, we use Joukowski’s
parametrization:

x:b;aer_acoshgb, (3.26)
le.:
o(x) = b—a sinh ¢. (3.27)
We have:
1 0¢ b—a
QO = -7 A #() _ .
R e Sl =" (328)
H(.ﬁl],é) = Or ed@)+e©) — 1’ E(.ﬁl]’é) =1l-e @@+ = m (329)
87_a+b 87_ v (3.30)

ar 2 7 ar A

Then, it is well known [13] that we have the large n, N asymptotics (in the regime
n/N = finite):

b(Te(n/N)) — a(Te(n/N))

Tn ~ A )

b(Te(n/N)) + a(T.(n/N))
5 .

ﬁnN

(3.31)

3.5. Two-cut case

If W(x,T,V) has two cuts, [a(T,V),b(T, V)] U [c(T,V),d(T,V)] with a < b < ¢ < d. Let
m be their biratio:

_(b—a)(d—c)
m= C—a)d=D) (3.32)

We parametrize:
d—a
= TG a/ e m)

where sn is the elliptical sine function (see appendix B, or for instance [24]), i.e., by
definition:

(3.33)

T

= —c —b)(c—a)
\/ \/7
\/< (d=b)/(b—a))((z~a)/(d~x)) dy
= : 3.34
/0 VI =y (1 —my?) 30
We have:
v(a) =0, v(b) = K(m), (3.35)

<
—~
O
~—
I

K(m) +1K'(m), v(d) = iK'(m).

doi:10.1088,/1742-5468,/2006 /07 /PO7005 10
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We have:
 id— a\b— ). G sn(v, m) en(v, m) dn(v, m)
o(@) = =ild = )b = O\ T T (b= a)/(d = b)ysn*(o, m) - (3.36)
Let us define v, such that:
Ve dy
- V)0 T ) o
SN Voo, m) = 1 Z:Z’ en (v, m) = Z:Z, dn(vee, m) = ECCZ:Z)) (3.38)
Then we define xq:
= iv(c—a)(d— Voo, M) — — M v
xo=d+i/( )(d—b) <E( 005 1) <1 K’(m)) OO). (3.39)
It satisfies:
— dz = 0, 3.40
\/:p—a r—b)(x —c)(x—d) (3.40)
and thus we have:
O(z) = — 3.41
() V(@ —a)(@ = b)(x - c)(z —d) o
o (2} ((0(2) 0 2K)
A0 = (r ) B = ) 542
v = ﬁ (d—b)(c—a) exp <—7rKU°[°(,) 91(0%(00/’;? 7 (3.43)
_ bi(v(z) +0(§)) 01(20s)
B 8) = G e 7 0(©) a0 + () (3.44)
0T a+b+c+d
o= 0. (3.45)
We have the asymptotics [11,4]:
d(T.(n/N)) — a(Te(n/N)) — c(Te(n/N)) + b(T.(n/N)) <
4 — n
< ATe(n/N)) — a(Te(n/N)) + c(Te(n/N)) — b(Te(n/N)) (3.46)
< 1 .
d(T.(n/N)) + a(Te(n/N)) — c(Te(n/N)) + b(T.(n/N)) <3
2 — n
< UTe(n/N)) + a(Te(n/N)) + c(Te(n/N)) = b(Te(n/N)) (3.47)
- 2

Therefore, we shall now study W (z, T, V) in different regimes.

doi:10.1088/1742-5468 /2006 /07 /P07005 11
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4. The birth of a cut critical point

Let us choose the potential V' and the temperature T, such that:

for T' < T. we are in a one-cut case,

W(a,T) =1 (V’(x) ~ M_(z,T)\/(x — a)(z — b)) (4.1)
with a(T) < b(T) and

M_(2,T) = (z — )" Q(x), (4.2)

where v > 1is an integer, and Q(z) is a real polynomial whose properties are described
below;

for T' > T, we are in a two-cut case,

W(a,T) =1 (V’(x) M (2,T)\/(z —a)(z — )z — o) (x — d)) (4.3)
with a(T) < b(T') < ¢(T) < d(T') and
o(T,) =d(T,) = e, My (z,T,) = (x —e)* 2 Q(x), (4.4)

at T'= T, one cut has vanishing size ¢(T.) = d(7.); with no loss of generality, we can
assume that:

a(Tc) = _27 b(TC) = 27 (45)
and we write:

e(T.) = 2cosh ¢, = ¢(Te) = d(Tv.). (4.6)

The polynomial Q(x) must have the following properties:

deg () = d — 2v with d odd and d > 2v,
the leading coefficient of () is positive,
@ has an odd number of zeros in |2, e],

Q(z) <0in [-2,2],

Q(e) >0,
Vo < =2, / Q(x e)* a2 —4dx >0, (4.7)
Vo > 2, x #e, / Q(z ) W2 —4dx > 0, (4.8)

/ Q(x )2 IWa? —4dx =0, (4.9)

doi:10.1088/1742-5468 /2006 /07 /P07005 12
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V'(z) = Pol ((x — ) 1Q(2)Va? — 4) , (4.10)

T. = 1 Res (z — e)* 7 'Q(z)Va? — 4. (4.11)

Remark. Notice that for all v > 1, it is possible to find a potential V' (x) and a temperature
T. with such properties. Indeed, choose e and Q(z) with the above properties and
determine V'(z) and T. from (4.10) and (4.11). Notice also that it is always possible
to find a polynomial Q)(x) which satisfies the above mentioned conditions; indeed consider
any real e > 2, and any real polynomial @)(x), of even degree d — 2v — 1, with positive
leading coefficient, and with no real zero, then set:

f;xQ(x) (x —e)* a2 — 4dw
N Q(x) (x — ) 1/22 —4dz
clearly, € €2, ¢[; then set:

Q) = (z - ¢)Q(x). (4.13)

In particular, one may choose d = 2v + 1 and Q = 1.

;- (4.12)

4.1. Example v =1

Let e > 2 be fixed. We write e = 2 cosh ¢..
We consider the following quartic potential (see figure 1):

V'(z) = (2° — (e + &)2° + (e — 2)x + 2(e + €)) , T.=1+ec (4.14)
where € is given by [(z —e)(z — é)Va? —4 =0, ie.
e cosh ¢, — (1/3) sinh ¢, (2 + cosh? ¢,)

e =2 . 4.15
‘ (1/3) sinh ¢, cosh ¢ (5 — 2 cosh® @) — ¢, (4.15)
4.2. At the critical point T' = T,
At T =T, both formulae (4.1) and (4.3) reduce to:
W(a T.) =1 (V’(x) — (- ) Qx)VaE — 4) (4.16)

which would correspond to an average large N eigenvalue density in [—2,2]:

(x —e)*'Q(z)V4 — 22 (4.17)

p(r) = T

and one would have:

N~ 1, By ~ 0. (4.18)

However, this is wrong, because the semiclassical asymptotics (3.2) are valid only if
T # T,; they break down at T = T.. It is the purpose of section 5, to determine the
asymptotic behaviour of v, and 3, near n = N and T = T,. For the moment, let us
consider the limits of (4.1) and (4.3) near T..
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4.3. Variations near the critical point, T' < T (one cut)

Let us consider the limit of (4.1) near T,. Write T' =T, + t, and ¢t < 0, and:
W(a,T) =1 (V’(x) — M_(2,7)\/(z — a)(z — b)) .

At T =T, we have
a(Tc) = _27 b(TC) = 27 M—(x7TC) = (l‘ - 6)21/_1 Q(ZL‘),

Then, make use of formula (3.9) and (3.28), i.e.:

10M_(z,T) 1 da/OT n 1 ob/oT 1

SRR R G pran Sl S CAR R oy Rl Py g

matching the pole at x = a gives:

da 4 1

prm— ~S —

oT — (a—b)M_(a,T) (a—e)*1Q(a)

which is finite at T" = T;; thus, we find that to first order in ¢:

t t
T R ey (=27 1Q()
(notice that Q(—2) < 0 and Q(2) < 0). Relation (3.28) implies:

v ~1+0(1).
Then, (4.21) reduces to:
1OM_(2,7)  M_(x,T)— M _(a,T) M_(x,T)— M_(b,T)

2 or - M_(a,T)(a—b)(x—a) M_(b,T)(b—a)(x—Db)
which is finite at T" = T¢; thus one gets the asymptotics of M_:
G OM_(2,T) _ (z—e)* (Qz) — Qa)) + ((x — )" — (a — &) 1)Q(a)

or (a—e)*1Q(a) (z - a)
@ — e (Q) — QW) + ((x — e — (b= ) Q)
(b—e)> 1 Q(b) (z — b)

(2= Q) -Qa) (x—0)* !~ (a—e>

_ (a — €)1 Qa) T —a (z —a) (a—e)2!
(@—e)*" Q)—QU)  (z—e* ' —(b—e)>"
" (b—e)>=1Q(b) x—0b + (z—b) (b—e)2v 1

In particular in the vicinity of x = e one has:

M_(2,T) ~ (¢ — €)' Q(x)

2v—2

Z(x — e)k<(2 — e)fkfl i (_2 . e)fkfl) i O(:L’ B 6)21'71

k=0

L
2
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Note that the zeros of M_(x,T) in the vicinity of e, are the 2v — 1th roots of unity:

9 1/2v—1
— 4)) + O, (4.28)

M(.T,Tc+t):0<—>$:€+(W

Using (3.31), we get:

Tn 1- E ( 1_ + 1_ )
4\ (e—=2)*1Q(2)  (e+2)»1Q(-2)

ot 1 B 1 (4.29)
K (<e 2PQR) (et 2)2”@(—2))
where n=N(1+t/T,).

4.4. Variations near the critical point, T' > T, (two cuts)

Let us consider the limit of (4.3) near T,. Write T'= T, + t, and ¢t > 0, and
W(a,T) =1 (V’(x) M (2,T)\/(z —a)(z — )z — ) (x — d)) . (4.30)
At T =T, we have
alT) =—-2,  bT) =2
c(T.) = d(T.) = e = 2 cosh ¢, M (2,T,) = (v — e)* 2 Q(n),

and at T > T., a+2,b—2,¢c—e, d—e, and M,(z) — (z — e)*2Q(x) are small. In
particular, we write:

M (x,T)=H(z,T)Q(x,T) (4.32)

where H(x,T) is a monic polynomial of degree 2 — 2 which contains all the roots of M,
close to e, and Q(z,T) is the remaining part. In other words, H(x,T) — (x — e)* % is
small and Q(z,T) — Q(z) is small in the small ¢ limit.

We use the notation of section 3.5. The biratio (3.32) is thus:

(b—a)(d—c) 4 d—c
- _ _ ~ e (d - C) ~ 9
(c—a)(d—0b) €e*2—4 sinh” ¢,
We see that we have to consider the limit m — 0. In that limit (3.37) becomes
o i/ (d=b)/(b=a) dy N i/\/ (e=2)/4 Ay _ i% (434)
0 V(1 +y2) (1 + my?) 0 V142 2
/«/ (d—b)/(b—a) o2 dy
— Voo = 1M
V) + my?)
/ VR 2y sinhg, - ¢,
~im =im———-—-.
V) 4

And, as can be found in any handbook of classical functions [24], we have the small m
behaviour:

(4.31)

(4.33)

E(vso)

(4.35)

E'(m) 2
K’(m) ~ _M' (4.36)
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http://dx.doi.org/10.1088/1742-5468/2006/07/P07005

Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition

Since for small m one has |1/Inm| > m, (3.39) becomes:

2¢, sinh ¢,

dxg :=xo — d - (4.37)
Notice that:

to—c=x9—d+d—c~xyg—d~+msinh® ¢, ~ g — d ~ dx0. (4.38)

From (3.9) and (3.41) we have:
1 0My(2,T) 1 My(z,T) 0o(z,T) _ T %o (4.39)
2 or 4 o(x,T) or o(xz,T)

Matching the pole at x = ¢ gives:
dc _ —4(d — ¢ + 0xy) N —46x 1 (4.40)
ot (c—a)(c=b)(c—d)M(c,T. +t) (2 —4)Q(e) (¢ —d)H(c)
and matching the pole at x = d gives:

ad _ —40xg o 40w 1 (4.41)

" d—a)d-d— oM@~ (@ -DQe) ([d—c) H{d)
and matching the poles close to e gives:
OH (z) o 20m 1 H(z)— H(d) H(z)—H(c)
o " @00 d—c ( - DHW)  (t—H(© ) - 442)

The following guess solves the three equations (4.40), (4.41), (4.42) to small ¢ leading

order:
" 1/2v + 1/2v

H(z) ~ (—ﬁ)lm/y) G <(x _e) (—ﬁ) w) (4.44)

where ( is a positive real number, and G is a degree 2 — 2 even monic polynomial, which
will be determined below.
For later convenience, we also define the following positive constant:

R )
sinh 6, Q(e)
Using ansatz (4.43) and (4.37), we have in that limit:
4v ¢, sinh ¢,

> 0. (4.45)

4.4
51‘0 Int ( 6)
Then, inserting (4.43) and (4.44) into (4.40) and (4.41), we get:

yero ¢ C (4.47)

- G(-2)  G(20)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 16
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Then, setting z = e + & (—t/Int)"/*

following equation for G:

, and inserting (4.44) into (4.42) we get the

) L C(GO-GR) G- G<—2c>)
=260 -0 = - (¢ 000 ~ ragerag) 49
which using (4.47) becomes:
4 2

(2 = 2) GIE) ~ €66 = g1 (G(6) ~ GI20) (4.49)

the solution of which is:
< (2k ) 2v—1-k) S

G(¢) = > O — Pol NCETe (4.50)

or:
by~ (20 —1) sinh(2j+ 1)
G(2¢ coshp) = ¢* 2 2. ( -y ) —aho (4.51)
In particular,
G2¢) 1 (2v)! C
(=2 9 (v — 1)[,/1 AC% (4.52)

i.e. the parameter ( is determined by:

o= (G <2y)!1>!)“2” (e (”V‘)!”!)W- (4.5

( sinh g Q(e) (2
In that scaling regime, we have:
4 " 1/2v
i (-i) (154)
sinh” ¢, Int
i.e. this corresponds to a torus of modulus:
K .
T—1?N?llnm~ﬂlnt (4.55)

and, using (3.43):

i - no 01(0,7)
— —Jld=0b)(c— m(use/KK") __ 71\ )
gl (d=b)(c—a)e 01 (/K. 7)

~1— e (4.56)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 17
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We also find that the filling fraction in the [c, d] cut is of order:

1 d
€= o, ) Po)de
L SR [ ey /i ea
nt w1 —a¢
tosinho.Q(e) %, G(E)VE —4¢?
A Y- ,2452 1 R 57

and then, integrating by parts and using (4.49), we find:

o smh@@ W A
6Nchlnt / ¢ V€2 — 4¢2

G(2¢) d¢

¢ sinh ase@( ) o % g
- 1TC Int 2um 4¢7 G(20) /—2C €2 — 42
t  sinh¢.Q(e)
T T.Int 2v c, (4.58)
ie.:
e(Te +1t) ~ T 20 Q. (4.59)

This means that for n = N(1 + t/T.), the average number of eigenvalues located near e
is:
n—N
In N

i.e. the eigenvalues start to explore the potential well near e when n — N ~ In N.
According to (3.46) and (3.47), the coefficients =, and [, vary between:

- 1/2v
14+¢ (1 t) < Yn < cosh ¢, (4.61)
¢ 1/2v
_ < < e _
2% (mt) Shh<e-2 (4.62)

where n=N(1+t/T.).

The transition takes place on a scale of order In V.

k:N

2o, (4.60)

4.5. Order of the transition

From (3.14) and (4.24) we have below T¢, i.e. for t < 0:
PF vty = —2lny~ L ! 4 ! (4.63)
=2lny~ - .
or? T\ (e—22012) T e+271Q(—2)
and above T, i.e. for ¢t > 0, we have from (4.56):
OPF 4v¢?
T.+1t) =—2lny~ <.
ot? oz Lot t) = T

The second derivative of the free energy is continuous, but the third derivative is not.
Therefore we have a third order transition, with logarithmic divergency; cf figure 3.

(4.64)

doi:10.1088,/1742-5468,/2006 /07 /PO7005 18
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oF
at’

0

Figure 3. Behaviour of the second derivative of the classical free energy with
respect to ¢t near the transition.

5. Mean field asymptotics for the partition function

We compute the partition function for a potential:

Vio(x) =V (x) +1r9ln (2o — x) (5.1)
where 7 is assumed of order 1/N:
1c
To = —CLN. (52)

5.1. Mean field theory

We use the same idea as in [4]. We split the two-cut integral into one-cut integrals. Let
us say that there are k eigenvalues in the new cut (near e), and n — k in the old cut [a, b]:

n! Zy (%T vm)

. k
~ (Z) /zi>é d$’1 .. d[L‘k AQ(I‘Z) H(xo _ :L,i)a e_(N/TC)V(:L‘i)

k=0 i=1
- n—~k
< -k Zy (T v) (5.3)
where
k
o, 2,
Vrj(a:):V(:L’)—i—j;Orjln(azj—x), o= = r= == o (5.4)
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and Z,_(T.((n — k)/N),V,,) is a one-cut integral:
_ n—=~k 2 —(N/To) Yy ()
| To——, V. | : dzgyq -+ - da, A% H e
N ! x <e
kit i=k+1

_ n—k
= Iy €Xp <_ﬁFnk (TCTavrj))- (55)

That gives:

n

k
n an a
Zn (NTC’ ‘/7’0) ~ Ll b /g;i>é dxl e dl’k A2($l) g(l’o — ,[L'Z)

k=0
N N? n—k
X exp (—iV(xl)> exp (—T—CZFn_k <TCT’VTJ‘))' (5.6)

In other words, we integrate out n — k eigenvalues, and consider the integral over k
eigenvalues only. The k remaining eigenvalues are subjected to the potential V', as
well as their mutual Coulomb repulsion, and the mean field of the exterior n — k
eigenvalues.

Since F,(T), V,,;) corresponds to a ome-cut distribution, it can be evaluated with
the standard semiclassical technique (see section 3), and in particular, it has a large
n expansion:

2

_ _ T - T° _ 1
E (T, V,,) ~ F(T,V,,) + g117(1/2) (T.V,,) + FF(1>(T, Vi) + O<$) (5.7)

and each term of the expansion is analytical in V, .

We want to evaluate F/(T,V,,) in a regime where T'— T is ‘small’ (we make that more
precise below) and 7 and the r;’s are of order O(1/N).

We first do a Taylor expansion in 7" — T; and the r;’s:

2
F(T,V,)) ~ F(T.,V) +Zrl Z ,ja % <%)
62
+ ;(T_TC)TjW
oF

+(T—TC)6—T+%(T T, %H(]\;) (5.8)

where all derivatives are computed at 7' = T, and r; = 0 (see sections 3.2 and 3.3). That
expansion is valid only if & < N.
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Thus we have:

1

s (N2 /Tf)F(TC,V)e_F(U(TC,V)ea (N/Te)Fr, e—(a2/2)Fr0,m
H,

Z, ( NTC,er

H, o (N/Te) (n=N—)Fr qa(n—N k) Fr.q o~ ((n—N—k)2/2) Fr1

" 1
an

wmv

X
—

™

dzy - - day, A% () H(:po — ;)% e” NIV (@)

i> i

k
% H eQ(N/TC)Frj 62(n*N*k)FT,rj e—QGFm,Tj H e—QFrl,,ﬂj. (5'9)
Jj=1 g1
Notice that:
o, 1\ /12
= b 2m) (1 - —) (1+0(1/n)). (5.10)
n n

5.2. Computation of the derivatives

Now, use the formula given in sections 3.2 and 3.3 in the one-cut case, and get (derivatives
taken at 7' = T, and r; = 0, and taking into account that Veg(b) = Veg(e)):

0 - 1 0
_ = A _ — 11
P == Ve = V(@) 55F = Via(e) (511)
0? - T — 0*
F=In—7"—"2 —F = —In|A'(z; 5.12
Or;0r; . A(x;) — A(z;) or? n|A'(z:) ( )
0? 0?
F=InA(z; ——F = 1
gron T~ A, Gl =0 (5.13)
Moreover:
GT(T,V):a+b:07 aT(T,V): 1 . (5.14)
8T 2 87“]‘ A(l‘])
The effective potential behaves in the vicinity of e as:
V(QV)
Veg(x) ~ Veg(e) + ef;yl(e) (x —e)* (5.15)
2v .
V;(ff )(e) _ 2 sinh ¢, Q(e). (5.16)
2v! 2v
In the limit where the z;’s are close to e, we have:
€Xr; — ZL‘j 1 . —é
—_ ~ ~ 2sinh ¢, e % 5.17
A(e) = A(y) e Nz v 517)
and
Az;) ~ e’ (5.18)

T;—e

doi:10.1088/1742-5468 /2006 /07 /P07005 21


http://dx.doi.org/10.1088/1742-5468/2006/07/P07005

Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition

5.3. Result
We write n = N + p:

N+
ZN+p< NpT v)

o~ (N2/T2)F(Te,V) o~ F (T, V)

. a?/2
L o~ (aN/2T2) (Vegr (w0)—V (20))
2 sinh ¢,
N+p H
% ZM —(N/Te) (p—k) Vst (€) qalp—k) e

k!
k=0

k
/ dzy - - day, A% (z;) H(:po — ;)% e” WV (@)
T;>€ i=1

X

k e 2ak+2k2
—(N/Te) (Vest (w3) =V (24)) 2k(p—Fk)¢pe
X P —
211 ¢ ¢ (2 sinh ¢, )

o Hy e VHTOFTV) = FO (V) (~(@N/2T) Vesr(20)=V (20)) o=p(N/Te)Vesr(€)

Np k . N 20k+(a/2))?
X ZL”)p e<2k+a>(pk>¢>e< e )

, -
pr k! 2 sinh ¢,

k

X / dxy - - - dag AQ(%)H(% — ;)" o~ (N/Te)(Vesi (zi) = Vert (€)) (5.19)
x;>€ i—1

Then we rescale:

2 sinh e e —1/2v 2<sinh . e —1/2v
T, =e+ NV (+Q<)) Vi To=e+ NV (+Q<>) y

(5.20)

and we get:
N _ _
ZN+p ( ;pTc, Vro) —(@N/2T)V(@0) , [, o= (N?/TOF(TeV) o= FW(T:,V)

o~ (P+a/2)(N/Te)Veg(e) o—a(y® /4v)

x N%/% (2sinh ¢.) =%/ (2)P

N+p
% Z N—(k+a/2)2/2u e(k—l—a/2)2p¢e e(k+a/2)a¢e A—(k2+ak) (27T)_k
k=0
k
X dy; - - - dyy, A*(y; H i /2”(1 + O(Nl/Q”)> (5.21)
=1
where we have defined:
2 i h . 1/2v
A := (2sinh ¢, )? <—sm ;? Q(e)) . (5.22)
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Equation (5.21) is valid only up to O(N~'Y?) because equation (5.15),
equations (5.17) and (5.18) are valid only to that order in the regime of equation (5.20).

5.4. The effective matrix model
Let us define the matrix model in the potential y*/2v.

Let (., be the partition function of the k X k matrix model in the potential y?”/2v:

1 v
Cop 1= o dzy - - dzy A% (z;) l_Ie_”"’z2 /2, (5.23)

i

Notice that for v = 1, this is the Gaussian matrix model, and we have:

1 k-1 2 5
_ A 2
In Gy = 5 In27 +1In (j];[oj!) =In Hy + - Ink — k% (5.24)
We define the amplitude:
Ay = A% Q). (5.25)
We also introduce:
Ck—f—l v 2k Ak—i—l
hi, = = o A% 5.26
. Ch,v A (5.26)

hk v AkJrlAkfl
= = A —— 2
Vi T & (5.27)

and the associated orthogonal polynomials

[y dys Alya)? T, (y — y) e %/

P, = 5.28
1) Jdyr - dyr A(yi)? Hz e/ 52
Gk (g /4v)
Vro(y) == Cort Pi(y) e (5.29)
and their Hilbert transforms:
. d “dzg A 1 —a} /2w
Pk—l(y) — f Ly - Lk ( ) Hz 1( /( )) (5.30)

f dry - - day Alz;)? Hle e~ /2v

G (y) = /i Puly) 1), (5.31)
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5.5. Partition function

Thus we have for a = 0:

N _ _
Znip < ;pTC, V) ~ Hy o~ (N2/T2)F(Te,V) (= FO(Te,V) =p(N/Te)Verr (e) (2m)?

N-+p
« Z N K2 2hpde A, (1 4 O(N—Y/2)) (5.32)
k=0

N+p+1 N—k2/2u 2kpoe o2kde Ak

~ —(N/Tc) Vet () £=k=0 —1/2v
hnyp ~2me SN NI gt A, (1+O(N ) (5.33)
2 ( éV:JBerl N—k2/2v (2hpde (2koe Ak) (Eé\/:t]pfl N—K2/20 2kpbe o2k Ak)
’y ~
N ( cherN k2/2v o2kpoe Ak)z
x (14+O(N~Y)). (5.34)

5.6. Orthogonal polynomial

According to Heine’s formula (cf equation (2.11)), we have:

Zn(Te(n/N), V(2) — (Te/N) In (€ — @)  _vpmyvie

O BTN V) Lo T(n DN, V)
Pn-1(£) = ZnlTe(n/N), V@) + ({e/N) (€~ ¥)) _ vjemyvie)
N V2 (Te(n/N),V) Zy1(T.((n — 1)/N),V) (5.35)
(o) = Znyp((N + p/N))T., Vyy e N2V 0)
Y ea (N + D)/NVTe V) Zav gt (N + p - /NI, V)
T.
To = _N’ a =

Thus, in the regime:

120 4 sinh” .

rg=e+ N~ I (5.36)

using equation (5.21) with a = 1 we get:
| A
~ Nl/SV

Ynp(o) 2sinh ¢,

y SOVEP N (U 1/2)2 20) o(k1/2)206e o (k1200 | SAUAL ahy L (y)

\/( iVJBpH N —k2/2v o2kpde o2kde Ak)(zi\i)p N —k2/2v o2kpde Ak)
x (14+O(N~Y)). (5.37)
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5.7. Hilbert transforms

According to equation (2.14), we have:
Zn4p((N + p)/N)T., V) eN/2T)V (o)

ON4p-1(20) =
" VZx oA ((N +p = D)/NTe V) Zu iy (N +p) [N, V) (5.38)
_ L. —
To = N’ a =
Thus, in the regime:
.12
Ty = e—l—Nl/Q”%y (5.39)

using equation (5.21) with a = —1 we get:

A
~ N1/8v
Ontp-1(w0) ~ N \/ 2 sinh ¢,

SONAP N (k=1/2)2/20) ok 1/2)2p0e o= (k=1/20e  SAT A ey, (y)
\/(ZNerN k2/2v o2kppe Ak)( éVsz]Pfl N—k2/2v o2kppe o—2kde Ak)
x (14 O(N~V2)). (5.40)
Notice that shifting & — k + 1 we have:

A
~ N1/8v
Onp-1(T0) ~ N \/ 2 sinh ¢,

y NAPL N = (41/2)%/20 ok 41/2)2pbe o= (k+1/200e | SATAL By (y) (5.41)

\/(ZN-H)N k2/2v o2kppe Ak)( N+p 1N k2/2v o2kpge o—2k¢e Ak)

X

5.8. Computation of Bnp

We start from equation (2.10):

N n
=T (5T V)
1. N v
1

T Zy((n/N)T., V)

r N n—=k 2 /2
(ij+?7;l_k <TC = ,Vrj)> VT Fy (Tn=R)/N)V) (5 49)
=1 ¢

and where V,, was defined in equation (5.4). We have:

oT
or

/ dl‘l e dl‘k e_(N/TC)V(xl)AQ(xZ)
T;>€

To (T, V) ~ T(To, V) + (T = T) 7 (T, V) +Z'r’] o7 TC,V)+O(1/N2)

2T,

L+ O(1/N?). (5.43)
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Therefore:

N n

=T, (—TC, v)
T. N

1
Zn(n/N)T., V) Z / S deme e AV A% ()
Cy k=0 T;>€

(Z% _9A- 1) ~(N?/T2) B (Te((n—k)/N),V)

n

2sinh ¢ H, & _ .
© iy > day ---d (N/T)V (i) A2 (.
Zo{(n/ N V) 2 K JEEREE (=)

—(N?/T2)F,- k(Tc(n k/N),V)

X e
' Ek k:GQpImi)e ka2/21/ Ak
~ 2ginh ¢, S~ owhe N A, (5.44)
and:
ke e2(p+1)koe N—k:Q/QVA L e2Pkde N—k2/2uA
BNer ~ 2sinh (be Zk 2 Nk k2/2 b Zk 2 k k2/2 d (545)
Zke(p+)¢6N_ /VAk Zkep¢6N_ /VAk
6. Asymptotic regimes
Consider p of order In N:
p=3 u¢ In N, u finite. (6.1)
v e
6.1. Possible asymptotic regimes for the partition function
Then equation (5.32) becomes:
ZN+P<N]$pTc, V) ~ Hye™ (N?/TE)F(Te, V)efp(l)(Tc’V)
N+p
w o P(N/Te)Vesi (e) (2m)P Z N (@ku—k?)/2)v Ay (6.2)
k=0

It is clear that the sum over k is dominated by the values of k£ for which the exponent of
N is maximal, i.e. for which 2uk — k? is maximal. This means that for u < 0, the sum is
dominated by the vicinity of £ = 0, and for v > 0, the sum is dominated by the vicinity
of £ = u. The sum is then well approximated by a few largest terms.

Let us denote u the positive integer closest to u:

a:{[u—l—l/Q] ifu>0

6.3
0 ifu<0 (6.3)

where [-] denotes the integer part.
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Figure 4. Behaviour of €,(u — 1) — 3.
Define also:
sgn(u — u) ifu>0
= 6.4
“u { 1 if u < 0. (6.4)
We always have:
eu(u—1u) < 1. (6.5)

The largest value of 2uk — k? is obtained for k = @, and the second largest value is
obtained for k = @ + ¢,. The difference is (see figure 4):

(2ui — u?) — (2u(t + €,) — (0 + €,)%) = 1 — 2¢,(u — ). (6.6)
Remember that our asymptotics for Z,, are valid only up to order O(N -1/ ), ie. we
want to have:

> — (6.7)

N[

€u(u — ) —%

which implies that our asymptotics for Z,, are valid only if © > 0 and u ¢ N.

6.2. Possible asymptotic regimes for the orthogonal polynomials

We have similar considerations for the asymptotics of orthogonal polynomials, except that
the sum over k is now shifted by 1/2. This gives different regimes.
Equation (5.37) becomes in that regime

[ A
~ 1/8v
YN (o) N 2 sinh ¢,

Zi\fjop N(@E+1/2)u—(k+1/2)?)/2v) o(k+1/2)pe /714]614“1 wk,u(y)

X \/( kN:+0p+1 N—+2/2v g2kpde o2kde Ak)(quV:JE)p N—/2v e2kpe A)

x (1+ O(N’I/Q”)). (6.8)
The sum in the numerator is dominated by the largest values of

2(k+1/2)u — (k+1/2)*, (6.9)

Le. by k=ul=u+ (e, — 1)/2.
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The second largest term is obtained for k = @ — (e, + 1)/2. Notice that if u > 1, the
two largest terms are always u and # — 1. The difference is

(2(u +1/2)u — (a+1/2)?) — 2(u — 1/2)u — (@ — 1/2)%) = 2(u — ). (6.10)

Since our asymptotics are valid only up to order O(N~Y?)  the subleading term
should be discarded if ju — a| > 1, i.e. if u < 1 or if u is half-integer.
This implies that our asymptotics for v, are valid only if u > % and u ¢ N + %

6.3. Asymptotics in the regime u > 0, and u not integer or half-integer

From now on, we write:

u

n=N +p, p=2y¢

In N. (6.11)

In this section, we assume that « > 0 and u not integer or half-integer. The sum over
k in equation (6.2) is dominated by the terms k = u and k = u + ¢,.

6.3.1. Coefficient v,.  Thus we have:

N +
ZN+p <TpTc)

~ Hy o~ (N2/T2)F(Te,V) o= FO(T2,V) (27)P NP e~ (Np/Te)Vesz ()
« N (@ui—a%)/2v (Aa + N(u—al=(/2)/v Agse, + Q(Nfl/Q”)) . (6.12)

We also obtain:

By ~ 2 e~ WN/Te Venle) G2 (1 4 96, € sinh g, Nu-tl-(/20 Ao 4 o N—(1/2>u))
u e A

U

(6.13)

and:

u Aﬂ €
Ynip ~ 1+ 2 sinh? ¢, Nu=l=(/2)/v % + O(N~Y), (6.14)

U

YN+p 18 nearly periodic, with period In N/2v¢,. The amplitude is minimal of order N-1/2v

for u integer, and is maximal of order 1 for u half-integer; cf figure 5.

6.3.2. Coefficient 3,.  The sum in equation (5.45) is dominated by k = u and k = u+€,,
ie.:

i A u+te
By ~ dsinh® ¢, NCITIT0/2 rute L, (6.15)

U
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N n

Figure 5. Behaviour of ~,.

6.5.3. Orthogonal polynomials. — The two largest terms in the numerator of equation (5.37)
correspond to k = w and £ = u — 1 (not necessarily in this order); thus:

A
Unip(T0) ~ \/ Jsinh o,

X N2 e0e/? V Aa+1/Aa @Dmu(?/) + N@w/2 g=de/2 v Aa—l/Aa wﬂ—l,u(y)
T cosh g, NU—i-07D0/7 ceute (Agy . [Aq)

x (14+O(N~Y)). (6.16)

We also have:

A —u)/2v —
Unp1(Tg) ~ m[]\m 2w o=6el2 | [ A T A ban(y)

i N (@—w)/2v (¢e/2 \/m 1/%1—1,1/(3/)]

x [1 4 cosh ¢, NUu—8=(/2)/v g=eude (A, Y /A1 1+ O(N"Y2)).  (6.17)

6.3.4. Hilbert transforms.  Similarly, using equation (5.41), we find that the Hilbert
transform of the orthogonal polynomial 7, are asymptotically given by:

A i
ON4p-1(T0) ~ \/ W[N(uwwy e %2 \/(Aus1/Aa) Gap(y)
+ N~ @)/2v g9e/2 V(Az_1/A%) ¢ﬂ—1,u<y)]

X [1 4 cosh ¢, NClu—al=D/2v g=eude (A /A )] (6.18)
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and:

A _
PN1p(T0) ~ 4 W[N(u_u)/QV /2 \/(Aus1/Az) bun(y)
+ N0 em0e/2 J(Ay 1 [ AG) b1, (y)]

X [1 + cosh ¢, NCu—ul=0/2v geude (A4 /AL, (6.19)

6.3.5. Matriz form.  The matrix:

_ %4(37) ¢n,1<$)
\Ifn(:c)—< i) %(:c)) (6.20)

is in that regime (u > 0):

/| A _1 [ el/2te o=(1/2)%e Va-1,(Y)  da-1.(y)
\I/n(l') ~ QSinhgbe L <e(1/2)¢6 8(1/2)¢6 ) R < wﬂ,u(y) gbmy(y) (621)

where:
e [An o [ A
_ Aﬂ € *Eud)e
L =1 + cosh ¢, N@lu—u=1/2 f (e 0 669%) : (6.23)

6.3.6. Kernel.  The kernel K, (x,z’) is given by the Christoffel-Darboux formula:

wn (I)wnfﬂx/) — wn@;,)wnfl(l’)

K, (z,2) = 7, . 6.24
(x,2') =~ po—— ( )
We find:
N1/2V A u,V u—1,v " — u—1,v u,v !
Kn<.r, xl) ~ . 5 ’}/ﬂ 5 ,QZ)’LL, (y)w 1, (y) w 17 (y),l?b 5 (y ) (625)
4sinh” ¢, (v —v)
le.:
K, (z,2") ~ Ka,(y,9) dy (6.26)
n\4, u,v U,y dl‘ .

6.5.7. Large u limit. ~ Using Stirling’s formula equation (A.4) (cf appendix A), we find
that for large u, all those asymptotics match with the classical limit of section 4.4.
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7. Conclusion

We have computed the asymptotics of orthogonal polynomials in the birth of a cut critical
limit. This corresponds to the appearance of a new connected component for the support
of the eigenvalue density, away from other cuts.

We have found some universal behaviour, which depends only on the degree v of
vanishing of the density at the new cut, and 2 cosh ¢, which parametrizes the distance
between the new cut and the old cut. The parametrix near the new cut is simply
the system corresponding to a model matrix model in the potential 22, and with
i =[3 +2vp.((n — N)/In N)| eigenvalues.

This new universal behaviour does not seem to correspond to a conformal field theory
(unlike previously known critical behaviours), because the exponent of N is not constant.

It would be interesting to complete the ‘physicist’s proof’ presented here with a
mathematical one, for instance using Riemann—Hilbert methods as in [2, 11].
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Appendix A: The Stirling formula and other asymptotics

The Stirling formula is:

1
n! ~n"e "V2mn (1 + =+ ) (A1)

12n

from which we deduce:

1 3 n 1
— 1) ~ =n? T2y = S
In(l...(n—1)!) 5" Inn n + 21n27r T Inn 4+ O(1) (A.2)
and:
1
lan~n1n27r—%+-~-. (A.3)

Asymptotics of (j,. For large k we have:

3 k
In Gy ~ (K*/20) Ik — = k* + > Ink + O(k). (A.4)
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Appendix B: Elliptical functions

We introduce a few definitions concerning elliptical functions [24]: the elliptical sine

function sn(v, m) is defined by the following identity:

/ (v;m) dy
v = .
0 V(=) (1 —my?)
The complete integrals are defined by:

1 dy
K(m) =
= N
dy

K/m) o= K(1=m) = | VA0 + )

1 1 o 2
E(m) = / ﬂdy, E'(m) = E(1 —m).
0 1 —y?
When m — 0 one has:
T m 9m?
K~ (14242228 4. 3
2 ( + 1 + 6 + + O(m ))

1 2
K’wlnﬁ (1+%+96ﬂ4+---+0(m3))
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