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1. Introduction

The purpose of this article is to generalize the method invented in [1], for the 2-matrix

model. The method of [1] is a diagrammatic technique for computing correlation functions

of the 1-matrix model in terms of residues on some algebraic curve.

Random matrix models play an important role in physics and mathematics [2], and

have a wealth of applications which are too long to list here. In this article, we consider

“formal” random matrix integrals, which are known to be generating functions for counting

some classes of discrete surfaces [3 – 7].

The partition function, free energy and correlation functions are all generating func-

tions enumerating some kinds of graphs (respectively closed graphs, connected closed

graphs, open graphs), which graphs can be seen as discrete surfaces.

In the formal model, the size N of matrices, is just a complex parameter, it needs not

be an integer, and all observables (free energy, correlation functions) always have a 1/N

expansion, because for each power of the expansion parameters, there is only a finite number

of graphs with a given power of N . The power of N in a graph is its Euler characteristic,

and thus the 1/N expansion is known as the “topological expansion” discovered by ’t

Hooft [4]. In the formal model, N is thus an expansion parameter, and working order by

order in N enumerates only discrete surfaces of a given topology [5]. An efficient method

for dealing with this formal model is to consider the Schwinger-Dyson equations, called

loop equations in this context [3, 8].

To large-N limit (i.e. planar topologies), the solution of loop equations is known to be

related to Toda hierarchy [9 – 12]. For this reason, the large-N expansion of matrix models

plays an important role in integrable systems, and in many areas of physics [13]. It was

understood by [14] that the low energy effective action of some string theory models is also

described by matrix models.

In the beginning, formal matrix models were considered only in their 1-cut phase,

because a potential which is a small deformation of a quadratic one, must have only one

well, i.e. the variables perturbatively explore only one well. However, a N ×N matrix has

N eigenvalues, and even though each of them can explore perturbatively only one well, they

do not need explore all the same well. That gives “multicut” solutions of matrix models,

where the number of eigenvalues near each extremum of the potential is fixed (fixed filling

fractions). Multicut solutions play an important role in string theory, as they describe

multi-particle states [14, 15]. Multicut solutions correspond to enumerating surfaces with

contact terms, which can be called “foam of surfaces” as described in [7, 16].
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The link between formal matrix models (which always have a 1/N expansion) and

convergent matrix integrals (which have a 1/N expansion only in the 1-cut case under

certain assumptions), has been better understood after the work of [16]. We emphasize

again, that the results developed in this article concern the formal matrix model with fixed

filling fractions, and should not be applied to convergent matrix model directly.

Recently, it has progressively become clear that large-N expansion of random matrix

models has a strong link with algebraic geometry [17]. The free energy and correlation

functions have been computed in terms of properties of an algebraic curve. The large-N

limit of the 1-point correlation function (called the resolvent) is solution of an algebraic

equation, which thus defines an algebraic curve. There have been many works which

computed free energy and correlation functions in terms of that algebraic curve. The

leading order resolvent and free energy were computed in the 1-cut case (algebraic curve

of genus zero) in the pioneering work of [5], then some recursive method for computing

correlation functions and free energy to all orders in 1/N were invented by [18, 19]. Those

methods were first limited to 1-matrix case and 1-cut.

Then for 1-matrix several works have dealt with multicut: Akeman and Ambjørn

found the first subleading term for the multicut resolvent and the 2-cut free energy [20,

21], Chekhov [22] and one of the authors together with Kokotov and Korotkin [23] found

simultaneously the first subleading term for the multi-cut free energy . Then a (non-

recursive) diagrammatic method was invented in [1] to find all correlation functions to all

orders, in the multicut case.

The 1-matrix model, corresponds to hyper elliptical curves only. In order to have more

general algebraic curves, one needs at least a 2-matrix model. For the 2-matrix models, the

loop equations have been known since [8], and have been written in a concise form in [24 –

26]. They have been used to find the subleading term of the free energy, first in the genus

zero case in [27], then in the genus 1 case in [28], and with arbitrary genus in [23]. The

purpose of this article is to generalize the diagrammatic method of [1] for the computation

of non-mixed correlation functions in the 2-matrix case. We solve the loop equations and

present their solutions (the non-mixed correlation function’s expansion) under two different

diagrammatic forms. We first build a cubic diagrammatic representation before presenting

an effective non cubic theory.

Outline of the article.

• In section 2, we introduce the model and our notations.

• Section 3 is dedicated to the derivation of loop equations. We derive the fundamental

”master loop equation” before deriving loop equations whose solutions are non-mixed

correlation functions

• In section 4, we show how a compact Riemann surface arises from the leading order

of the master loop equation and present notations and tools of algebraic geometry

needed for the computation of correlation functions.
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• In section 5, we present a diagrammatic solution of the loop equations as cubic

Feynman-like graphs.

• Section 6 is dedicated to the presentation of another representation of the non-mixed

correlation functions as graphs of a non cubic effective theory.

• In section 7, we study the example of the gaussian case corresponding to the 1-matrix

model limit.

2. Definitions and notations

2.1 Definition of the formal 2-matrix model with fixed filling fractions

In this article, we are interested in the study of the formal-two-matrix-model and the

computation of a whole family of observables. The partition function Z is the formal

matrix integral:

Z :=

∫

Hn×Hn

dM1dM2 e−NTr(V1(M1)+V2(M2)−M1M2) (2.1)

where M1 and M2 are two N × N hermitian matrices, dM1 and dM2 the products of

Lebesgue measures of the real components of M1 and M2 respectively, and V1 and V2 two

polynomial potentials of degree d1 + 1 and d2 + 1 respectively:

V1(x) =

d1+1
∑

k=1

gk

k
xk , V2(y) =

d2+1
∑

k=1

g̃k

k
yk . (2.2)

Formal integral means it is computed as the formal power series expansion order by

order in the gk’s (see [3 – 5]) of a matrix integral, where the non-quadratic terms in the

potentials V1 and V2 are treated as perturbations near quadratic potentials. Such a per-

turbative expansion can be performed only near local extrema of V1(x) + V2(y) − xy, i.e.

near points such that:

V ′
1(ξi) = ηi , V ′

2(ηi) = ξi (2.3)

which has d1d2 solutions. Therefore, if M 1 and M 2 are diagonal matrices, whose diagonal

entries are some ξi’s (resp. ηi’s), (M 1,M 2) is a local extremum of tr(V1(M1) + V2(M2) −

M1M2) around which we can perform a perturbative expansion.

The choice of such an extremum, around which the perturbative series is computed, is

equivalent to the choice of the number of eigenvalues near each pair (ξi, ηi), i = 1, . . . , d1d2,

i.e. the data of d1d2 integers ni such that:

d1d2
∑

i=1

ni = N . (2.4)

This means, that we can choose some contours Ci, i = 1, . . . , d1d2, such that the following

equality holds order by order in the perturbative expansion:
〈

1

2iπ

∮

Ci

tr
dx

x − M1

〉

= −ni . (2.5)

The numbers ni

N
are called filling fractions. Thus, in the formal model, filling fractions

are fixed parameters.
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Fat graphs and discrete random surfaces. Once filling fractions are chosen, we per-

form the perturbative expansion. Each term of that formal expansion is an expectation

value of a gaussian integral, and using Wick’s theorem, each term can be represented

by a Feynman graph. Because the integration variables are matrices, the graphs are “fat

graphs”, which have a 2-dimensional structure. The hermitean matrix models thus enumer-

ate oriented surfaces (other matrix ensembles can enumerate non-oriented surfaces). This

Formal expansion equivalent to an enumerating function of Feynman graphs is a standard

tool in physics [3, 4]. Random matrices have thus played a role in all theories where one

needs to sum over surfaces, i.e. string theory and quantum gravity (i.e. statistical physics

on a random lattice).

Following this interpretation, the loop equations [8] can be understood as relationships

linking surfaces of different genus and different number of boundaries.

2.2 Notations

2.2.1 Notation for sets of variables

We will consider functions of many variables x1, x2, x3, . . . , xk, or of a subset of those

variables. In that purpose we introduce the following notations:

Let K be a k−upple of integers:

K = (i1, i2, . . . , ik) . (2.6)

We denote k = |K| the length (or cardinal) of K. For any j ≤ |K|, we denote Kj the set

of all j−upples (i.e. subsets of length j) contained in K:

Kj := {J ⊂ K , |J | = j} . (2.7)

We define the following k−upple of complex numbers:

xK := (xi1 , xi2 , . . . , xik) . (2.8)

2.2.2 Correlation functions

For a given k, we define the correlation function:

wk(x1, . . . , xk) := Nk−2

〈

k
∏

i=1

tr
1

xi − M1

〉

c

, (2.9)

i.e., with the previous notations:

w|K|(xK) := N |K|−2

〈 |K|
∏

r=1

tr
1

xir − M1

〉

c

, (2.10)

where the formal average 〈 . 〉 is computed with the measure in eq. (2.1), and the subscript

c means connected part (cumulant).
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Those correlation functions can be expanded as formal series in 1
N2 in the large N limit:

wk(xK) =

∞
∑

h=0

1

N2h
w

(h)
k (xK) . (2.11)

The purpose of this article is to compute w
(h)
k (xK) as residues on an algebraic curve

and represent it with Feynman-like graphs of a cubic field theory on the curve.

We also define the following auxiliary functions:

uk(x, y;xK) := N |K|−1

〈

tr
1

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

|K|
∏

r=1

tr
1

xir − M1

〉

c

(2.12)

pk(x, y;xK) := N |K|−1

〈

tr
V ′

1(x) − V ′
1(M1)

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

|K|
∏

r=1

tr
1

xir − M1

〉

c

(2.13)

ak(x;xK) := N |K|−1

〈

tr
1

x − M1
V ′

2(M2)

|K|
∏

r=1

tr
1

xir − M1

〉

c

. (2.14)

Notice that uk,(x, y;xK) is a polynomial in y of degree d2 − 1, and pk(x, y;xK) is a poly-

nomial in x of degree d1 − 1 and in y of degree d2 − 1.

It is convenient to renormalize those functions, and define:

uk(x, y;xK) := uk(x, y;xK) − δk,0(V
′
2(y) − x) (2.15)

and

wk(xK) := wk(xK) +
δk,2

(x1 − x2)2
. (2.16)

Let us remark that all those functions have the same kind of topological expansion as

wk(xK) and one defines p
(h)
k (x, y;xK) and u

(h)
k (x, y;xK) as well like in eq. (2.11).

We define the function:

Y (x) := V ′
1(x) − w1(x) (2.17)

which we see below, describes the algebraic curve.

The 1
N2 expansion of such correlation functions is known to enumerate discrete surfaces

of a given topology, whose polygons carry a spin + or - (Ising model on a random surface [13,

29]), see [7] for the multicut case i.e. foam of Ising surfaces.

The w
(h)
k are generating functions enumerating genus h discrete surfaces with k bound-

aries of spin +.

– 6 –
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As an example, w
(3)
2 enumerates surfaces of genus 3 with 2 boundaries:

w
(3)
2 = (2.18)

Notice that the question of boundaries with non uniform spin, i.e. with changes of

boundary conditions has been solved to leading order only in [30].

3. Loop equations

There exist several methods for computing the free energy and correlation functions, the

one we consider here is the “loop equation” method, which is nothing but Schwinger-Dyson,

or Ward identities [3, 8]. They implement the Virasoro or W-algebra constraints on the

partition function [17, 31], i.e. the fact that the matrix integral is left unchanged under a

change of variable. The loop equations are valid in the formal model, order by order in the

expansion parameters.

For the 2-matrix model, loop equations have been known since [8], and written in a

more systematic way in [17, 24 – 26].

3.1 The master loop equation

It is well known that in the large-N limit, loop equations imply an algebraic equation for

the functions w1, i.e. for the function Y (x), called the master loop equation. Let us briefly

recall how to derive it (see [26]):

• the change of variables M2 → M2 + ε 1
x−M1

implies:

0 = a0(x) − xw1(x) + 1 (3.1)

• the change of variables M1 → M1 + ε 1
x−M1

V ′
2(y)−V ′

2 (M2)
y−M2

implies:

w1(x)u0(x, y) +
1

N2
u1(x, y;x) = V ′

1(x)u0(x, y) − p0(x, y) − yu0(x, y) +

+V ′
2(y)w1(x) − a0(x) (3.2)

i.e., putting everything together:

(y − Y (x))u0(x, y) +
1

N2
u1(x, y;x) = (V ′

2(y) − x)(V ′
1(x) − y) − p0(x, y) + 1 . (3.3)

– 7 –
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We define:

E(x, y) = (V ′
2(y) − x)(V ′

1(x) − y) − p0(x, y) + 1 . (3.4)

The master loop equation is thus:

(y − Y (x))u0(x, y) +
1

N2
u1(x, y;x) = E(x, y)

(3.5)

where E(x, y) is a polynomial of degree d1 + 1 in x and d2 + 1 in y.

3.2 Loop equations for correlation functions

We now derive the loop equations which allow to compute recursively the k-point non-mixed

correlation functions.

• The change of variables δM2 = 1
x−M1

∏k
i=1 tr 1

xi−M1
implies (see [26]):

ak(x;xK) = xwk+1(x,xK) − N2wk(xK) (3.6)

• The change of variables δM1 = 1
x−M1

V ′
2(y)−V ′

2 (M2)
y−M2

∏k
i=1 tr 1

xi−M1
implies (see [26]):

w1(x)uk(x, y;xK) +

k−1
∑

j=0

∑

J∈Kj

uj(x, y;xJ )wk−j+1(x,xK−J)+

+
1

N2
uk+1(x, y;x,xK)+

+
k

∑

j=1

∂

∂xj

uk−1(x, y;xK−{j}) − uk−1(xj , y;xK−{j})

x − xj
=

= V ′
1(x)uk,0(x, y;xK) − pk(x, y;xK) (3.7)

−yuk(x, y;xK) + V ′
2(y)wk+1(x,xK) − ak(x;xK)

i.e. for k ≥ 1:

(y − Y (x))uk(x, y;xK) = −
k−1
∑

j=0

∑

J∈Kj

uj(x, y;xJ )wk−j+1(x,xK−J)−

−
1

N2
uk+1(x, y;x,xK)+

+

k
∑

j=1

∂

∂xj

uk−1(xj , y;xK−{j})

x − xj
− pk(x, y;xK)

(3.8)

The purpose of this article is to solve eq. (3.8) and compute w
(h)
k for all k and h.

– 8 –
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4. Leading order and algebraic geometry

4.1 Leading order of the master loop equation

To large-N leading order, the master loop equation eq. (3.5) reads:

(y − Y (x))u0(x, y) = E(x, y)
(4.1)

Since u0(x, y) is a polynomial in y, it has no singularity for y finite and the l.h.s.

vanishes for y = Y (x), i.e.:

E(x, Y (x)) = 0 (4.2)

This defines an algebraic curve E(x, y) = 0.

Notice that to leading order we have:

u0(x, y) =
E(x, y)

y − Y (x)
(4.3)

and

u0(x, Y (x)) = Ey(x, Y (x)) . (4.4)

4.2 Introduction to some algebraic geometry

We use notations similar to [32] or [33]. Some useful hints for understanding this section

can be found in appendix A.

Let us parameterize the curve E(x, y) = 0 with a running point p of a compact Riemann

surface E . It means that we define two meromorphic functions x(p) and y(p) on E such

that:

E(x, y) = 0 ⇔ ∃p ∈ E x = x(p) , y = y(p) (4.5)

The functions x and y are not bijective. Indeed, since E(x, y) is a polynomial of degree

d2 + 1 in y, it has d2 + 1 solutions, i.e. for a given x, there exist d2 + 1 points p on E such

that x(p) = x. Thus, the Riemann surface is made of d2 + 1 x-sheets, respectively d1 + 1

y-sheets. Hence, from now on, we use these notations:

x(p) = x ⇔ p = pj(x) for j = 0, . . . , d2 (4.6)

y(p) = y ⇔ p = p̃j(x) for j = 0, . . . , d1 . (4.7)

We will most often omit the exponent 0 corresponding to the physical sheet: p = p0.

For instance, one can write E(x, y) as:

E(x(p), y(q)) = −gd1+1 ×

d1
∏

i=0

(x(p) − x(q̃i(y)))

= −g̃d2+1 ×

d2
∏

i=0

(y(q) − y(pi(x))) . (4.8)

– 9 –
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Considering that the w
(h)
k ’s, u

(h)
k ’s and p

(h)
k ’s are multivalued functions in their argu-

ments x, we now work with differentials monovalued on the Riemann surface. Let us write

the differentials:

Wk+1(p,pK) := wk+1(x(p),x(pK))dx(p)
k

∏

i=1

dx(pi) (4.9)

Uk(p, y;pK) := uk(x(p), y;x(pK))dx(p)

k
∏

i=1

dx(pi) (4.10)

Pk(x, y;pK) := pk(x, y;x(pK))

k
∏

i=1

dx(pi) . (4.11)

Note: in the following, the arguments of a function will be called x(p) or y(r) if the

function is defined on the basis, and p or r if the function is defined on the Riemann

surface — and so multivalued on the basis.

Let us now review the notations we use in this article to denote some basic objects.

For definitions and details, we refer the reader to appendix A and [32] or [33].

Canonical cycles: Ai, Bi for i = 1, . . . , g where g is the genus of the compact Riemann

surface E (0 ≤ g ≤ d1d2 − 1), such that:

Ai ∩ Bi = δi,j . (4.12)

Branch points in x: they are the zeroes of dx on the surface. We denote them by ai,

i = 1, . . . , d2 + 1 + 2g.

Bergmann kernel: it is the unique bilinear differential with only one double pole at p = q

satisfying:

B(p, q) ∼
p→q

dx(p)dx(q)

(x(p) − x(q))2
+ finite and ∀i

∮

p∈Ai

B(p, q) = 0 . (4.13)

Abelian differential of third kind: it is the differential defined by dSq,r(p) =
∫ q

q′=r
B(p, q′). Notice that it has the following properties:

Res
p→q

dSq,r(p) = 1 = −Res
p→r

dSq,r(p) and ∀i

∮

Ai

dSq,r(p) = 0 . (4.14)

4.3 Fixed filling fractions

To large-N leading order, the loop equation eq. (4.2) is an algebraic equation:

E(x, Y (x)) = 0 . (4.15)

The coefficients of E are determined using filling fractions. Since w1(x) = V ′
1(x) − Y (x),

eq. (2.5) gives (up to a redefinition of Ai):

1

2iπ

∮

Ai

ydx = −
1

2iπ

∮

Ai

xdy = εi (4.16)

– 10 –
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Let us recall that (see section 2.1) the εi’s are called filling fractions, and they are given

parameters (moduli) of the model. They don’t depend on the potential or on any other

parameter.

In particular, since all correlation functions wk(x1, . . . , xk) are obtained by derivation

of w1 with respect to the potential V1 [19], we have for k ≥ 2:

1

2iπ

∮

Ai

wk(x1, . . . , xk)dx1 = 0 . (4.17)

Equation eq. (4.16) together with the large x and y behaviors eq. (A.2) and eq. (A.1),

are sufficient to determine completely all the coefficients of the polynomial E(x, y), and

thus the leading large-N resolvent w1(x).

In what follows, we assume that the leading resolvent, i.e. the function Y (x) is known,

and we refer the reader to the existing literature on that topic, for instance [17, 26, 34, 35].

5. Diagrammatic solution as cubic graphs

In this section we present a first way of describing the solution of the loop equation eq. (3.8)

by trivalent diagrams whose h loop level corresponds to the h-th term W
(h)
k of the topo-

logical expansion.

5.1 Solution in the planar limit

Before considering the full 1
N2 expansion, let us focus on the structure of the leading terms

corresponding to planar fat graphs. Thus the 1/N2 terms in the loop equations are omited.

From now on and particularly in this paragraph, we drop the genus zero exponent (0)

when it is clear that we deal with the planar limit, i.e. w
(0)
k (xK) → wk(xK).

Up to now, the loop equations were written in terms of multivalued functions. It is

more appropriate to write them in terms of meromorphic differentials on the Riemann

surface. Thus, one writes eq. (3.8) in the planar limit as follows:

(y(r) − y(p))Uk(p, y(r);pK) = −

k−1
∑

j=0

∑

J∈Kj

Uj(p, y(r);pJ )Wk−j+1(p,pK−J)

dx(p)
+

+
k

∑

j=1

dpj

(

Uk−1(pj , y(r);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

−

−Pk(x(p), y(r);pK)dx(p) . (5.1)

Starting from eq. (5.1), we determine Wk and Uk for any k by recursion on k.

Let us assume that one knows Wj(pJ) for j ≤ k and Uj(p,pJ ) for j ≤ k − 1. The

first step consists in the determination of Wk+1(p,pK) as a function of the lower order

correlation functions. The second step leads to the computation of Uk(p,pK). Once this is

done, one knows the correlation functions one order upper. The initial terms W2 and U1

can be found in the literature [17, 26, 34] and are rederived in appendix B.
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5.1.1 Determination of Wk+1 for k ≥ 2

If one chooses r = p in eq. (5.1), one gets (using eq. (4.3) and eq. (4.4)):

Ey(x(p), y(p))Wk+1(p,pK) = −Pk(x(p), y(p);pK) dx(p) −

−

k−1
∑

j=1

∑

J∈Kj

Uj(p, y(p);pJ )Wk−j+1(p,pK−J)

dx(p)
+

+

k
∑

j=1

dpj

(

Uk−1(pj , y(p);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

. (5.2)

Notice that the two equations eq. (5.1) and eq. (5.2) imply by recursion, that Wk and

Uk are indeed meromorphic differentials on the curve, in all their variables.

We define:

∀(i, j) Ri
k(p

j , pK) :=
Uk(p

j, y(pi); pK)

Ey(x(pj), y(pi))dx(pj)
. (5.3)

Note that we have already obtained (see eq. (4.3)) that:

Ri
0(p

l) = δi,l . (5.4)

Using eq. (4.14), the Cauchy formula gives:

Wk+1(p,pK) = − Res
p′→p

Wk+1(p
′,pK)dSp′,o(p) (5.5)

where o ∈ E is an arbitrary point on the Riemann surface.

The integrand has poles in p′ only at p′ = p and the branch points p′ = as (this can

be proven recursively by differentiating wrt the potential ∂
∂V1

). Using Riemann bilinear

identity eq. (A.10), we can then move the integration contour and get:

Wk+1(p,pK) =
∑

s

Res
p′→as

Wk+1(p
′,pK)dSp′,o(p) . (5.6)

We now introduce the loop equation eq. (5.2) inside this expression and remark that

only one term has poles when p′ → as. Thus Wk+1(p,pK) can be written:

Wk+1(p,pK) = −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

Uj(p
′, y(p′);pJ )

Ey(x(p′), y(p′))

Wk−j+1(p
′,pK−J)

dx(p′)
dSp′,o(p)

= −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

R0
j (p

′,pJ)Wk−j+1(p
′,pK−J)dSp′,o(p) . (5.7)

Notice that Uk(p, y;pK) is a polynomial in y whose degree is equal to d2 − 1. Consid-

ering its d2 values for y = y(pi) with i ∈ [1, d2], the interpolation formula reads:

∀y
(y − y(p))Uk(p, y;pK)

E(x(p), y)
= −

d2
∑

i=1

Uk(p, y(pi);pK)(y(p) − y(pi))

(y − y(pi))Ey(x(p), y(pi))
(5.8)
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for y = y(p), this gives:

R0
k(p,pK) = −

d2
∑

i=1

Ri
k(p,pK) . (5.9)

So, in eq. (5.7), one obtains the recursive formula for Wk(pK):

Wk+1(p,pK) =

d2
∑

i=1

k−1
∑

j=1

∑

J∈Kj

∑

s

Res
p′→as

Ri
j(p

′;pJ)Wk−j+1(p
′,pK−J)dSp′,o(p) .

(5.10)

The sum over j represents the summation over all partitions of K into two subsets J

and K − J .

5.1.2 Determination of Ri
k

In this section, we find a recursion formula for Ri
k.

For this purpose, one needs to know an intermediate expression defining the different

Uk’s as well as a relation linking the value of

k−1
∑

j=0

Uj(p
i, y(p);pJ )Wk−j+1(p

i,pK−J) (5.11)

for different i’s.

Let us rewrite here eq. (5.1):

(y(r) − y(q))Uk(q, y(r);pK) = −
k−1
∑

j=0

∑

J∈Kj

1

dx(q)
Uj(q, y(r);pJ )Wk−j+1(q,pK−J) +

+

k
∑

j=1

dpj

(

Uk−1(pj, y(r);pK−{j})

x(q) − x(pj)

dx(q)

dx(pj)

)

−

−Pk(x(q), y(r);pK)dx(q) . (5.12)

In what follows, we use the properties of rational functions defined on the basis and

not on the Riemann surface (for some more details, see the case k = 1 in appendix B).

For r = q = pi, eq. (5.12) reads:

0 = −
k−1
∑

j=0

∑

J∈Kj

1

dx(pi)
Uj(p

i, y(pi);pJ)Wk−j+1(p
i,pK−J) +

+

k
∑

j=1

dpj

(

Uk−1(pj, y(pi);pK−{j})

x(pi) − x(pj)

dx(pi)

dx(pj)

)

−

−Pk(x(pi), y(pi);pK)dx(pi) −

= −
k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p

i, y(pi);pJ)Wk−j+1(p
i,pK−J) +
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+
k

∑

j=1

dpj

(

Uk−1(pj, y(pi);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

−

−Pk(x(p), y(pi);pK)dx(p) (5.13)

where we have used that x(p) = x(pi).

Now, write eq. (5.12) with r = pi and q = p:

(y(pi) − y(p))Uk(p, y(pi);pK) = −

k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p, y(pi);pJ)Wk−j+1(p,pK−J) +

+
k

∑

j=1

dpj

(

Uk−1(pj , y(pi);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

−

−Pk(x(p), y(pi);pK)dx(p) (5.14)

and inserting eq. (5.13) we get:

(y(pi)−y(p))Uk(p, y(pi);pK) = −
k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p, y(pi);pJ )Wk−j+1(p,pK−J) +

+

k−1
∑

j=0

∑

J∈Kj

1

dx(p)
Uj(p

i, y(pi);pJ )Wk−j+1(p
i,pK−J). (5.15)

This formula is in principle sufficient to compute the Uk’s recursively, and then, one

can compute the Ri
k’s. However, what we need in order to get diagrammatic rules, is a

closed recursion relation for the Ri
k’s themselves. In order to achieve this aim, we show

that:

Lemma. for any k ≥ 1, one has:

Uk(p, y;pK) =
E(x(p), y)dx(p)

y − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

t=1

W|Kt|+1(p
jt ,pKt)

(y − y(p(jt))) dx(p)

(5.16)

where the sum over K1 ∪ . . . ∪ Kr = K is a sum over all partitions of K into r subsets.

Proof. It can be proven easily by recursive action of ∂/∂V1, as in [19], however, in order

to have a self-contained method, we want to derive it here only from the loop equations

eq. (3.8).

The proof works by recursion on k. It is proven in appendix B for k = 1. Let us

assume that, it holds for any l ≤ k − 1.

Notice, that since both sides of eq. (5.16) are polynomials of y, of degree d2 − 1, it is

sufficient to prove that the equality holds for d2 values of y, namely, it is sufficient to prove

it for y = y(pi), i = 1, . . . , d2. Therefore, one has to prove that:

Uk(p, y(pi);pK)

dx(p)
=

Ey(x(pi), y(pi))

y(pi) − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

∑

j1 6=j2 6=...6=jr−1 6=0,i
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W|Kr|+1(p
i,pKr)

dx(p)

r−1
∏

t=1

W|Kt|+1(p
jt ,pKt)

(y − y(pjt)) dx(p)
(5.17)

where only the sums in which one of the jt’s is equal to i contribute.

The recursion hypothesis for j ≤ k − 1, and any J ∈ Kj gives:

Uj(p
i, y(pi);pJ)

dx(p)
= Ey(x(pi), y(pi))

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i

r
∏

t=1

W|Jt|+1(p
jt ,pJt)

(y(pi) − y(pjt)) dx(p)
. (5.18)

In order to compute Uj(p, y(pi);pJ), one has to keep only terms in the sum such that

there exists a t such that jt = i, i.e.

Uj(p, y(pi);pJ)

dx(p)
= Ey(x(pi), y(pi))

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr−1 6=0,i

W|Jr|+1(p
i,pJr)

(y(pi) − y(p)) dx(p)

r−1
∏

t=1

W|Jt|+1(p
jt,pJt)

(y(pi) − y(pjt)) dx(p)
. (5.19)

Insert that into eq. (5.15):

(y(pi) − y(p))Uk(p, y(pi);pK) =

= −Ey(x(pi), y(pi))

k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr−1 6=0,i

Wk−j+1(p,pK−J)
W|Jr|+1(p

i,pJr)

(y(pi) − y(p)) dx(p)

r−1
∏

t=1

W|Jt|+1(p
jt ,pJt)

(y(pi) − y(pjt)) dx(p)
+

+Ey(x(pi), y(pi))
k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i

Wk−j+1(p
i,pK−J)

r
∏

t=1

W|Jt|+1(p
jt,pJt)

(y(pi) − y(pjt)) dx(p)
. (5.20)

The difference between these two summation, keeps only jt 6= 0, i, thus:

Uk(p, y(pi);pK) = Ey(x(pi), y(pi)) dx(p)
k−1
∑

j=0

∑

J∈Kj

d2
∑

r=1

∑

J1∪...∪Jr=J

∑

j1 6=j2 6=...6=jr 6=i,0

Wk−j+1(p
i,pK−J)

(y(pi) − y(p)) dx(p)

r
∏

t=1

W|Jt|+1(p
jt ,pJt)

(y(pi) − y(pjt)) dx(p)
(5.21)

i.e. we have proven the lemma for k, for y = y(pi), and since both sides are polynomials in

y of degree d2 − 1, the equality holds for all y. ¤

– 15 –



J
H
E
P
1
2
(
2
0
0
5
)
0
3
4

Theorem. For all k ≥ 1, one has:

d2
∑

i=1

k−1
∑

j=0

∑

J∈Kj

Uj(p
i, y(p);pJ )Wk−j+1(p

i,pK−J) =

=
k−1
∑

j=1

∑

J∈Kj

Uj(p, y(p);pJ )Wk−j+1(p,pK−J) (5.22)

Proof. Let us simply perform some basic rearrangements:

d2
∑

i=1

k−1
∑

j=0

∑

J∈Kj

Uj(p
i, y(p);pJ )Wk−j+1(p

i,pK−J) =

=
∑

K1
S

L=K

d2
∑

j1=1

W|K1|+1(p
j1,pK1)U|L|+1(p

j1, y(p);pL)

= Ey(x(p), y(p))dx(p)
∑

K1
S

L=K

d2
∑

j1=1

d2
∑

r=1

∑

K2∪...∪Kr+1=L

∑

j2 6=j3 6=...6=jr∈[1,d2]−{j1}

W|K1|+1(p
j1 ,pK1)

W|Kr+1|+1(p,pKr+1)

(y(p) − y(pj1))

r
∏

a=2

W|Ka|+1(p
ja,pKa)

(y(p) − y(pja))dx(p)

= Ey(x(p), y(p))dx(p)

d2
∑

r=1

∑

K1∪...∪Kr+1=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

a=1

W|Ka|+1(p
ja ,pKa)W|Kr+1|+1(p,pKr+1)

(y(p) − y(pja))dx(p)

=
∑

Kr+1
S

J=K

W|Kr+1|+1(p,pKr+1)U|J |(p, y(p);pJ ) (5.23)

¤

This identity simplifies eq. (5.15) which becomes now:

(y(pi) − y(p))Ri
k(p,pK)dx(p) = Wk+1(p

i,pK) + (5.24)

+

k−1
∑

j=1

∑

J∈Kj

∑

l 6=0,i

Uj(p
l, y(pi);pJ )Wk−j+1(p

l,pK−J)

Ey(x(p), y(pi))dx(p)
.

One can now write down the final recursion formula for Ri
k(p,pK) in these terms:

Ri
k(p,pK) =

Wk+1(p
i,pK)

(y(pi) − y(p))dx(p)
+

+

k−1
∑

j=1

∑

J∈Kj

∑

l 6=0,i

Ri
j(p

l,pJ)Wk−j+1(p
l,pK−J)

(y(pi) − y(p))dx(p)
.

(5.25)

The relations eq. (5.7) and eq. (5.25) allow to compute recursively Wk for any k. This

solution can be represented by binary trees as it is presented in section (5.3).
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5.2 Solution for any genus

In the previous paragraph, one has kept only the leading terms when performing the

changes of variables to obtain the Schwinger-Dyson equations. Let us now write the 1
N2

corrective term for the same changes of variables so that we write a system of equations

giving the whole 1
N2 expansion. One obtains the following loop equations:

(y(r) − y(p))Uk(p, y(r);pK) = −Pk(x(p), y(r);pK)dx(p) −

−
k−1
∑

j=0

1

dx(p)
Uj(p, y(r);pJ )Wk−j+1(p,pK−J) −

−
1

N2

Uk+1(p, y(r); p,pK)

dx(p)
+

+
∑

j

dpj

(

Uk−1(pj, y(r);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

. (5.26)

For the following, one should remind the expression of the function Y (x(p)):

Y (x) := V ′
1(x) − w1(x) . (5.27)

Then, for h ≥ 1:

Y (h)(x(p)) = −
W

(h)
1 (p)

dx(p)
. (5.28)

Consider now the 1
N2 expansion of this equation order by order. The genus h term

(corresponding to the 1
N2h term) gives:

(y(r) − y(p))U
(h)
k (p, y(r);pK) −

h
∑

m=1

Y (m)(x(p))U
(h−m)
k (p, y(r);pK)− =

= −P
(h)
k (x(p), y(r);pK)dx(p)

−
h

∑

m=0

k−1
∑

j=0

1

dx(p)
U

(m)
j (p, y(r);pJ )W

(h−m)
k−j+1 (p,pK−J) −

−
U

(h−1)
k+1 (p, y(r); p,pK)

dx(p)
+

∑

j

dpj

(

U
(h)
k−1(pj , y(r);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

. (5.29)

When y(r) = y(p):

h
∑

m=1

Y (m)(x(p))U
(h−m)
k (p, y(p);pK) =

= P
(h)
k (x(p), y(p);pK)dx(p) +

h
∑

m=0

k−1
∑

j=0

1

dx(p)
U

(m)
j (p, y(p);pJ )W

(h−m)
k−j+1 (p,pK−J) +

+
U

(h−1)
k+1 (p, y(p); p,pK)

dx(p)
−

∑

j

dpj

(

U
(h)
k−1(pj, y(p);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

. (5.30)
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These two equations are the generalization of eq. (5.1) and eq. (5.2) for any genus in

the topological expansion. With all these tools, we are now able to compute all the terms

of the 1
N2 expansion of non mixed traces.

In this section, we proceed in two steps to compute the correlation function W
(h)
k

for any k and any h, and represent it as a Feynman graph with h loops. The first step

consists in the determination of a recursive relation for W
(h)
k , whereas the second one gives

R
i,(h)
k :=

U
(h)
k

(pj ,y(pi);pK)

Ey(x(pj),y(pi))dx(pj )
considered the lower order terms known.

For the following, let h and k be two given positive integers. Let us consider W
(m)
j

known for any j if m < h and any j ≤ k if m = h. One also assume that R
i,(m)
j is known

for any i and any j if m < h and any j < k if m = h. Starting from these assumptions, one

computes W
(h)
k+1 and R

i,(h)
k , what will allow to know any term recursively.

5.2.1 A recursive formula for W
(h)
k+1

Let us remind eq. (5.30) in a more suitable way to emphasize that it allows us to compute

W
(h)
k+1(p, pK) with our assumption:

W
(h)
k+1(p,pK)U0(p, y(p)) = −

h−1
∑

m=0

W
(h−m)
1 (p)U

(m)
k (p, y(p);pK) −

−P
(h)
k (p, y(p);pK)dx(p)2 −

−

h
∑

m=0

k−1
∑

j=0,m+j 6=0

U
(m)
j (p, y(p);pJ )W

(h−m)
k−j+1 (p,pK−J) −

−U
(h−1)
k+1 (p, y(p); p,pK) +

+
∑

j

∑

j

dpj

(

U
(h)
k−1(pj, y(p);pK−{j})

x(p) − x(pj)

dx(p)

dx(pj)

)

dx(p) . (5.31)

Remark that the r.h.s. contains only known terms except P
(h)
k (p, y(p);pK). Fortu-

nately, it plays no role in Cauchy formula.

Indeed, we write the Cauchy formula, move the integration contour and vanish integrals

around the cycles thanks to the Riemann bilinear identity eq. (A.10). This gives:

W
(h)
k+1(p,pK) = − Res

p′→p
W

(h)
k+1(p

′,pK)dSp′,o(p)

=
∑

s

Res
p′→as

W
(h)
k+1(p

′,pK)dSp′,o(p) . (5.32)

We now introduce eq. (5.31) inside this formula and keep only terms which have poles

at the branch points:

W
(h)
k+1(p,pK) = −

h−1
∑

m=0

∑

s

Res
p′→as

W
(h−m)
1 (p′)R

(m)
k (p′;pK)dSp′,o(p) −
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−
h

∑

m=0

k−1
∑

j=0,m+j 6=0

∑

s

Res
p′→as

R
(m)
j (p′;pJ)W

(h−m)
k−j+1 (p′,pK−J)dSp′,o(p) −

−
∑

s

Res
p′→as

R
(h−1)
k+1 (p′; p′,pK)dSp′,o(p) . (5.33)

For convenience, let us note:

W
(0)
1 (p) ≡ 0 . (5.34)

Then, the recursive definition of W
(h)
k+1(p, pK) reads:

W
(h)
k+1(p,pK) =

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0,m+j 6=0

∑

s

Res
p′→as

R
i,(m)
j (p′;pJ )W

(h−m)
k−j+1 (p′,pK−J)dSp′,o(p)+

+

d2
∑

i=1

∑

s

Res
p′→as

R
i,(h−1)
k+1 (p′; p′,pK)dSp′,o(p)

(5.35)

5.2.2 A recursive formula for R
i,(h)
k

The second step consists in the derivation of an equivalent formula for R
i,(h)
k . We proceed

in the same way as for the genus 0 case: we use the rational properties of some of the

correlation functions to write the recursive formula, with the aid of a relation similar to

eq. (5.22).

Let G
(h)
k (x(q), y(r)) be:

G
(h)
k (x(q), y(r)) = (y(r) − y(q))U

(h)
k (q, y(r);pK) +

U
(h−1)
k+1 (q, y(r); q,pk)

dx(q)
+

+

h
∑

m=1

k
∑

j=0

1

dx(q)
U

(m)
j (q, y(r);pJ )W

(h−m)
k−j+1 (q,pK−J) +

+
k−1
∑

j=0

1

dx(q)
Uj(q, y(r);pJ )W

(h)
k−j+1(q,pK−J) . (5.36)

The loop equation eq. (5.29) shows that G
(h)
k (x(q), y(r)) is a rational function in x(q)

and a polynomial in y(r).

Thus, one has:

G
(h)
k (x(pi), y(pi)) = G

(h)
k (x(p), y(pi)) (5.37)

which can be written:

(y(pi) − y(p))U
(h)
k (p, y(pi);pK) =

h
∑

m=0

k
∑

j=0

W
(m)
j+1 (pi,pJ)U

(h−m)
k−j (pi, y(pi);pK−J)

dx(p)
+

+
U

(h−1)
k+1 (pi, y(pi); pi,pK)

dx
−
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−

h
∑

m=0

k
∑

j=0

W
(m)
j+1 (p,pJ )U

(h−m)
k−j (p, y(pi);pK−J)

dx(p)
−

−
U

(h−1)
k+1 (p, y(pi); p,pK)

dx
. (5.38)

We now establish a relation similar to eq. (5.22) in order to present our recursive

formula in such a way that it can be graphically interpreted.

In order to achieve this aim, one has to determine an explicit intermediate formula for

U
(h)
k (p, y; pK). Let us assume that (for the proof, see appendix C):

U
(h)
k (p, y(pi);pK) =

=
Ey(x, y(pi))

y(pi) − y(p)

min(d2,k+h)
∑

r=1

∑

K1
S

...
S

Kr=K

h
∑

hα=0

k+h
∑

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}

1

Ω
(5.39)

W
(h1)
k1+1(p

i,pK1, p
j1,1 , . . . , pj1,k1−|K1|)

(

∏r
α=2 W

(hα)
kα+1(p

jα,0,pKα , pjα,1, . . . , pjα,kα−|Kα|)
)

dx(p)r−k−1+
P

kα
∏

α,β y(pi) − y(pjα,β)

where Ω =
∏

α(kα − |Kα|)! is a symmetry factor and one has the following constraints:

•
∑

o(hα + kα) = h + k;

• 0 ≤ |Kα| ≤ kα.

One should note that the only external parameter entering these constraints is k + h.

It is now possible to derive an equality equivalent to eq. (5.22). One shows — in

appendix D — that:

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (p,pJ)U

(h−m)
k−j (p, y(p);pK−J) + U

(h−1)
k+1 (p, y(p); p,pK) =

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (pi,pJ )U

(h−m)
k−j (pi, y(p);pK−J) +

+

d2
∑

i=1

U
(h−1)
k+1 (pi, y(p); pi,pK) . (5.40)

This equality allows us to write:

(y(pi) − y(p))U
(h)
k (p, y(pi);pK) =

=
h

∑

m=0

k
∑

j=0;mj 6=kh

∑

l 6=0,i

W
(m)
j+1 (pl,pJ )U

(h−m)
k−j (pl, y(pi);pK−J)

dx(p)
+

+
∑

l 6=0,i

U
(h−1)
k+1 (pl, y(pi); pl,pK)

dx(p)
+ W

(h)
k+1(p

i,pK)Ey(x, y(pi)) . (5.41)
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That is to say:

R
i,(h)
k (p,pK) =

h
∑

m=0

k
∑

j=0;mj 6=kh

∑

l 6=0,i

W
(m)
j+1 (pl,pJ )R

i,(h−m)
k−j (pl;pK−J)

(y(pi) − y(p))dx(p)
+

+
∑

l 6=0,i

R
i,(h−1)
k+1 (pl; pl,pK)

(y(pi) − y(p))dx(p)
+

W
(h)
k+1(p

i,pK)

(y(pi) − y(p))dx(p)
.

(5.42)

5.3 Diagrammatic solution: a cubic theory

This section is the principal part of the article. We define a correspondence between the

correlation functions and a system of Feynman-like graphs. To every k-point function of

genus h, we associate a graph with k external legs and h loops and eq. (5.35) and eq. (5.42)

become two relations describing these graphs as functions of graphs with less legs or loops

thanks to some rules we introduce in this part.

First of all, let us represent diagrammatically eq. (B.6) and eq. (B.16) as the propaga-

tors of the theory:

W2(p, q) = p q (5.43)

and

Ri
1(p, p1) = p p

1

i
pi (5.44)

These two diagrams represent the basis of the whole representation: they allow to draw

the k > 2 correlation functions.

Note that the second propagator can also be seen has a vertex of valence 2, and this

is the way it will be presented in the diagrammatic rules.

Let us now introduce the whole diagrammatic representation.

Let R
i,(h)
k , and W

(h)
k+1 respectively, be represented as white and black disks with h holes

and k external legs (remember that W
(h)
k+1 is the generating function of discrete surfaces

with k + 1 boundaries and h holes):

W
(h)
k+1(p,pK) := p

(h)

k
p

k-1
p

1
p

2
p

(5.45)

R
i,(h)
k (p,pK) :=

(h)

p i

p
1

p
k

p
k-1

p
2

(5.46)
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Let us introduce also the following propagators and vertices:

non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

Residue cubic-vertex: q :=
∑

s Resq→as

colored cubic-vertices: i

p

p

pl

m

m

:=
(1−δl,m)(1−δm,i)(1−δi,l)

(y(pi)−y(pl))dx(p)

2-valent vertex: pp iil := 1
(y(pi)−y(pl))dx(p)

(1 − δi,l)

One can now simply interpret the recursion relations eq. (5.35) and eq. (5.42) in terms

of diagrams.

The relation eq. (5.35) reads:

p

(h)

k
p

k-1
p

1
p

2
p

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0,m+j 6=0

∑

J∈Kj

J

K-J

i

(h-m)

(m)

p p’ +

+

d2
∑

i=1

K
i

(h-1)

p’p (5.47)

And given lower order R
i,(m)
l ’s and W

(m)
l ’s, one can obtain R

i,(h)
k diagrammatically by

writing eq. (5.42):

(h)

p i

p
1

p
k

p
k-1

p
2

=

h
∑

m=0

k
∑

j=0,m+j 6=0

∑

J∈Kj

d2
∑

l=0
J

K−J

i

(h−m)

(m)

p i

p l

p l

+

+

d2
∑

l=0

p

(h−1)

i
Ki

p

pl

l

+
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+ ip
p

K
i

(h)

(5.48)

From these diagrammatic relations, one can see that W
(h)
k+1 is obtained by the summa-

tion over all diagrams with 1 root, k leaves and h loops following the rules:

• The vertices have valence 2 or 3; there are 2h + k − 1 trivalent vertices;

• The edges, are arrowed or not, the arrowed edges are waved or not;

• The subgraph made of arrowed edges forms a skeleton tree (i.e. a tree whose vertices

have valence up to 3);

• from each trivalent vertex comes one waved and one non-waved propagator;

• two vertices linked with a waved propagator have different indices;

• the k leaves are non-arrowed propagators finishing at pj’s (i.e. B(., pj));

• the root is an arrowed non waved propagator starting from p.

A practical way to draw these graphs is to draw every skeleton tree of arrows, put k

non arrowed propagators as leaves, close it with h non arrowed propagators linking one

vertex to one of its descendents in order to obtain h loops and then put waves so that from

each trivalent vertex comes one waved and one non-waved arrow with the possibility that

every waved arrow leads to a bivalent vertex.

Remarks:

• The order for computing the residues is following the arrows backwards from leaves

to root.

• Wk+1 is symmetric in its k + 1 variables, although it is not obvious from this repre-

sentation.

• There is no symmetry factor arising in this representation unlike [1].

5.4 Examples

Let us briefly show some diagrams for small h and small k.
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5.4.1 Leading terms: tree level

We begin by the leading terms of the first correlation functions, i.e. for h = 0.

• k = 3:

W
(0)
3 (p, p1, p2) =

d2
∑

i=1

ii
pp +

1
p

2
p

2
p

1
p

(5.49)

=

d2
∑

i=1

∑

s

Res
p′→as

[

B(p′i, p1)B(p′, p2)

(y(p′i) − y(p′))dx(p′)
+

B(p′i, p2)B(p′, p1)

(y(p′i) − y(p′))dx(p′)

]

dSp′,o(p)

and

R
i,(0)
2 (p, p1, p2) =

d2
∑

j=1

+p p
i

j

i

j

p
2

p
1

p
2

p
1

+

+
∑

j 6=i

+ pp

j

i

j

i

p
2

p
1

p
1

p
2

(5.50)

Let us show that W
(0)
3 (p, p1, p2) is indeed symmetric in p1, p2 and p3.

For every branch point a, let q be the only qi such that dx(q) → 0 when q → a.

W
(0)
3 (p, p1, p2) =

d2
∑

i=1

∑

s

Res
q→as

B(qi, p1)B(q, p2) + B(qi, p2)B(q, p1)

(y(qi) − y(q))dx(q)
dSq,o(p)

=

d2
∑

i=1

∑

s

Res
q→as

Res
r→qi

B(r, p1)B(q, p2) + B(r, p2)B(q, p1)

(y(r) − y(q))(x(r) − x(q))
dSq,o(p)

=
∑

s

Res
q→as

Res
r→q

B(r, p1)B(q, p2) + B(r, p2)B(q, p1)

(y(r) − y(q))(x(r) − x(q))
dSq,o(p)

=
∑

s

Res
q→as

B(q, p1)B(q, p2)dSq,q(p)

(y(q) − y(q))dx(q)

= −
∑

s

Res
q→as

B(q, p1)B(q, p2)dSq,q(p)

(y(q) − y(q))dx(q)

=
∑

s

Res
q→as

B(q, p1)B(q, p2)B(q, p)

dx(q)dy(q)
(5.51)

which is nothing but the formula found in [35] and is a way of writing Rauch’s variational

formula.
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• k = 4:

W
(0)
4 (p, p1, p2, p3) =

d2
∑

i=1

d2
∑

j=1

p

i

j

1
p

2
p

3
p

+

d2
∑

i=1

d2
∑

j=1

i
p

j

3
p

1
p

2
p

+

+

d2
∑

i=1

d2
∑

j 6=i=1

i

p

j

3
p

1
p

2
p

+

+(permutations of {p1, p2, p3}) (5.52)

One has to consider all the permutations on the external legs. Thus, W
(0)
4 is the sum

over 18 different diagrams.

5.4.2 Topological expansion: one and two loops level

Consider now the first non planar examples beginning by the simplest one, the one loop

correction to the one point function.

• k = 1 and h = 1:

W
(1)
1 (x(p))dx(p) =

p

=

d2
∑

i=1

p i

=

d2
∑

i=1

∑

s

Res
q→as

dSq,o(p)
B(q, qi)

y(qi) − y(q)
. (5.53)

One can check that this is identical to the result of [23].

• k = 2 and h = 1:

W
(1)
2 =

d2
∑

i=1

∑

j∈[1,d2]−{i}









i j +
i

j

+

+
j

i








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+

d2
∑

i=1

d2
∑

j=1









i j +
j

i

+

+

j

i

+
j

i











. (5.54)

Analytically, this reads:

W
(1)
2 (p, p1) =

d2
∑

i=1

∑

j∈[1,d2]−{i}

∑

s

Res
p′→as

dSp′,o(p)

(y(p′i) − y(p′))(y(p′i) − y(p′j))dx2(p′)

[

B(p′, p1)B(p′i, p′j) + B(p′i, p1)B(p′, p′j) + B(p′, p′i)B(p1, p
′j)

]

+

+

d2
∑

i=1

d2
∑

j=1

∑

s,t

Res
p′→as

Res
p′′→at

dSp′,o(p)

(y(p′i) − y(p′))(y(p′′j) − y(p′′))dx(p′)dx(p′′)
[

B(p′, p1)B(p′′, p′′j)dSp′′,o(p
′i) + B(p′i, p1)B(p′′, p′′j)dSp′′,o(p

′) +

+ B(p′′, p′)B(p1, p
′′j)dSp′′,o(p

′i) + B(p1, p
′′)B(p′, p′′j)dSp′′,o(p

′i)
]

. (5.55)

• k = 1 and h = 2:

W
(2)
1 =

d2
∑

i=1

d2
∑

j=1

d2
∑

k=1















k

j

i

+ kj

i

+

+ k
ji

+ k

i

j +
k

j

i 




+

+

d2
∑

i=1

∑

j∈[1,d2]−{i}

d2
∑

k=1





k

j

i
+ k

j
i +

+ k j
i

+
k

j
i






+

+

d2
∑

i=1

d2
∑

j=1

∑

k∈[1,d2]−{j}















 j

k

i

+ j k

i

+
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+ k

j

i

+
k

j

i








+

+

d2
∑

i=1

∑

j∈[1,d2]−{i}

∑

k∈[1,d2]−{j}

[

kji

+ k
j

i

+
k

j

i






. (5.56)

6. An effective non cubic theory

The Feynman-like graphs described up to now correspond to cubic vertices only, but the

price to pay is the introduction of auxiliary functions R
i,(h)
k . Nevertheless, in order to study

some problems, this property is not needed and one may prefer an effective diagrammatic

representation for only W
(h)
k but vertices with valence up to d2−1. This section is dedicated

to building such a diagrammatic representation. It consists in resumming the linked waved

vertices into one multivalent vertex:

∼ (6.1)

6.1 Leading order: genus 0

We have already written the equations necessary to define this effective theory. Let us

consider eq. (5.7) and eq. (5.16):

Wk+1(p,pK) = −
∑

s

Res
p′→as

k−1
∑

j=1

∑

J∈Kj

1

dx′

Uj(p
′, y(p′);pJ)

Ey(x(p′), y(p′))
Wk−j+1(p

′,pK−J)dSp′,o(p) (6.2)

Uk(p, y;pK) =
E(x(p), y)dx(p)

y − y(p)

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

t=1

W|Kt|+1(p
jt ,pKt)

(y − y(pjt)) dx(p)
. (6.3)

This second equation taken for y = y(p) reads:

Uk(p, y(p);pK)

Ey(x(p), y(p))dx(p)
=

d2
∑

r=1

∑

K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

r
∏

t=1

W|Kt|+1(p
jt ,pKt)

(y(p) − y(pjt)) dx(p)
(6.4)

– 27 –



J
H
E
P
1
2
(
2
0
0
5
)
0
3
4

Introduce it in eq. (6.2) and get a closed recursive formula for the Wk’s:

Wk+1(p,pK) = −
∑

s

Res
p′→as

d2
∑

r=1

∑

K0∪K1∪...∪Kr=K

d2
∑

j1 6=j2 6=...6=jr=1

W|K0|+1(p
′,pK0)

r
∏

t=1

W|Kt|+1(p
′jt ,pKt)

(y(p′) − y(p′jt)) dx(p′)
dSp′,o(p)

(6.5)

Let us introduce the following Feynman rules:

non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

r + 2 -vertex

(1 ≤ r ≤ d2)

with one marked

edge:

q 1

q

q

q 2

q 3

q r

j

j

j

j

:=
−

∑

s

∑

j1 6=...6=jr 6=0 Resq→as
∏r

t=1
1

(y(q)−y(qjt ))dx(q)

Remark that one leg of the multiple vertex is marked: on this leg, there is no summation

over the different sheets.

Using these rules, one can diagrammatically write the recursive relation as follows:

p

k
p

k-1
p

k-2
p

3
p

1
p 2

p

=

d2
∑

r=1

∑

K0∪K1∪...∪Kr=K

0

K

K

r

K

3

K

2

q

1

q

q

r j

 j
q

q
3

2 j

 j
q

K

1

(6.6)

From this relation, one can see that Wk+1(p,pK) is obtained as the summation over

all trees with k + 1 external legs and following the rules:

• The vertices have valence r + 2 such as 1 ≤ r ≤ min(k − 1, d2);

• The edges are arrowed;

• One of the legs of each vertex is marked
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• The k leaves are non arrowed propagators ending at pj’s;

• The root is an arrowed propagator starting from p.

The drawbacks of these effective rules induced by the existence of multivalent vertices

is balanced by the simplicity of the vertices and the absence of different propagators.

6.2 Any genus h

Let us now study the extension of this theory to any genus.

Once again, the fundamental equations have already been written. Let us recall to

mind eq. (5.35) and eq. (5.39):

W
(h)
k+1(p,pK) = −

h
∑

m=0

k
∑

j=0,m+j 6=0

∑

s

Res
p′→as

U
(m)
j (p′, y(p′);pJ )

Ey(x(p′), y(p′))
W

(h−m)
k−j+1 (p′,pK−J)dSp′,α(p) −

−
∑

s

Res
p′→as

U
(h−1)
k+1 (p′, y(p′); p′,pK)

Ey(x(p′), y(p′))
dSp′,α(p) (6.7)

and, for i 6= 0:

U
(h)
k (p, y(pi);pK) =

=
Ey(x, y(pi))

y(pi) − y(p)

min(d2,k+h)
∑

r=1

∑

K1
S

...
S

Kr=K

h
∑

hα=0

k+h
∑

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}

1

Ω
(6.8)

W
(h1)
k1+1(p

i,pK1 , p
j1,1 , . . . , p(j1,k1−|K1|

))
(

∏r
α=2 W

(hα)
kα+1(p

jα,0 ,pKα , pjα,1 , . . . , pjα,kα−|Kα|)
)

dx(p)r−k−1+
P

kα
∏

α,β y(pi) − y(pjα,β)

In order to introduce this second formula inside the first one, one has to use the

interpolation formula to consider the case where i = 0:

U
(m)
l (p, y(p);pL)

Ey(x(p), y(p))
=

= −

min(d2,l+m)
∑

r=1

∑

L1
S

...
S

Lr=L

m
∑

mα=0

l+m
∑

lα=|Lα|

∑

j1 6=...6=jr∈[1,d2]

1

Ω
(6.9)

W
(m1)
l1+1 (pj1,0 ,pL1 , p

j1,1 , . . . , pj1,l1−|L1|)
∏r

α=2 W
(mα)
lα+1 (pjα,0 ,pLα , pjα,1 , . . . , pjα,lα−|Lα|)

dx(p)r−l−1+
P

lα(y(pj1,0) − y(p))
∏

α,β(y(pj1,0) − y(pjα,β)

Recursively, it is easy to check that it can be written:

U
(m)
l (p, y(p);pL)

Ey(x(p), y(p))dx(p)
=

min(d2,l+m)
∑

r=1

∑

L1
S

...
S

Lr=L

m
∑

mα=0

l+m
∑

lα=|Lα|

∑

jα,β 6=jα′,β′∈[1,d2]

1

Ω′

r
∏

α=1

W
(mα)
lα+1 (pjα,0 ,pLα , pjα,1 , . . . , pjα,lα−|Lα|)

dx(p)lα−|Lα|+1
∏lα−|Lα|

β=0 (y(p) − y(pjα,β))
(6.10)
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where Ω′ is some other symmetry factor depending only on the same parameters as Ω.

One is now able to write an explicit recursion formula for the W
(h)
k ’s that can be graph-

ically represented with the Feynman rules introduced in this section. The introduction of

eq. (6.10) in eq. (6.7) gives:

W
(h)
k+1(p,pK) = −

∑

s

Res
p′→as

d2
∑

r=1

∑

K0
S

K1
S

...
S

Kr=K

h
∑

hα=0

k+h
∑

kα=|Kα|

∑

jα,β 6=jα′,β′∈[1,d2]

1

Ω′

dSp′,o(p)W
(h0)
|K0|+1(p

′,pK0)

r
∏

α=1

W
(hα)
kα+1(p

′jα,0 ,pKα , p′jα,1 , . . . , p′jα,kα−|Kα|)

dx(p′)kα−|Kα|+1
∏kα−|Kα|

β=0 (y(p′) − y(p′jα,β))
−

−
∑

s

Res
p′→as

U
(h−1)
k+1 (p′, y(p′); p′,pK)

Ey(x(p′), y(p′))
dSp′,α(p) . (6.11)

That is to say:

p

(h)

k
p

k-1
p

1
p

2
p

=

d2
∑

r=1

∑

hα

∑

K0∪K1∪...∪Kr=K

1

Ω′

r

1

0

K

K

K

(h )r

1

(h )

(h )

0

+

+

d2
∑

r=1

∑

hα

∑

K1∪...∪Kr=K

1

Ω′

rK

1K

(h )r

1(h ) . (6.12)

Remark that we have splitted the diagrams in the r.h.s. in order to reproduce the

recursion relation. Nevertheless, the first term in the r.h.s. is nothing else but a particular

case of the second term where the marked leg of the vertex is left alone inside one of

the W ’s.

Hence, the h-th order expansion term of the correlation function W
(h)
k+1 is obtained as

the summation over all Feynman diagrams with k + 1 external legs and h loops following

the same rules as exposed in the genus 0 case, i.e.:

• The vertices have valence r + 2 such as 1 ≤ r ≤ d2;
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• The edges are arrowed or not;

• One of the legs of each vertex is marked;

• The subgraph made of arrowed edges forms a skeleton tree;

• The k leaves are non arrowed propagators ending at pj’s;

• The root is an arrowed propagator starting from p;

• a non arrowed edge links a vertex to one of its descendants along the tree.

6.3 Examples

Let us review some simple examples of this description.

W
(0)
3 (p, p1, p2) = qq +

2 2

1
1

p

p

p

p

p

p
.

(6.13)

Analytically, this reads:

W
(0)
3 (p, p1, p2) =

=

d2
∑

i=1

∑

s

Res
q→as

[

B(qi, p1)B(q, p2) + B(qi, p2)B(q, p1)
] dSq,o(p)

(y(qi) − y(q))dx(q)
(6.14)

W
(1)
1 (p) = p q

=
∑

s

d2
∑

i=1

Res
q→as

dSq,o(p)
B(q, qi)

(y(qi) − y(q))dx(q)
(6.15)

W
(1)
2 (p, p1) =

=

p p’
p’’

p
1

+

p p’
p’’

p
1

+

+
1

2

p p’ p
1

+

p p’ p
1

+
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+

p p
p’ p’’

1

+

p
p’ p’’ p

1

. (6.16)

7. The gaussian case: the 1-matrix model limit.

In this section, we are interested in the special case where d2 = 1, i.e. one has a gaussian

potential in M2. This situation is very important because it links our results to the 1-matrix

model studied in [1]. Indeed, when one of the potentials is gaussian — V2 for example

—, the integration over one of the variables — M2 in this case — is gaussian and can

be straightforwardly performed without giving any contribution to the formal expansion.

Then, the 2-matrix model with one gaussian potential V2(y) = g2

2 y2 is equivalent to the

1-matrix model with a potential V = V1 − x2

2g2
. We check in this part that our results

coincide with the ones obtained directly from the 1-matrix model in [1]. Actually, it is a

good way to better understand the structure obtained.

In this case, the Riemann surface is an hyperelliptical surface with only two x-sheets.

The equation x(p) = x has only two solutions. Let us call them p and p, i.e. p0 = p and

p1 = p. They obey the following relations:

x(p) = x(p) , y(p) = −y(p) . (7.1)

The algebraic equation generating the Riemann surface reads:

E(x(p), y(r)) = −g2(y(r) − y(p))(y(r) − y(p)) = −g2(y(r)2 − y(p)2) . (7.2)

One can also remark that:

Uk(p, y;pK) = g2Wk+1(p,pK) . (7.3)

That is to say:

R0
k(p,pK) =

Uk(p, y(p);pK)

Ey(x(p), y(p))dx(p)
= −

Wk+1(p,pK)

2y(p)dx(p)
. (7.4)

So that:

R0
k(p,pK) = R1

k(p,pK) =
Wk+1(p,pK)

2y(p)dx(p)
. (7.5)

7.1 Diagrammatic rules

One can now study how the diagrammatic rules introduced earlier behave in this limit.

• The cubic rules

Because V2 is gaussian, the Feynman rules become:
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non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

Residue cubic-vertex: q :=
∑

s Resq→as

simple vertex: pp := − 1
2y(p)dx(p)

The last component of the Feynman diagrams, the colored cubic-vertex, implies three

different x-sheets. Because there exists only two such sheets in the gaussian case, this

vertex vanishes:

i

p

p

pl

m

m

≡ 0 . (7.6)

Considered that the bivalent and trivalent vertices only appear together, one can

merge them into one whose value is equal to −
∑

s Resq→as

1
2y(q)dx(q) , and one recov-

ers [1]:

q
→ q

.

(7.7)

• The effective theory

The effect of the gaussian limit on the effective theory is to make it cubic. One

obtains the following rules:

non-arrowed propagator: p q := W2(p, q)

arrowed propagator: p q := dSq,o(p)

cubic vertex

(only for r=1):

q 1

q

q

q 2

q 3

q r

j

j

j

j

:= −
∑

s Resq→as

1
2y(q)dx(q)
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Hence, the two theories turn into only one cubic theory in this limit which is the one

derived in [1]. Indeed, the corresponding recursive relation appears to be:

W
(h)
k+1(p, pK) = −

∑

l

Res
q→al

W
(h−1)
k+2 (q, q, pK)dSq,o(p)

2y(q)dx(q)
−

−

h
∑

m=0

k
∑

j=0,j+m6=0

∑

l

Res
q→al

W
(m)
j+1 (q, pJ )W

(h−m)
k−j+1 (q, pK−J)dSq,o(p)

2y(q)dx(q)
(7.8)

Remark. Diagrammatically, this limit can be easily interpreted. Starting from the gen-

eral cubic theory, in order, to obtain the 1-matrix model graphs from the 2-matrix model

ones, one only has to take the length of the waved propagators to 0. In this case, the

graphs containing at least one colored vertex vanish.

Everything works as if the waved propagators of the 2-matrix model were unstable

particles which decay into stable ones represented by non-waved propagators. Then the

1-matrix limit is obtained by taking the life time of these particles to 0.

One shall also note that there is no symmetry factor in the 2-matrix model graphs of

the cubic theory whereas there are not well understood ones in the 1-matrix case. The

derivation of the 1-matrix model as a limit exhibits how these factors arise. They come

from the same contribution given by different diagrams in this limit. This observation

exhibits how the 2-matrix model seems more fundamental.

8. Conclusion

In this article, we have generalized the diagrammatic technique of [1] to compute all non-

mixed correlation functions of the 2-matrix model, to all orders in the topological expansion.

The result can be represented diagrammatically, with some cubic Feynman rules, which

are just convenient notations for writing residues on an algebraic curve and it is not clear

whether there exists a field theory giving rise to these graphs or not.

This shows that the method discovered in [1] is very universal, i.e. it works for all

algebraic curves, not only hyper elliptical curves.

The future prospects of that work are to find the diagrammatic rules for computing the

free energy to all order in the topological expansion, and also all mixed correlation functions

(using the result of [30]). Another possible extension is to work out the multimatrix model,

i.e. the chain of matrices as in [26], and in particular the limit of matrix quantum mechanics.

We believe that this technique could apply to many other integrable models.

Another question, is to understand the limit of critical points, i.e. when some branch

points and double points start to coalesce. It seems that the diagrammatic technique

should just reduce to consider only residues at branch points which become critical. One

may expect to recover some relation with the Kontsevich integral, in relationship with KP

integrable hierarchies.
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A. Needed tools of algebraic geometry

We review here some definitions and properties all along this article.

Behaviors at ∞. We see from eq. (2.17), that at large x, we have y ∼ V ′
1(x)− 1

x
+O(1/x2)

in the x-physical sheet. (resp. at large y, we have x ∼ V ′
2(y)− 1

y
+O(1/y2) in the y-physical

sheet). This means that the functions x(p) and y(p) have two poles, ∞+ and ∞− on E .

The function x(p) has a simple pole at ∞+ and a pole of degree d2 at ∞−, while the

function y(p) has a simple pole at ∞− and a pole of degree d1 at ∞+. We have:

y(p) ∼
p→∞+

V ′
1(x(p)) −

1

x(p)
+ O(1/x(p)2) (A.1)

x(p) ∼
p→∞−

V ′
2(y(p)) −

1

y(p)
+ O(1/y(p)2) (A.2)

In particular:

Res
∞+

y dx = Res
∞−

x dy = 1 . (A.3)

Genus and cycles. The curve E is a compact Riemann surface with a finite genus

g ≤ d1d2 − 1. If g = 0, E is simply connected, and if g 6= 0, there exist 2g linearly

independent irreducible cycles on E , such that by removing those 2g cycles we get a simply

connected domain. It is possible to choose canonically the 2g cycles as Ai, Bi, i = 1, . . . , g,

such that:

Ai ∩ Aj = 0 , Bi ∩ Bj = 0 , Ai ∩ Bj = δij . (A.4)

Branch points. The x-branch points ai, i = 1, . . . , d2 + 1 + 2g, are the zeroes of the

differential dx, respectively, the y-branch points bi, i = 1, . . . , d1 + 1 + 2g, are the zeroes of

dy. We assume here, that all branch points are simple and distinct, i.e. that the potentials

are not critical. Notice also, that Ey(x(p), y(p)) vanishes (simple zeroes) at the branch

points (it vanishes in other points too).

Bergmann kernel. On the Riemann surface E , there exists a unique abelian bilinear

differential B(p, q), with one double pole at p = q, such that:

B(p, q) ∼
p→q

dx(p)dx(q)

(x(p) − x(q))2
+ finite and ∀i

∮

p∈Ai

B(p, q) = 0 . (A.5)

It is symmetric:

B(p, q) = B(q, p) . (A.6)

Its expression in terms of theta-functions can be found in [32, 33], it depends only on the

complex structure of E .
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Abelian differential of third kind. On the Riemann surface E , there exists a unique

abelian differential of the third kind dSq,r(p), with two simple poles at p = q and at p = r,

such that:

Res
p→q

dSq,r(p) = 1 = −Res
p→r

dSq,r(p) and ∀i

∮

Ai

dSq,r(p) = 0 . (A.7)

We have:

dSq,r(p) =

∫ q

q′=r

B(p, q′) (A.8)

where the integration path does not intersect any Ai or Bi.

dSq,r(p) is a differential on E in terms of p, but it is a multivalued function of q (and

of r). After crossing a cycle Bi, it has no discontinuity, and after crossing a cycle Ai, it has

a discontinuity:

disc(dSq,r(p)) = dSq+,r(p) − dSq−,r(p) =

∮

q′∈Bi

B(p, q′) . (A.9)

Note that the discontinuity is independent of q.

Riemann bilinear identity. If ω is a differential form on E , such that
∮

q∈Ai
ω(q) = 0,

we have:

∑

i

Res
q→zi

ω(q)dSq,r(p) =

g
∑

i=1

∮

q∈Ai

discAi
(ω(q)dSq,r(p)) −

−

g
∑

i=1

∮

q∈Bi

discBi
(ω(q)dSq,r(p))

=

g
∑

i=1

∮

q∈Ai

ω(q) discAi
(dSq,r(p))

=

g
∑

i=1

discAi
(dSq,r(p))

∮

q∈Ai

ω(q)

= 0 (A.10)

where the l.h.s. is the sum over all residues on a fundamental domain, the poles zi are

all the poles of ω as well as the pole at q = p. This identity is obtained by moving the

integration contours on the surface, and taking carefully into account discontinuities along

the nontrivial cycles (see [32, 33]).

B. Two points function in the planar limit

We present here a new derivation leading term of the 2-point function’s leading term

W2(p1, p2).

This case is of special interest because it represents some initial condition for the

diagrammatic rules. In fact, the two correlation functions W2(p1, p2) and U1(p1, y; p2), are

the basis of the whole structure of the W
(h)
k ’s. Moreover, it allows us to show through a

simple example the way we proceed further for the general case.
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We first rederive the well known result that the two point function is nothing else but

the Bergmann Kernel (see [34] for instance).

Let o ∈ E be an arbitrary point on the Riemann surface. Since the abelian differential

of the 3rd kind defined in eq. (4.14) dSq,o(p) behaves as dx(p)
x(p)−x(q) when q → p, one can

write the Cauchy formula under the form:

W2(p, p1) = −Res
q→p

dSq,o(p)W2(q; p1) . (B.1)

One can see from eq. (5.2) with k = 1, and from eq. (4.17), that the integrand in

the r.h.s. has poles only for q → p and q → p1, Since W2 has vanishing A-cycles due to

eq. (4.17), we can use the Riemann bilinear identity eq. (A.10), and get:

W2(p, p1) = Res
q→p1

dSq,o(p)W2(q; p1) . (B.2)

For k = 1, eq. (5.2) reads:

Ey(x(p), y(p))W2(p, p1) = −P1(x(p), y(p); p1)dx(p) +

+dp1

(

U0(p1, y(p))

x(p) − x(p1)

dx(p)

dx(p1)

)

(B.3)

and thus we have:

W2(p; p1) = Res
q→p1

dSq,o(p)W2(q; p1)

= − Res
q→p1

dSq,o(p)
P1(x(q), y(q); p1)dx(q)

Ey(x(q), y(q))
+

+ Res
q→p1

dSq,o(p)
dp1

(

U0(p1,y(q))
x(q)−x(p1)

dx(q)
dx(p1)

)

Ey(x(q), y(q))
(B.4)

Since P1(x(q), y(q); p1) is a polynomial in x(q) and y(q), it has no pole at q = p1. For the

second term we use eq. (4.3):

W2(p; p1) = Res
q→p1

dSq,o(p)W2(q; p1)

= dp1 Res
q→p1

dSq,o(p)
E(x(p1), y(q)) dx(q)

(x(q) − x(p1))(y(q) − y(p1))Ey(x(q), y(q))

= dp1 dSp1,o(p)

= B(p1, p) . (B.5)

We thus recover the well known result: the two-points function is equal to the Bergmann

kernel on the Riemann surface corresponding to the algebraic equation E(x, y) = 0 (cf [17,

26, 34, 35]).

W2(p; p1) = B(p, p1) .
(B.6)
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Let us now compute U1(p, y; p1). For k = 1, eq. (5.1) reads:

(y(r) − y(q))U1(q, y(r); p1)

dx(q)
= −

W2(q; p1)U0(q, y(r))

dx(q)2
− P1(x(q), y(r); p1) +

+dp1

(

U0(p1, y(r))

(x(q) − x(p1)) dx(p1)

)

(B.7)

take it for q = r = pi:

0 = −
W2(p

i; p1)U0(p
i, y(pi))

dx(pi)2
− P1(x(pi), y(pi); p1) +

+dp1

(

U0(p1, y(pi))

(x(pi) − x(p1)) dx(p1)

)

(B.8)

using that x(p) = x(pi), we have:

0 = −
W2(p

i; p1)U0(p
i, y(pi))

dx(p)2
− P1(x(p), y(pi); p1) +

+dp1

(

U0(p1, y(pi))

(x(p) − x(p1)) dx(p1)

)

. (B.9)

Now, write eq. (B.7) with q = p and r = pi:

(y(pi) − y(p))U1(p, y(pi); p1)

dx(p)
= −

W2(p; p1)U0(p, y(pi))

dx(p)2
− P1(x(p), y(pi); p1) +

+dp1

(

U0(p1, y(pi))

(x(p) − x(p1)) dx(p1)

)

(B.10)

and insert eq. (B.9), you get:

(y(pi) − y(p))U1(p, y(pi); p1) =
W2(p

i; p1)U0(p
i, y(pi))

dx(p)
−

−
W2(p; p1)U0(p, y(pi))

dx(p)
. (B.11)

Using eq. (4.3), i.e. U0(p, y) = E(x(p),y)
y−y(p) dx(p), this implies:

(y(pi) − y(p))U1(p, y(pi); p1) = W2(p
i; p1)Ey(x(pi), y(pi)) . (B.12)

Since U1(p, y; p1) is a polynomial of degree d2 − 1 in y, we can reconstruct it through the

interpolation formula:

U1(p, y; p1) =
E(x(p), y)

(y − y(p))

d2
∑

i=1

1

y − y(pi)

(y(pi) − y(p))U1(p, y(pi); p1)

Ey(x(pi), y(pi))
(B.13)

i.e.

U1(p, y; p1) =
E(x(p), y)

(y − y(p))

d2
∑

i=1

W2(p
i, p1)

y − y(pi)
(B.14)
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and in particular, at y = y(p), we have:

R0
1(p, p1)dx(p) =

U1(p, y(p); p1)

Ey(x(p), y(p))
=

d2
∑

i=1

W2(p
i, p1)

y(p) − y(pi)
(B.15)

and for i 6= 0, we have:

Ri
1(p, p1)dx(p) =

U1(p, y(pi); p1)

Ey(x(p), y(pi))
=

W2(p
i, p1)

(y(pi) − y(p))
. (B.16)

C. Computation of eq. (5.39)

In this appendix one proves recursively eq. (5.39) for any k and h.

Let us suppose that this formula is know for any U
(m)
l with m ≤ h − 1 and for any

U
(h)
l with l ≤ k − 1. One writes it:

U
(m)
l (p, y(pi);pL) =

=
Ey(x, y(pi))

y(pi) − y(p)

min(d2,k+h)
∑

r=1

∑

L1
S

...
S

Lr=L

m
∑

mα=0

l+m
∑

lα=|Lα|

∑

jα,β 6=jα′,β′∈[1,d2]−{i}

1

Ω
(C.1)

W
(m1)
l1+1 (pi,pL1 , p

j1,1 , . . . , pj1,l1−|L1|)
(

∏r
α=2 W

(mα)
lα+1 (pjα,0 ,pLα , pjα,1 , . . . , pjα,lα−|Lα|)

)

dx(p)r−l−1+
P

Lα
∏

α,β y(pi) − y(pjα,β)
.

Let us introduce some shortened notations so that one can write this proof in a few

pages.

Considering the sum on the r.h.s. of eq. (C.1), one can see that there are two different

kinds of terms:

• If l1 = |L1|, one can factorise the term W
(m1)
|L1|+1(p

i,pL1). Let us note the sum of these

terms W (pi, pL)W (pL, pj) where we have noted W instead of W
(m1)
|L1|+1 to indicate that

these are formal notations;

• the other terms correspond to the sum over all l1 6= |L1|. Let us denote them by

W (pi, pL, pj)W (pL, pj).

Using these notations, one can shortly write eq. (C.1):

U
(m)
l (p, y(pi);pL) = W (pi, pL)W (pL, pj) + W (pi, pL, pj)W (pL, pj) (C.2)

Thus the interpolation formula gives:

U
(m)
l (pi, y(pi); pL) = W (pL, pj) + W (p, pL)W (pL, pj) + W (p, pL, pj)W (pL, pj) (C.3)

where the first term corresponds to the sum where all jβ’s are different from i and 0 and

there is no Wli whose argument is p or pi.
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On the other hand, one knows the relation (5.38):

U
(h)
k (p, y(pi);pK) =

h
∑

m=0

k
∑

j=0

W
(m)
j+1 (pi,pJ)U

(h−m)
k−j (pi, y(pi);pK−J)

(y(pi) − y(p))dx(p)
−

−

h
∑

m=0

k
∑

j=0

W
(m)
j+1 (p,pJ )U

(h−m)
k−j (p, y(pi);pK−J)

(y(pi) − y(p))dx(p)
−

−
U

(h−1)
k+1 (p, y(pi); p,pk)

(y(pi) − y(p))dx
+

U
(h−1)
k+1 (pi, y(pi); pi,pk)

(y(pi) − y(p))dx
(C.4)

Remark that the terms in the r.h.s. of this equation correspond to the criterion of the

hypothesis and one can then express them as a product of W ’s following the notations

introduced earlier. This reads:

U
(h)
k (p, y(pi); pK) = W (pi, pK)W (pK , pj) + W (pi, pK)W (p, pK)W (pK , pj) +

+W (pi, pK)W (p, pK , pj)W (pK , pj)−W (p, pK)W (pi, pK)W (pK , pj) −

−W (p, pK)W (pi, pK , pj)W (pK , pj) + W (pi, pK , pj)W (pK , pj) +

+W (pi, p, pK)W (pK , pj) + W (p, pK)W (pi, pK , pj)W (pK , pj) +

+W (pi, p, pK , pj)W (pK , pj) + W (p, pK , pj)W (pi, pK , pj)W (pK , pj) −

−W (p, pi, pK)W (pK , pj) − W (pi, pK)W (p, pK , pj)W (pK , pj) −

−W (p, pi, pK , pj)W (pK , pj) − W (pi, pK , pj)W (p, pK , pj)W (pK , pj)

= W (pi, pK)W (pK , pj) + W (pi, pK , pj)W (pK , pj) . (C.5)

So one has proven the formula for U
(h)
k .

Because this formula is true for h = 0, it is true for any k and h.

D. Derivation of eq. (5.40)

One wants to show that:

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (p, pJ)U

(h−m)
k−j (p, y(p); pK−J) +

U
(h−1)
k+1 (p, y(p); p, pk)

dx
=

=

d2
∑

i=1

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (pi, pJ )U

(h−m)
k−j (pi, y(p); pK−J) +

+

d2
∑

i=1

U
(h−1)
k+1 (pi, y(p); pi, pk)

dx
. (D.1)

Let us compute the difference D between the two sides of the equation by the in-

troduction of eq. (5.39) written with some few different notations which are defined as

follows:

• l = r + h −
∑

α hα;
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• uβ =
∑β

ε=1(kε − |Kε|) − β.

One can then write:

D =
h

∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1 (p, pJ)Ey(x, y(p))

d2
∑

i=1

1

y(p) − y(pi)
×

×

d2
∑

r=1

r
∑

o=1

h−m
∑

ho=0

k+h−j−m
∑

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
S

...
S

Kr=K

1

Ω
×

×
W

(h1)
k1+1(p

i, pK1, p
jr+1, . . . , pjr+u1 )

(

∏r
β=2 W

(hβ)
kβ+1(p

jβ , pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

)

∏l
γ=2 y(pi) − y(pjγ )

−

−

d2
∑

i=1

h
∑

m=0

k
∑

j=0;mj 6=kh

W
(m)
j+1(pi, pJ)

Ey(x, y(p))

y(p) − y(pi)
×

×

d2
∑

r=1

r
∑

o=1

h−m
∑

ho=0

k+h−j−m
∑

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
S

...
S

Kr=K

1

Ω
×

×
W

(h1)
k1+1(p, pK1, p

jr+1, . . . , pjr+u1 )
(

∏r
β=2 W

(hβ)
kβ+1(p

jβ , pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

)

∏l
γ=2 y(p) − y(pjγ)

+

+Ey(x, y(p))

d2
∑

i=1

1

y(p) − y(pi)
×

×

d2
∑

r=1

r
∑

o=1

h−1
∑

ho=0

k+h
∑

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
S

...
S

Kr=K

1

Ω
×

×

[

W
(h1)
k1+1(p

i, p, pK1, p
jr+1, . . . , pjr+u1 )

(

∏r
β=2W

(hβ)
kβ+1(p

jβ, pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

)

∏l
γ=2 y(pi) − y(pjγ)

+

+
W

(h1)
k1+1(p

i, pK1, p
jr+1, . . . , pjr+u1 )W

(h2)
k2+1(p, pj2, pK2, p

jr+u1+1, . . . , pjr+u2 )
∏l

γ=2 y(pi) − y(pjγ)
×

×

r
∏

β=3

W
(hβ)
kβ+1(p

jβ , pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

]

−

−

d2
∑

i=1

Ey(x, y(p))

y(p) − y(pi)

d2
∑

r=1

r
∑

o=1

h−1
∑

ho=0

k+h
∑

ko=0

∑

j2 6=...6=jl∈[1,d2]−{i}

∑

K1
S

...
S

Kr=K

1

Ω
×

×

[

W
(h1)
k1+1(p

i, p, pK1, p
jr+1, . . . , pjr+u1 )

(

∏r
β=2W

(hβ)
kβ+1(p

jβ, pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

)

∏l
γ=2 y(p) − y(pjγ )

+

+
W

(h1)
k1+1(p, pK1, p

jr+1, . . . , pjr+u1)W
(h2)
k2+1(p

i, pj2, pK2, p
jr+u1+1, . . . , pjr+u2 )

∏l
γ=2 y(pi) − y(pjγ)

×

×
r

∏

β=3

W
(hβ)
kβ+1(p

jβ , pKβ
, p

jr+uβ−1+1, . . . , p
jr+uβ )

]

. (D.2)
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The difference between the two first terms leaves only the terms corresponding to

u1 6= 0 in the first one minus u1 6= 0 in the second one.

The difference between two last terms will allow us to compensate the preceding ones.

Indeed, the terms with pi and p together in the same correlation function straightforwardly

vanish and one gets the exact opposite to the two first terms remaining.

Thus D = 0 and the equality (D.1) is proven.
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