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We consider the dynamics of interacting particles with reaction and diffusion. Starting from the underlying
discrete stochastic jump process we derive a general field theory describing the dynamics of the density field,
which we relate to an exact stochastic equation on the density field. We show how our field theory maps onto
the original Doi-Peliti formalism, allowing us to clarify further the issue of the “imaginary” Langevin noise
that appears in the context of reaction-diffusion processes. Our procedure applies to a wide class of problems
and is related to large deviation functional techniques developed recently to describe fluctuations of nonequi-
librium systems in the hydrodynamic limit.
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Many problems of current interest in statistical physics
involve strongly interacting particles that exhibit nontrivial
collective phenomena. One example is that of supercooled
liquids, where the dynamics slows down dramatically as
the glass transition is approached, due to the increasingly
collective nature of the dynamics �1�. Other examples are
given by systems of diffusing particles that branch and/or
annihilate and that are subjected to an external drive;
depending on the relative strength of these effects a variety
of nonequilibrium transitions and anomalous scaling behav-
ior can appear �2�. Developing theoretical techniques
for such difficult problems is of great importance, in view
of the diversity of situations in which they can apply, and
of much broader scope than the usual equilibrium statistical
mechanics. A natural framework in this context is that
of field theory, which combined with perturbative renormal-
ization group techniques has been applied successfully to a
wide range of nonequilibrium phase transitions �3�. Further-
more, even in nonperturbative regimes, field theory can be
very useful because it allows one to articulate different types
of approximations, such as the exact renormalization group
approach �4� and mode coupling theory �5,6�. A field theo-
retical formulation of interacting particle systems which has
become somewhat standard in recent years is provided by the
Doi-Peliti �DP� formalism �3�. Starting from a second-
quantization representation of the master equation, one ob-
tains, after a rather elaborate coherent state representation, a
field theory in terms of two fields � and �̂ �see below� which
has been the starting point of a very large number of studies
�3�. However, besides its intrinsic complexity, the formalism
appears to be fraught with difficulties. For example, the ac-
tion of the field theory corresponds to a reasonable-looking
Langevin equation for the density of particles, except that the
noise is often complex or even purely imaginary. This sug-
gests that the field �, despite its superficial resemblance to
the density, in fact lacks direct physical interpretation; see,
e.g., �7,8�.

The aim of this Rapid Communication is to formulate a
two-field theory for interacting particles in a transparent way,
starting from a natural representation of the microscopic
stochastic dynamics of the system in discrete space. Our for-

malism focuses on the physical density field � and, as a
consequence, is related directly to the stochastic equations
governing the evolution of �. The original DP formalism is
recovered by performing a canonical Cole-Hopf transforma-
tion. Our method is straightforward, free of the ambiguities
related to the imaginary noise, and applies to many different
situations �diffusion in an external force field, pairwise
interacting particles, branching and annihilation processes,
hard-core particles, etc.�. Furthermore, it is related to recent
techniques developed in mathematical physics �see below�
�9�. As an interesting physical side product, our field theory
in the case of liquids is found to be identical to the one
obtained from a Martin–Siggia–Rose–De Dominicis–Janssen
�MSRDJ� �10� representation of the stochastic equation on
the density field derived by Dean for Langevin particles �11�.
This is important since Dean’s derivation contains several
subtleties. In particular, some have raised concerns about
a possible hidden coarse-graining procedure that would
explain why the ideal gas entropy appears, quite unexpect-
edly, in the Langevin equation. We end the paper with
various technical comments, and possible applications and
extensions of our formalism.

Let us start from the simplest situation—two sites labeled
1 and 2 between which particles hop back and forth with a
Poisson rate W12 and W21. The �integer� numbers of particles
on the two sites are n1 and n2. The variation of ni between t
and t+dt will be denoted dJi as is standard for Poisson jump
processes �12�; it is not a small quantity since it is equal to 0
or ±1, but the probability for it to be nonzero is of order dt.
Of course, dJ1 and dJ2 are strongly correlated since a particle
leaving site 1 lands on site 2, and vice versa.
More precisely, dJ1=−dJ2= +1 with probability n2W21dt,
dJ1=−dJ2=−1 with probability n1W12dt, and dJ1=dJ2=0
otherwise. We now introduce, as in the MSRDJ approach,
the generating function for the histories of the system:
Z��n , n̂��= ��t exp�n̂1�t��dJ1−dn1�+ n̂2�t��dJ2−dn2��	, where
the averaging �¯	 is over the realizations of the Poisson
jump processes. From the above rules, it is easy to find the
result in the limit dt→0:
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Z��n, n̂�� = exp 
 dt�− n̂1�tn1 − n̂2�tn2 + n1W12�en̂2−n̂1 − 1�

+ n2W21�en̂1−n̂2 − 1�� . �1�

Obviously, one could add different processes, such as, for
example, on-site annihilation, where dJi=−1 with probability
ni� dt, branching, where dJi= +1 with probability ni� dt,
two-body annihilation, where dJi=−2 with probability
ni�ni−1�� dt, etc. With N sites on a lattice, the total MSRDJ
“action” reads S=ln Z:

S��n, n̂�� =
 dt�− �
i

n̂i�tni + �
�ij	

niWij�en̂j−n̂i − 1�

+ �
i

ni���e−n̂i − 1� + ��en̂i − 1�

+ ��ni − 1��e−2n̂i − 1�� , �2�

where �ij	 means that the sum is over all couples i , j.
In addition, a factorized initial condition with distribution
p(ni�0�) can be included by adding a contribution
�i�−n̂i�0�ni�0�+ln g(n̂i�0�)�, with g�x�=�qp�q�eqx. As is cus-
tomary in MSRDJ-type procedures �3� the average value
over the stochastic dynamics of any observable O, a generic
function of �ni�t��, equals the average of O over the field
theory characterized by the action �2� and the fields ni , n̂i,
which should be treated as continuous. This ends the deriva-
tion of the field theory which, as anticipated, turns out to be
much more straightforward than the DP one.

We now want to consider the continuum limit of �2�. With
this aim we write Wij =W0 exp��Ui−Uj� /2T� where Ui is an
on-site potential �possibly time dependent�, which varies on
scales much larger than the lattice spacing a, and T is the
temperature. Restricting consideration to nearest-neighbor
hopping, we therefore write Wij =W0�1−aeij ·�U�x , t� /2T�,
where x is the position in space of site i and eij is the unit
vector pointing from i to j. Defining the local density field
��x , t�=ni /ad and �̂�x , t�= n̂i and expanding to second order
in gradients, we finally obtain �in the a→0 limit, and with
�=0 for the time being—see below�

S���, �̂�� =
 dt dx�− �̂�x,t��t��x,t� + ��x,t����e−�̂ − 1�

+ ��e�̂ − 1���

− �
 dt dx � �̂�x,t� · ��x,t� � U�x,t�

+ �T
 dt dx�− ���x,t� · ��̂�x,t�

+ ��x,t����̂�x,t��2� , �3�

where ��W0a2 /2T is the mobility of the particles. Note that
the above derivation is easily generalized to many other pro-
cesses and is independent of the particular form of Wij as
long as detailed balance is verified �although one could also
consider nonpotential force fields as well�.

Before mapping this action onto the more standard DP
form, we want to specialize to the case where �=�=0, and
U�x , t� comes from a two-body interaction between the par-
ticles, i.e., U�x , t�=�dy ��y , t�V�x−y�. In this case, one finds
that the above action is identical to the one obtained by using
the standard MSRDJ representation for the following Lange-
vin equation, derived by Dean for interacting Brownian
particles:

�t��x,t� = � · ����x,t� �
�F���

��
+ ���x,t���x,t� , �4�

where � is a Gaussian white noise with corre-
lations ��	�x , t��
�x� , t��	=2�T�	
��x−x����t− t�� and F���
is the effective free energy, which has the naively expected
shape F���=T�dx ��x�ln ��x�+ �1/2��dx dy ��x�V�x
−y���y� �note that Dean set the mobility � of the particles to
unity�. This is quite remarkable, since ��x , t� in Dean’s equa-
tion is the exact continuum microscopic density of the sys-
tem, ��x , t�=�i�(x−ri�t�), before any coarse graining �ri�t�
denotes the position of particle i at time t�; it is therefore not
at all trivial that the effective free energy should have a
mean-field form. The fact that our derivation, which starts on
a lattice and never uses Ito calculus, leads to the same action
confirms the validity of Dean’s analysis.

Let us now consider a Cole-Hopf change of variables
from the above fields � , �̂ to new fields � , �̂ defined as

��x,t� = �̂�x,t���x,t−� �̂�x,t� = ln��̂�x,t�� . �5�

The Jacobian of this transformation is 1 and thus the measure
is preserved. The reason for t−= t−� will be discussed in the
following. Note that this change of variable could also be
defined on the discrete lattice and it was already considered
in the literature �3,8,13–15�, but the precise connection that
we establish here seems not to have been noted before. It is
straightforward to show that the above action S��� , �̂�� trans-
forms into

S���,�̂�� =
 dt dx��̂�− �t� + �T�2� + � � ��U���

+ �� − ��̂���1 − �̂�� . �6�

Setting U=0 in the above equation, we recover exactly the
DP action for the problem of diffusing, branching, and anni-
hilating particles, usually derived in a rather thorny way
from a second-quantization representation of the master
equation �up to some boundary terms, which for clarity will
be discussed later�. Note that for �=�=0, the above action
can be seen as the two-field representation of the propagator
of the non-Hermitian Fokker-Planck operator for particles
diffusing in a potential field �16�. In addition, in the case of
two-body interaction between the particles, the ���U��
term becomes ���dy ��y , t��̂�y , t��V�y−x���x , t��. Let us
finally remark that the mapping from the action �2� to its DP
counterpart works also on the lattice; the continuum limit
does not play any important role from this perspective.

The above action looks very close to a MSRDJ represen-
tation of the naive Langevin equation describing the problem
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if one interprets � as a density and shifts �̂→ �̂+1 in order
to have ��̂	=0 as in the usual MSRDJ method �see, e.g., �3��.
However, this interpretation is problematic since, as men-
tioned in the introduction, the noise term is unphysical �7�.
For example, in the case of diffusing particles with pairwise
interaction ��=�=0� the “noise” term has a correlator
���x , t���x� , t��	=2�x���x���xV��x−x����x���. For a uni-
form density � and V�x�=V0 exp�−x2�, the variance of the
noise is a negative definite operator, meaning that the noise
has an imaginary part. On the other hand, we clearly see that
this difficulty disappears when one uses the fields � , �̂, which
encode a very well-defined underlying Langevin equation,
albeit with non-Gaussian Poisson jump terms corresponding
to particle creation and annihilation.

Let us now focus on some technical but important subtle-
ties of the transformation �5�. Consider pair annihilation
�A+A→0� with rate � on a single site. The corresponding
contributions in the MSRDJ and DP actions are ����−1�
�e−2�̂−1� and ��2�1− �̂2�, which do not transform exactly
into one another under �5�. The underlying reason is that the
two field theories correspond to different time discretiza-
tions. This makes a difference when the action contains non-
linear terms evaluated at the same position in time and space,
because the response function ���x , t��̂�x , t��	 is discontinu-
ous when t= t�. This can be traced back to the fact that the
fields � and �̂ are the coherent state representations of cre-
ation and annihilation operators of the theory, a and a†,
which satisfy �a ,a†�=1. In the DP formalism the action is
obtained after normal ordering �3� and as a consequence
�̂�x , t���x , t��̂�x , t���x , t� is in fact the continuous time

limit of �̂�x , t��̂�x , t−����x , t−2����x , t−3��. Instead, the
field theory obtained from �2� through the transformation �5�
has no normal ordering and therefore the term ��2�x , t� is the

continuous time limit of ��̂�x , t���x , t−���̂�x , t−2����x , t
−3��. Thus, to transform our field theory into the DP form,
one has to use the transformation �5� and in addition to take
care of the time discretization, which amounts to performing
normal ordering, and to recover the −1 missing in the above
example. An alternative way to make the exact connection
between the two field theories is through the operator formal-
ism. After having expressed the master equation in terms of
the operators a ,a† one does a canonical transformation
a=e−�†

�, a†=e�†
such that �� ,�†�=1. The operators � ,�†,

originally introduced in �10�, lead to a different representa-
tion of the master equation. This then leads exactly, using
again a coherent state representation, to the field theory that
we derived above directly from the underlying stochastic
process, including the correct boundary terms.

Another case where our strategy applies is that of
interacting particles evolving under Newtonian dynamics,
for which Doi also derived a field theory �17�. Our
previous starting point consisted in deriving exact stochastic
equations for the density field and then applying the
MSRDJ procedure to get the field theory. For Hamiltonian
dynamics, one can derive an exact deterministic equation
for the density in position r and momentum p space,
��x ,p ; t�=�i��r−ri���p−pi�:

�t��x,p;t� = −
1

m
p · �x��x,p;t� +
 dx� dp� ��x�,p�;t��xV�x

− x�� · �p��x,p;t� . �7�

In this case only the initial conditions are stochastic. The
MSRDJ field theory corresponding to this equation maps ex-
actly onto Doi’s using the transformation, akin to �5�,
��x ,p ; t�=e−�̂�x,p;t���x ,p ; t� and �̂�x ,p ; t�=e�̂�x,p;t� �note that
�̂�x ,p ; t� is the MSRDJ field conjugate to ��x ,p ; t��.

Finally, our formalism in the continuum limit bridges the
gap between the purely microscopic Fokker-Planck evolution
operator and the hydrodynamics description studied recently
in the mathematical physics literature. A method to handle
both the hydrodynamic limit and large and rare fluctuations
around it has been developed in �9�. The starting point of this
work is very close to the generating functional we used.
However, in order to focus on hydrodynamic length and time
scales, as done in �9�, one has to consider a conjugated field
n̂i= �̂�x /L� that is constrained to varying only on length
scales of the order of the linear system size L. In this case the
“action” or functional �2� becomes a function of the hydro-
dynamic density field, which represents the average density
inside very large boxes, and can be related to the rate func-
tional introduced and studied in �9�. On the other hand, the
stochastic equations corresponding to our continuum limit
are valid on a scale � much larger than the lattice spacing a
but much smaller than the system size L. As a consequence
these allow one to tackle, with field theoretical techniques,
dynamic phase transitions where the physically relevant
length scales are much larger than a but not necessarily
much larger than the �diverging� correlation length . The
hydrodynamic limit of �9� instead corresponds to length
scales much larger than .

In conclusion our procedure allows one to derive rather
straightforwardly a field theory different from, but dual with,
the Doi-Peliti formalism. This could be useful in cases where
this by now standard framework does not work; see, e.g.,
�18,19�. It certainly avoids, unlike the DP approach, very
cumbersome computations due to normal ordering in cases
in which the rates are complicated functions of the local
density. Another advantage of our approach is that it is, al-
most by construction, directly related to stochastic equations
in the density field. The representation in terms of a stochas-
tic equation, especially after having taken the continuum
limit, is particularly appealing. It can be helpful for numeri-
cal investigations �20� since it might be more efficient to
integrate numerically than to simulate the original lattice
model. Furthermore, stochastic equations are very useful to
encode and study universality classes as has been understood
in the case of critical slowing down �21� and nonequilibrium
phenomena such as surface growth �22�. Some applications
of the results of this Rapid Communication are under way,
for example, the study of the condensation phase transition
in the zero-range process �23�. From a more general perspec-
tive our results make clear that exact stochastic equations can
always be obtained, thereby avoiding phenomenological
guesses which, especially for off-equilibrium cases, can be
very tricky �24�.
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