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1. Introduction

Formal random matrix models have been used for their interpretation as combinatorial

generating functions for discretized surfaces [1 – 3]. The hermitean one-matrix model counts

surfaces made of polygons of only one color, whereas the hermitean two-matrix model

counts surfaces made of polygons of two colors. In that respect, the 2-matrix model is more

appropriate for the purpose of studying surfaces with non-uniform boundary conditions. At

the continuum limit, the 2-matrix model gives access to “boundary operators” in conformal

field theory [4].

Generating functions for surfaces with boundaries are obtained as random matrix ex-

pectation values. The expectation value of a product of l traces is the generating function

for surfaces with l boundaries, the total power of matrices in each trace being the length of

the corresponding boundary. If each trace contains only one type of matrix (different traces

may contain different types of matrices), the expectation value is the generating function

counting surfaces with uniform boundary conditions. Those non-mixed expectation values

have been computed for finite n since the work of [5, 6] and refined by [7].

Mixed correlation functions have been considered as a difficult problem for a long time

and progress have been obtained only recently [8, 9]. Indeed, non-mixed expectation values

can easily be written in terms of eigenvalues only (since the trace of a matrix is clearly

related to its eigenvalues), whereas mixed correlation functions cannot (TrMk
1 Mk′

2 cannot

be written in terms of eigenvalues of M1 and M2).

The large-N limit of the generating function of the bicolored disc (i.e. one boundary,

two colors, i.e. 〈TrMk
1 Mk′

2 〉) has been known since [10 – 12]. The large-N limit of the gener-

ating function of the 4-colored disc (i.e. one boundary, 4 colors, i.e. 〈TrMk
1 Mk′

2 Mk′′

1 Mk′′′

2 〉)

has been known since [13]. The all order expansion of correlation functions for the 1-matrix

model has been obtained by a Feynman-graph representation in [14] and the generalization

to non-mixed correlation functions of the 2-matrix model has been obtained in [15].

Recently, the method of integration over the unitary group of [9] has allowed to com-

pute, for finite N , all mixed correlation functions of the 2-matrix model in terms of orthog-

onal polynomials.

The question of computing mixed correlation functions in the large-N limit is addressed

in the present article.

The answer is (not so) surprisingly related to classical results in integrable statistical

models, i.e. the Bethe Ansatz. It has been known for a long time that random matrix

models are integrable in some sense (Toda, KP, KdV, isomonodromic systems,. . . ), but

the relationship with Yang-Baxter equations and Bethe Ansatz was rather indirect. The

result presented in this article should give some new insight in that direction. We find

that the k-point functions can be expressed as the product of 2-point function, which is

the underlying idea of the Bethe Ansatz.

Outline of the article:

• section 1 is an introduction,

– 2 –
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• in section 2, we set definitions of the model and correlation functions, and we write

the relevant loop equations,

• in section 3, we introduce a Bethe Ansatz-like formula, and prove it in section 4,

• in section 5, we solve the problem under a matrix form,

• section 6 is dedicated to the special gaussian case.

2. The 2-matrix model, definitions and loop equations

2.1 Partition function

We are interested in the formal matrix integral:

Z :=

∫

H2
N

dM1 dM2 e−N Tr[V1(M1)+V2(M2)+M1M2] (2.1)

where M1 and M2 are N × N hermitean matrices and dM1 (resp. dM2) is the prod-

uct of Lebesgue measures of all independent real components of M1 (resp. M2). V1(x)

and V2(y) are complex polynomials of degree d1 + 1 and d2 + 1, called “potentials”. The

formal matrix integral is defined as a formal power series in the coefficients of the po-

tentials (see [3]), computed by the usual Feynman method: consider a local extremum of

e−N Tr[V1(M1)+V2(M2)+M1M2], and expand the non quadratic part as a power series and, for

each term of the series, perform the gaussian integration with the quadratic part. This

method does not care about the convergence of the integral, or of the series, it makes

sense only order by order and it is in that sense that it can be interpreted as the gener-

ating function of discrete surfaces. All quantities in that model have a well defined 1/N2

expansion [16].

The extrema of V1(x) + V2(y) + xy are such that:

V ′
1(x) = −y , V ′

2(y) = −x (2.2)

there are d1d2 solutions (indeed V ′
2(−V ′

1(x)) = −x), which we note (xI , yI), I = 1, . . . , d1d2.

The extrema of Tr[V1(M1) + V2(M2) + M1M2] can be chosen diagonal (up to a unitary

transformation), with xI ’s and yI ’s on the diagonal:

M1 = diag(

n1 times︷ ︸︸ ︷
x1, . . . , x1,

n2 times︷ ︸︸ ︷
x2, . . . , x2, . . . ,

nd1d2
times

︷ ︸︸ ︷
xd1d2 , . . . , xd1d2)

M2 = diag(

n1 times︷ ︸︸ ︷
y1, . . . , y1,

n2 times︷ ︸︸ ︷
y2, . . . , y2, . . . ,

nd1d2
times

︷ ︸︸ ︷
yd1d2

, . . . , yd1d2
) . (2.3)

The extremum around which we perform the expansion is thus characterized by a set of

filling fractions:

εI =
nI

N
,

d1d2∑

I=1

εI = 1 . (2.4)

– 3 –
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To summarize, let us say that the formal matrix integral is defined for given potentials

and filling fractions.

The “one-cut” case is the one where one of the filling fractions is 1, and all the others

vanish. This is the case where the Feynman expansion is performed in the vicinity of only

one extremum.

2.2 Enumeration of discrete surfaces

It is well known that formal matrix integrals are generating functions for the enumeration

of discrete surfaces [3, 2, 17, 18].

For instance, in the one-cut case (expansion near an extremum x, y), one has:

− lnZ =
∑

G

1

#Aut(G)
Nχ(G)

(g2

δ

)n−−(G)
(

g̃2

δ

)n++(G) (
−1

δ

)n+−(G) d1+1∏

i=3

g
ni(G)
i

d2+1∏

i=3

g̃
ñi(G)
i

(2.5)

where the summation is over all finite connected closed discrete surfaces made of polygons

of two signs (+ and -). For such a surface (or graph) G, χ(G) is its Euler characteristic,

ni(G) is the number of i-gons carrying a + sign, ñi(G) is the number of i-gons carrying a

− sign, n++(G) is the number of edges separating two + polygons, n−−(G) is the number

of edges separating two − polygons and n+−(G) is the number of edges separating two

polygons of different signs. #Aut(G) is the number of automorphisms of G.

The gi’s, g̃i’s and δ are defined as follows:

gk :=
∂kV1(x)

∂xk

∣∣∣∣
x=x

, g̃k :=
∂kV2(y)

∂xk

∣∣∣∣
x=y

, δ := g2g̃2 − 1 . (2.6)

Example of a discrete surface:

-

-

-
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+

+

+

+
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+
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-

+

+

+

+ +

+
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+
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+
+
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-
-

-

-

-
-
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+
+

+

+

+

+

+

+

+
+

-

--
-

-

-

+

+

+

-
- -

--
--

--

-

-
- - -

-

+

+

+
+

(2.7)

In the multicut case, i.e. with arbitrary filling fractions, matrix integrals can still be

interpreted in terms of “foams” of surfaces, and we refer the reader to the appendix of [19]

or to [20] for more details.
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2.3 Enumeration of discrete surfaces with boundaries

Similarly, given a sequence of signs s1, s2, . . . , sk, si ∈ 1, 2, it is well known that the following

quantity: 〈
Tr(

k∏

i=1

Msi
)

〉
(2.8)

is the generating function of discrete surfaces with one boundary of length k, whose signs

of polygons on the edges are given by the sequence (s1, . . . , sk).

Example of a discrete surface with boundary (++++++−−−−−+++++−−−−−−):

〈
Tr(M6

1 M5
2 M5

1 M6
2 )

〉
=

∑

G

-

-

-

+++

+
+

+

+

+

+

+

+
+

+

+
+

-

+

+

+

+ +

+

+

+

+

+
+

-

-
-

-

-

-
-

-

+
+

+

+

+

+

+

+

+
+

-

--
-

-

-

+

+

+

-
- -

--
--

--

-

-
- - -

-

+

+

+
+

(2.9)

More generally, an expectation value of a product of n traces is the generating function

for discrete surfaces with n boundaries.

In this article, we are interested only in one boundary and to leading order in N , i.e.

surfaces with the topology of a disc.

2.4 Master loop equation and algebraic curve

Let us define:

W (x) :=
1

N

〈
Tr

1

x − M1

〉
, W̃ (y) :=

1

N

〈
Tr

1

y − M2

〉
(2.10)

where the expectation values are formally computed as explained in the previous section,

with the weight e−N Tr[V1(M1)+V2(M2)+M1M2]. W (x) (resp. W̃ (y)) is defined as a formal

power series in its large x (resp. large y) expansion, as well as in the expansion in the

coefficients of the potentials. W (x) (resp. W̃ (y)) is a generating function for surfaces with

one uniform boundary, i.e. with only sign + (resp. sign −) polygons touching the boundary

by an edge:

W (x) = + , W̃ (y) = −

(2.11)

We also define the following formal series:

Y (x) := W (x) − V ′
1(x) , X(y) := W̃ (y) − V ′

2(y) . (2.12)

– 5 –



J
H
E
P
0
8
(
2
0
0
5
)
0
2
8

In addition, we define:

P (x, y) :=
1

N

〈
Tr

V ′
1(x) − V ′

1(M1)

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

〉
(2.13)

U(x, y) :=
1

N

〈
Tr

1

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

〉
+ x + V ′

2(y) (2.14)

U(x, y; x′) :=

〈
Tr

1

x − M1

V ′
2(y) − V ′

2(M2)

y − M2
Tr

1

x′ − M1

〉
−

−N2W (x′)(U(x, y) − x − V ′
2(y)) (2.15)

E(x, y) := (V ′
1(x) + y)(V ′

2(y) + x) + P (x, y) − 1 . (2.16)

Notice that U(x, y) and U(x, y; x′) are polynomials of y (with degree at most d2−1), P (x, y)

is a polynomial of both variables of degree (d1 − 1, d2 − 1) and E(x, y) is a polynomial of

both x and y of degree (d1 + 1, d2 + 1).

It has been obtained in many articles [21, 22, 11, 12], that:

E(x, Y (x)) =
1

N2
U(x, Y (x), x) . (2.17)

To large-N leading order that equation reduces to an algebraic equation for Y (x), called

the “Master loop equation” [22]:

E(x, Y (x)) = 0 (2.18)

(similarly, one also has E(X(y), y) = 0, which implies Y ◦ X = Id, known as Matytsin’s

equation [23]). The coefficients of E(x, y), i.e. of P (x, y), are entirely determined by the

conditions
∮
Ai

ydx = 2iπεi for a choice of irreducible cycles on the algebraic curve.

The properties of that algebraic equation have been studied in many works [21, 24].

Here we assume that it is known.

2.5 Correlation functions, definitions

We define:

W k(x1, y1, x2, . . . , xk, yk) :=
1

N

〈
Tr

k∏

j=1

1

xj − M1

1

yj − M2

〉
(2.19)

Uk(x1, y1, x2, . . . , xk, yk) := Pol
yk

V ′
2(yk)W k(x1, y1, x2, . . . , xk, yk) (2.20)

=
1

N

〈
Tr

1

x1 − M1

1

y1 − M2
· · ·

1

xk − M1

V ′
2(yk) − V ′

2(M2)

yk − M2

〉

P k(x1, y1, x2, . . . , xk, yk) := Pol
x1

Pol
yk

V ′
1(x1)V ′

2(yk)W k(x1, y1, x2, . . . , xk, yk)

=
1

N

〈
Tr

V ′
1(x1) − V ′

1(M1)

x1 − M1

1

y1 − M2
× · · ·

· · · ×
1

xk − M1

V ′
2(yk) − V ′

2(M2)

yk − M2

〉
(2.21)

Ak(x1, y1, x2, . . . , xk) :=
1

N

〈
Tr

1

x1 − M1

1

y1 − M2
· · ·

1

xk − M1
V ′

2(M2)

〉
(2.22)

– 6 –
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where Polx f(x) denotes the polynomial part at infinity of f(x) (i.e. the positive part in

the Laurent series for x near infinity).

The functions W k are generating functions for discrete discs with all possible boundary

conditions. One can recover any generating function of type eq. (2.8) by expanding into

powers of the xi’s and yi’s.

For convenience, we prefer to consider the following functions:

Wk(x1, y1, x2, . . . , xk, yk) := W k(x1, y1, x2, . . . , xk, yk) + δk,1 (2.23)

Uk(x1, y1, x2, . . . , xk, yk) := Uk(x1, y1, x2, . . . , xk, yk) + δk,1(V
′
2(yk) + xk) (2.24)

and for k > 1:

Pk(x1, y1, x2, . . . , xk, yk) := P k(x1, y1, x2, . . . , xk, yk) + Wk−1(x2, . . . , xk, y1) (2.25)

For the smallest values of k, those expectation values can be found in the literature to

large-N leading order:

• it was found in [11, 12, 21]:

W1(x, y) =
E(x, y)

(x − X(y))(y − Y (x))
, U1(x, y) =

E(x, y)

(y − Y (x))
(2.26)

• it was found in the appendix C of [13] (there is a change of sign, because the action

in [13] was e−N tr(V1(M1)+V2(M2)−M1M2)):

W2(x1, y1, x2, y2) =
W1(x1, y1)W1(x2, y2) − W1(x1, y2)W1(x2, y1)

(x1 − x2)(y1 − y2)
(2.27)

• for finite N , it was found in [8], and with notations explained in [8]:

W1(x, y) = det

(
1N + ΠN−1

1

x − Q

1

y − P t
ΠN−1

)
(2.28)

• for finite N , it was found in [9] how to compute any mixed correlation function

in terms of determinants involving biorthogonal polynomials, with a formula very

similar to eq. (2.28).

Here, we shall find a formula for all Wk’s in the large-N limit.

2.6 Loop equations

Loop equations are nothing but Schwinger-Dyson equations. They are obtained by writing

that an integral is invariant under a change of variable, or alternatively by writing that the

integral of a total derivative vanishes.

The loop equation method is well known and explained in many works [21, 22]. Here,

we write for each change of variable the corresponding loop equation (we use a presentation

similar to that of [21]).

In all what follows we consider k > 1.

– 7 –
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• the change of variable: δM2 = 1
x1−M1

1
y1−M2

· · · 1
xk−M1

implies:

Ak(x1, . . . , xk) =
k−1∑

j=1

W j(x1, . . . , yj)W k−j(xk, yj , . . . , yk−1) +

+
x1W k−1(x1, y1, . . . , yk−1) − xkW k−1(xk, y1, . . . , yk−1)

x1 − xk

=
k−1∑

j=1

Wj(x1, . . . , yj)Wk−j(xk, yj , . . . , yk−1) −

−Wk−1(xk, y1, . . . , yk−1) +

+xk
Wk−1(x1, y1, . . . , yk−1) − Wk−1(xk, y1, . . . , yk−1)

x1 − xk
(2.29)

• the change of variable: δM1 = 1
x1−M1

1
y1−M2

· · · 1
xk−M1

V ′

2(yk)−V ′

2(M2)
yk−M2

implies:

(Y (x1) − yk)Uk(x1, . . . , yk) =

=

k∑

j=2

Wj−1(x1, y1, . . . , yj−1) − Wj−1(xj , y1, . . . , yj−1)

x1 − xj

Uk−j+1(xj , yj , . . . , xk, yk) +

+V ′
2(yk)

Wk−1(x1, y1, . . . , yk−1) − Wk−1(xk, y1, x2, . . . , yk−1)

x1 − xk

+

+Ak(x1, . . . , xk) − P k(x1, y1, x2, . . . , xk, yk)

=

k∑

j=2

Wj−1(x1, y1, . . . , yj−1) − Wj−1(xj , y1, . . . , yj−1)

x1 − xj

Uk−j+1(xj , yj , . . . , xk, yk) +

+

k−1∑

j=1

Wj(x1, . . . , yj)Wk−j(xk, yj , . . . , yk−1) − Pk(x1, y1, x2, . . . , xk, yk) (2.30)

where we have used the loop equation eq. (2.29) for Ak(x1, . . . , xk).

• the change of variable: δM2 = 1
x1−M1

1
y1−M2

. . . 1
xk−M1

1
yk−M2

implies:

(X(yk) − x1)W k(x1, y1, x2, . . . , xk, yk) =

=
k−1∑

j=1

Wk−j(xj+1, . . . , yk) − Wk−j(xj+1, . . . , xk, yj)

yk − yj
×

×Wj(x1, . . . , yj) − Uk(x1, . . . , yk) . (2.31)

2.7 Recursive determination of the correlation functions

Theorem 1. The system of equations eq. (2.30) and eq. (2.31) for all k has a unique

solution.

In other words, if we can find some functions Wk, Uk, Pk which obey eq. (2.30) and

eq. (2.31) for all k, then they are the correlation functions we are seeking.

Proof. W1, U1 and P1 have already been computed in the literature.

– 8 –
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Assume that we have computed Wj , Uj , Pj for all j < k. Let us show that eq. (2.30)

and eq. (2.31) determine uniquely Wk, Uk and Pk.

Let X(α)(yk), α = 0, . . . , d1 be the d1 + 1 solutions for x of E(x, yk) = 0. For every

α = 0, . . . , d1 one has:

Y (X(α)(yk)) = yk (2.32)

At x1 = X(α)(yk), eq. (2.30) reads:

Pk(X
(α)(yk), y1, x2, . . . , xk, yk) =

=
k∑

j=2

Wj−1(X
(α)(yk), y1, . . . , yj−1) − Wj−1(xj , y1, x2, . . . , yj−1)

X(α)(yk) − xj
× (2.33)

×Uk−j+1(xj , yj , . . . , xk, yk) +
k−1∑

j=1

Wj(X
(α)(yk), . . . , yj)Wk−j(xk, yj , . . . , yk−1)

where all the quantities in the r.h.s. are known from the recursion hypothesis. We thus

know the value of Pk for d1 + 1 values of x1. Since Pk is a polynomial in x1 of degree at

most d1 − 1, we can determine Pk by the interpolation formula:

(x1 − X(yk))
Pk(x1, . . . , yk)

E(x1, yk)
=

d2∑

α=1

(X(α)(yk) − X(yk))Pk(X
(α)(yk), . . . , yk)

(x1 − X(α)(yk))Ex(X(α)(yk), yk)
(2.34)

where Xk = X(yk) denotes X(0)(yk). Once Pk is known, eq. (2.30) allows to compute Uk,

and eq. (2.31) allows to compute Wk.

3. A Bethe Ansatz-like formula for correlation functions

Thus, the loop equations determine Wk uniquely, i.e., if we can find Wk, Uk = Polyk
×

V ′
2(yk)Wk and Pk = Wk−1 + Polx1 V ′

1(x1)Uk which satisfy eq. (2.31),eq. (2.30), it means

that we have the right solution. We can thus make an Ansatz for Wk, and check that it

satisfies the loop equations above.

Our Ansatz is similar to the Bethe Ansatz [25]:

Wk(x1, y1, . . . , xk, yk) =
∑

σ∈Σk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

W1(xi, yσ(i)) (3.1)

where the coefficients Cσ are rational fractions of the xi’s and yi’s, with at most simple

poles at coinciding points, and independent of the potentials.

We call eq. (3.1) a Bethe Ansatz-like formula, because it is very similar to the solution

initially found by Bethe for the 1-dimensional spin chain, and then for the δ-interacting

bosons.
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If we assume that eq. (3.1) satisfies eq. (2.31), we can in particular take the residue

of eq. (2.31) at yk → Y (xl) for some l. That implies the following relationship among the

coefficients C
(k)
σ ’s:

(xσ−1(k) − x1)C(k)
σ (x1, y1, . . . , xk, yk) =

=
k−1∑

j=1

∑

τ∈Σ(1,...,j)

∑

ρ∈Σ(j+1,...,k)

δσ,τρ
C

(j)
τ (x1, . . . , yj)C

(k−j)
ρ (xj+1, . . . , yk)

yk − yj
. (3.2)

Beside, since Wk is the expectation value of a trace, the C
(k)
σ ’s must be cyclically invariant:

C(k)
σ (x1, y1, x2, y2, . . . , xk, yk) = C(k)

σ (x2, y2, . . . , xk, yk, x1, y1) (3.3)

and, since Wk should have no poles at coinciding points yk = yj one should have:

Res
y′

k
→yj

C(k)
σ (x1, y1, x2, y2, . . . , xk, y

′
k)dy′k = Res

y′

k
→yj

C
(k)
(k,j)◦σ(x1, y1, x2, y2, . . . , xk, y

′
k)dy′k . (3.4)

With C(1) = 1, it is clear that the set of equations eq. (3.2), eq. (3.3), eq. (3.4), have at

most a unique solution. We prove in the next section that the solution exists, and thus,

eq. (3.2), eq. (3.3), eq. (3.4) determine C
(k)
σ uniquely. The C

(k)
σ ’s are explicitly computed

in section 4.

Then in section 4.7, we prove that:

Theorem 2. If the C
(k)
σ ’s are rational functions defined by eq. (3.2), eq. (3.3), eq. (3.4),

then the functions Ŵk’s defined by the r.h.s. of eq. (3.1), the functions Ûk(x1, . . . , yk) :=

Pol(V ′
2(yk))Ŵk(x1, . . . , yk), and the functions P̂k(x1, . . . , yk) := Pol(V ′

1(x1))Ûk(x1, . . . , yk)+

Ŵk−1(x2, . . . , xk, y1), satisfy eq. (2.31) and eq. (2.30).

As a corollary, using theorem 1, we have:

Theorem 3.

Wk(x1, y1, . . . , xk, yk) =
∑

σ∈Σk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

W1(xi, yσ(i)) . (3.5)

The derivation of theorem 2 is quite technical and is presented in section 4.7.

4. Amplitudes of permutations

In this section, we compute the amplitudes C
(k)
σ explicitly.

Eq. (3.2), eq. (3.3), eq. (3.4) and initial condition C(1)(x1, y1) = 1 clearly define at

most a unique function C
(k)
σ (x1, . . . , yk). In this section, we build the solution explicitly,

and then, we prove that the function we have constructed indeed satisfies eq. (3.2), eq. (3.3),

eq. (3.4).

Below we prove that eq. (3.2) implies that C
(k)
σ vanishes for non planar permutations

(see Definition 4.1 below) and, for planar permutations, C
(k)
σ is the product of C

(k)
Id corre-

sponding to faces. We are thus led to introduce the definitions in the next section.
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σ(1)σ
(1)σ

x y

y
k

x
1

2
x

2

k
x

y

1
y

σ (k)
x

σ

x

σ

(1)

S

S

-cycle

-cycle

-1

Figure 1: Example of a planar permutation and its faces.

4.1 Some definitions: planar permutations

Let S be the shift permutation:

S := shift = (1, 2, . . . , k − 1, k) , i.e. S(i) = i + 1 . (4.1)

Definition 1. A permutation σ ∈ Σk is called planar if

ncycles(σ) + ncycles(Sσ) = k + 1 (4.2)

where ncycles(σ) is the number of irreducible cycles composing the permutation σ.

Let Σk ⊂ Σk be the set of planar permutations of rank k.

Eq. (4.2) is equivalent to saying that if one draws the points x1, y1, . . . , xk, yk on a

circle, and draws a line between each pair (xj , yσ(j)), the lines don’t intersect. The cycles

of σ and the cycles of Sσ correspond to the faces (i.e. the connected components) of that

partition of the disc.

Each planar permutation can also be represented as an arch system, and thus, the number

of possible planar permutations is given by the Catalan number Cat (k):

Card(Σk) = Cat (k) =
2k!

k! (k + 1)!
(4.3)

4.2 Face amplitudes

Definition 2. For any k ≥ 1, we define a rational function of x1, . . . , yk:

F (k)(x1, y1, x2, . . . , xk, yk) (4.4)

by the recursion formula:

F (1)(x1, y1) := 1 (4.5)

F (k)(x1, y1, . . . , xk, yk) :=
k−1∑

j=1

F (j)(x1, y1, . . . , xj , yj)F
(k−j)(xj+1, yj+1, . . . , xk, yk)

(xk − x1)(yk − yj)
.
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Lemma 1. For any k ≥ 1:

F (k)(x1, y1, . . . , xk, yk) = O(y1−k
k ) (4.6)

when yk → ∞.

Proof. Let us prove it by induction on k. It is true for k=1. Let k be larger or equal to 2

and assume that this is true for all F (j) with j < k. Then eq. (4.5) straightforwardly gives

the same behaviour for F (k).

Lemma 2. F (k) has cyclic invariance, i.e.

F (k)(x2, y2, . . . , xk, yk, x1, y1) = F (k)(x1, y1, . . . , xk, yk) (4.7)

Proof. We prove it by recursion. It is clearly true for k = 1 and k = 2 since F (2) ×

(x1, y1, x2, y2) = 1
(x2−x1)(y2−y1) . For k ≥ 3, assume that it is true for all F (j) with j < k.

One has:

F (k)(x2, y2, . . . , xk, yk, x1, y1) =

=
k∑

j=2

F (j−1)(x2, . . . , xj , yj)F
(k+1−j)(xj+1, yj+1, . . . , xk, yk, x1, y1)

(x1 − x2)(y1 − yj)

=

k∑

j=2

F (j−1)(x2, . . . , xj , yj)F
(k+1−j)(x1, y1, xj+1, yj+1, . . . , xk, yk)

(x1 − x2)(y1 − yj)

=
k∑

j=2

F (j−1)(x2, . . . , xj , yj)

(x1 − x2)(y1 − yj)
×

×
k−1∑

l=j+1

F (l+1−j)(x1, y1, xj+1, yj+1, . . . , xl, yl)F
(k−l)(xl+1, yl+1, . . . , xk, yk)

(xk − x1)(yk − yl)
+

+
k∑

j=2

F (j−1)(x2, . . . , xj , yj)

(x1 − x2)(y1 − yj)

F (1)(x1, y1)F
(k−j)(xj+1, yj+1, . . . , xk, yk)

(xk − x1)(yk − y1)

=
k−1∑

l=3

F (k−l)(xl+1, yl+1, . . . , xk, yk)

(xk − x1)(yk − yl)
×

×
l∑

j=2

F (j−1)(x2, . . . , xj , yj)F
(l+1−j)(xj+1, yj+1, . . . , xl, yl, x1, y1)

(x1 − x2)(y1 − yj)

=
k−1∑

l=3

F (k−l)(xl+1, yl+1, . . . , xk, yk)F
(l)(x2, . . . , xl, yl, x1, y1)

(xk − x1)(yk − yl)

=
k−1∑

l=3

F (l)(x1, y1, x2, . . . , xl, yl)F
(k−l)(xl+1, yl+1, . . . , xk, yk)

(xk − x1)(yk − yl)

= F (k)(x1, y1, . . . , xk, yk) . (4.8)
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Lemma 3. For k ≥ 2, F (k) has simple poles in yk:

F (k)(x1, y1, . . . , xk, yk) =

k−1∑

l=1

1

yk − yl
Res

y′

k
→yl

F (k)(x1, y1, . . . , xk, y
′
k)dy′k . (4.9)

Proof. It is clearly true for k = 2. We prove it by induction on k. Assume that it is true

up to k − 1. Using the recursion hypothesis, one can see that each term in the r.h.s. of

eq. (4.5) has at most a simple pole at yk = yl and one can write eq. (4.9) with the use of

Lemma 1. Thus the recursion hypothesis is true for k.

4.3 The amplitudes Cσ

Definition 3. Then, for any k ≥ 1, and for any permutation σ ∈ Σk, we define C
(k)
σ ×

(x1, y1, x2, . . . , xk, yk) a rational function of x1, . . . , yk, by:

• C
(k)
σ (x1, y1, x2, . . . , xk, yk) := 0 if σ is not planar, and

• if σ is planar, we decompose σ and Sσ into their product of cycles:

σ = σ1σ2 . . . σl , Sσ = σ̃1σ̃2 . . . σ̃l̃ (4.10)

such that:

σj = (ij,1, ij,2, . . . , ij,lj ) , σ(ij,m) = ij,m+1 (4.11)

σ̃j = (̃ij,1, ĩj,2, . . . , ĩj,l̃j ) , σ(̃ij,m) = ĩj,m+1 − 1 (4.12)

C(k)
σ (x1, y1, x2, . . . , xk, yk) :=

l∏

j=1

F (lj)(xij,1 , yij,2 , xij,2 , yij,3 , . . . , xij,lj
, yij,1) × (4.13)

×
l̃∏

j=1

F (l̃j)(xĩj,1
, yĩj,2−1, xĩj,2

, . . . , yĩ
j,l̃j

−1, xĩ
j,l̃j

, yĩj,1−1)

i.e. C
(k)
σ is the product of F ’s of each connected component of the disc partitioned

by σ.

4.4 Examples

In particular with σ = Id, we have:

C
(k)
Id (x1, y1, x2, . . . , xk, yk) = F (k)(x1, y1, x2, y2, . . . , xk, yk) (4.14)

and with σ = S−1:

C
(k)
S−1(x1, y1, x2, . . . , xk, yk) = F (k)(xk, yk−1, xk−1, . . . , y1, x1, yk) . (4.15)
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An example with k = 12. Let us consider an example of σ ∈ Σ12 defined as follow:

σ(1) = 3, σ(2) = 1, σ(3) = 2, σ(4) = 7, σ(5) = 6, σ(6) = 5, σ(7) = 4, σ(8) = 8, σ(9) = 11,

σ(10) = 10, σ(11) = 12 and σ(12) = 9:

σ = (1, 3, 2)(4, 7)(5, 6)(8)(9, 12, 11)(10)

Sσ = (1, 4, 8, 9)(2)(3)(5, 7)(6)(10, 11)(12) . (4.16)

The corresponding arch system is:

x

y

3

y3 x
4 y

12

x1

y

2x
2

4

x
10

y10

x
11

y11

x
12

5

8
y 99

x
5

y

x
6

y6

x
7

y7

x
8

y
x

1y

3

σ5

σ

∼

6

σ
1

1

σ

2σ

4σ

σ

∼

σ

6

∼σ

7
σ

5

∼σ
4

∼

3

∼σ

2

∼σ

(4.17)

where dark faces (resp. white faces) correspond to the cycles of σ (resp. Sσ). For that

permutation C
(12)
σ is worth:

F (3)(x1, y3, x3, y2, x2, y1)F
(2)(x5, y6, x6, y5)F

(3)(x9, y12, x12, y11, x11, y9) ×

×F (2)(x4, y7, x7, y4)F
(4)(x1, y3, x4, y7, x8, y8, x9, y12)F

(2)(x5, y6, x7, y4) ×

×F (2)(x10, y10, x11, y9) (4.18)

Example k ≤ 3.

C(1) = 1 (4.19)

C
(2)
Id =

1

(x2 − x1)(y2 − y1)
(4.20)

C
(2)
(12) =

1

(x2 − x1)(y1 − y2)
(4.21)

C
(3)
Id =

1

(x1 − x3)

(
1

y3 − y1

1

(x2 − x3)(y3 − y2)
+

1

y3 − y2

1

(x1 − x2)(y2 − y1)

)
(4.22)

C
(3)
(1)(23) =

1

(x1 − x2)

1

y3 − y1

1

(x2 − x3)(y2 − y3)
(4.23)

C
(3)
(12)(3) =

1

(x1 − x3)

1

y3 − y2

1

(x1 − x2)(y1 − y2)
(4.24)

C
(3)
(123) =

1

(x1 − x2)(x2 − x3)(y1 − y2)

1

y3 − y1
+

+
1

(x1 − x3)(x1 − x2)(y2 − y1)

1

y3 − y2
(4.25)
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C
(3)
(13)(2) = −

1

y3 − y1

1

(x1 − x3)(x2 − x3)(y1 − y2)
(4.26)

C
(3)
(132) = 0 . (4.27)

Example: rainbows. The rainbow is the permutation

σ(j) = k + 1 − j (4.28)

if k is even:

C(k)
σ =

1
∏k/2

i=1(xk+1−i − xi)(yi − yk+1−i)
∏k/2−1

i=1 (xk+1−i − xi+1)(yi − yk−i)
(4.29)

if k is odd:

C(k)
σ =

1
∏(k−1)/2

i=1 (xk+1−i − xi)(xk+1−i − xi+1)(yi − yk+1−i)(yi − yk−i)
. (4.30)

4.5 Properties of Cσ

Lemma 4. The C
(k)
σ ’s are cyclically invariant:

C(k)
σ (x1, y1, x2, y2, . . . , xk, yk) = C(k)

σ (x2, y2, . . . , xk, yk, x1, y1) (4.31)

Proof. It follows from Lemma 2.

Lemma 5. The C
(k)
σ ’s have at most simple poles in all their variables and are such that:

C(k)
σ (x1, y1, x2, y2, . . . , xk, yk) =

k−1∑

j=1

1

yk − yj
Res

y′

k
→yj

C(k)
σ (x1, y1, x2, y2, . . . , xk, y

′
k)dy′k (4.32)

Proof. If σ is planar, the pair (yk, yj) can appear in at most one factor of eq. (4.13), and

the results follows from Lemma 3.

Theorem 4. The C
(k)
σ ’s, with σ(1) 6= k, satisfy the recursion formula eq. (3.2):

C(k)
σ =

1

xσ−1(k) − x1

k−1∑

j=1

∑

τ∈Σ(1,...,j)

∑

ρ∈Σ(j+1,...,k)

δσ,τρ
1

yk − yj
C(j)

τ C(k−j)
ρ . (4.33)

Proof. Let π be the cycle of length l + 1 ≥ 2 of Sσ which contains x1 and yk:

π = (x1 → yi1−1 → xi1 → yi2−1 → · · · → yil−1
→ xil → yk → x1) (4.34)

ij+1 := σ(ij) + 1 , i0 := 1 . (4.35)

Planarity implies that:

i0 < i1 < i2 < · · · < il . (4.36)

Since σ is planar, there exists a unique way of factorizing σ as:

σ =
l∏

j=0

σj , σj ∈ Σ(ij , . . . , ij+1 − 1) . (4.37)
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From the definition of C
(k)
σ we have:

C(k)
σ = F (l+1)(x1, yi1−1, xi1 , yi2−1, . . . , yil−1, xil , yk)

∏

j

C
(ij+1−ij)
σj (xij , . . . , yij+1−1) (4.38)

and using eq. (4.5), we have:

C(k)
σ = F (l+1)(x1, yi1−1, xi1 , yi2−1, . . . , yil−1, xil

, yk)
∏

j

C(ij+1−ij)
σj

(xij
, . . . , yij+1−1)

=
l∑

m=1

F (m)(x1, yi1−1, xi1 , . . . , xim−1
, yim−1)F

(l+1−m)(xim
, yim+1−1, xim+1

, . . . , xil
, yk)

(xil
− x1)(yk − yim−1)

×

×
∏

j

C(ij+1−ij)
σj

(xij
, . . . , yij+1−1) (4.39)

notice that il = σ−1(k), and note:

τm :=

m−1∏

j=1

σj , ρm :=

l∏

j=m

σj . (4.40)

We have:

τm ∈ Σ(1, . . . , im − 1) , ρm ∈ Σ(im, . . . , k) (4.41)

Eq. (4.38) gives:

C(k)
σ =

1

xσ−1(k) − x1

l∑

m=1

1

yk − yim−1
C(im)

τm
C(k−im)

ρm
. (4.42)

It is clear, from the planarity condition that if there exists some j and τ and ρ, such that:

σ = τρ , τ ∈ Σ(1, . . . , j) , ρ ∈ Σ(j + 1, . . . , k) (4.43)

then, one must have j = im, τ = τm and ρ = ρm for some m.

Lemma 6. For any transposition (k, j) (with k 6= j), we have:

Res
y′

k
→yj

C(k)
σ (x1, y1, x2, y2, . . . , xk, y

′
k)dy′k = − Res

y′

k
→yj

C
(k)
(k,j)◦σ(x1, y1, x2, y2, . . . , xk, y

′
k)dy′k

(4.44)

Proof. It is trivial if yj and yk are not in the same face, because both sides vanish: the l.h.s.

has no pole and the r.h.s. is a non-planar permutation. The case where yj and yk belong

to the same face reduces to proving the Lemma for σ = Id.

For σ = Id, we prove it by recursion on k. It clearly works for k = 1 and k = 2.

Assume that it works up to k − 1.

From the definition eq. (3) we have:

C
(k)
(k,j)(x1, y1, x2, y2, . . . , xk, yk) =

= F (j)(x1, y1, . . . , xj , yk)F
(k−j)(xj+1, yj+1, . . . , yk−1, xk, yj) ×

×F (2)(xj , yk, xk, yj) (4.45)

=
F (j)(x1, y1, . . . , xj , yk)F

(k−j)(xj+1, yj+1, . . . , yk−1, xk, yj)

(xj − xk)(yk − yj)
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and thus:

Res
y′

k
→yj

C
(k)
(k,j)(x1, y1, . . . , xk, yk) =

F (j)(x1, y1, . . . , xj , yj)F
(k−j)(xj+1, yj+1, . . . , xk, yj)

(xj − xk)
.

(4.46)

On the l.h.s. , we have from eq. (4.5):

Res
y′

k
→yj

F (k)(x1, y1, x2, y2, . . . , xk, y
′
k) =

= Res
y′

k
→yj

k−1∑

l=1

F (l)(x1, y1, x2, . . . , xl, yl)F
(k−l)(xl+1, yl+1, . . . , xk, y

′
k)

(xk − x1)(y′k − yl)

=
F (j)(x1, y1, x2, . . . , xj , yj)F

(k−j)(xj+1, yj+1, . . . , xk, yj)

(xk − x1)
+

+

j−1∑

l=1

F (l)(x1, y1, x2, . . . , xl, yl)

(xk − x1)(yj − yl)
Res

y′

k
→yj

F (k−l)(xl+1, yl+1, . . . , xk, y
′
k) . (4.47)

Then, from the recursion hypothesis, and from eq. (4.46) we have:

Res
y′

k
→yj

F (k)(x1, y1, x2, y2, . . . , xk, y
′
k) =

=
F (j)(x1, y1, x2, . . . , xj , yj)F

(k−j)(xj+1, yj+1, . . . , xk, yj)

(xk − x1)
−

−

j−1∑

l=1

F (l)(x1, y1, x2, . . . , xl, yl)

(xk − x1)(yj − yl)
Res

y′

k
→yj

C
(k−l)
(k,j) (xl+1, yl+1, . . . , xk, y

′
k)

=
F (j)(x1, y1, x2, . . . , xj , yj)F

(k−j)(xj+1, yj+1, . . . , xk, yj)

(xk − x1)
−

−

j−1∑

l=1

F (l)(x1, y1, x2, . . . , xl, yl)

(xk − x1)(yj − yl)
×

×
F (j−l)(xl+1, yl+1, . . . , xj , yj)F

(k−j)(xj+1, yj+1, . . . , yk−1, xk, yj)

(xj − xk)
. (4.48)

In the last line, we use again eq. (4.5) and get:

Res
y′

k
→yj

F (k)(x1, y1, x2, y2, . . . , xk, y
′
k) =

=
F (j)(x1, y1, x2, . . . , xj , yj)F

(k−j)(xj+1, yj+1, . . . , xk, yj)

(xk − x1)
−

−(xj − x1)
F (j)(x1, y1, x2, . . . , xj , yj)

(xk − x1)

F (k−j)(xj+1, yj+1, . . . , yk−1, xk, yj)

(xj − xk)
. (4.49)

One can then see that the sum of eq. (4.46) and eq. (4.49) vanishes, and the recursion

hypothesis is proven for k.

Lemma 7.

∀ k > 1 ,
∑

σ∈Σk

C(k)
σ (x1, y1, x2, y2, . . . , xk, yk) = 0 . (4.50)
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Proof. This expression is a rational function of all its variables. Consider the poles at

yk = yj , and write τ = (k, j). One can split the symmetric group Σk into its two conjugacy

classes wrt the subgroup generated by τ : Σk = [Id] ⊕ [τ ]. In other words:
∑

σ∈Σk

Cσ(x1, y1, x2, y2, . . . , xk, yk) =
∑

σ∈Σk/τ

Cσ(x1, y1, x2, y2, . . . , xk, yk) +

+Cτσ(x1, y1, x2, y2, . . . , xk, yk) . (4.51)

From Lemma 6, the terms in the r.h.s. have no pole at yk = yj . Similarly, using cyclicity

and doing the same for the x’s, we prove the lemma.

The Lemmas we have just proven, are sufficient to prove the main theorem 3. This is

done in section 4.7.

4.6 Computation of the rational functions F (k)(x1, y1, . . . , xk, yk)

Although the exact computation of the F (k)’s is not necessary for proving theorem 3, we

do it for completeness. In this section we give an explicit (and non-recursive) formula for

the F (k)’s.

A practical way of computing these formulas is described in appendix A.

Definition 4. To every permutation σ ∈ Σk−1, we associate a weight fσ computed as

follows:

fσ =
l∏

n=1

ln∏

j=2

gin,1,in,j ,in,j+1

l̃∏

n=2

l̃n∏

j=2

gĩn,j ,̃in,1,σ(̃in,j)

l̃1∏

j=1

gĩ1,j ,k,σ(̃i1,j)
(4.52)

where gi,h,j is defined as follows:

gi,h,j :=
1

xh − xi

1

yh − yj
(4.53)

and σ and Sσ are decomposed into their product of cycles as in Definition 3.

Theorem 5. F (k)(x1, y1, . . . , xk, yk) is obtained as the sum of the weights fσ’s over all

σ ∈ Σk−1:

F (k)(x1, y1, . . . , xk, yk) =
∑

σ∈Σk−1

fσ . (4.54)

Proof. First of all, let us interpret diagrammatically the recursion relation eq. (4.5) defining

the F’s:

g
1,k,j=

j=1

k-1

Σ
k

x
j

x

y
j

y
j-1

j-1
x

x

2

1

x

2
y

1
y

y

k

x
j-1

y

y
k-1

k-1
x

x
j+1

j+2
x

j+2
y

j+1

k
y

k

x
j-1

k-1

j

j+1
xk-1

x

x
1

y
1

2
x

2
y

y

x

y
j+1

y
j

y

(4.55)
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Actually, this recursion relation is nothing else but a rule for cutting a graph along the

dashed line into two smaller ones. The weight of a graph is then obtained as the sum over

all the possible ways of cutting it in two.

Notice that F (k) is the sum of Cat (k − 1) different terms.

Let us now explicit this bijection with the graphs with k−1 arches. In order to compute

one of the terms composing F (k), one has to cut it with the help of the recursion relation

until one obtains only graphs with one arch. That is to say that one cuts it k − 1 times

along non intersecting lines (corresponding to the dashed one in the recursion relation). If

one draws these cutting lines on the circle, one obtains a graph with k − 1 arches dual of

the original one. Thus every way of cutting a graph with k − 1 arches is associated to a

planar permutation σ ∈ Σ(i . . . k − 1). Let us now prove that the term obtained by this

cutting is equal to fσ.

For the sake of simplicity, one denotes the identity graph of (xj , yj , . . . , xk, yk) by circle

(j, j + 1, . . . , k). In these conditions, the recursion relation reads:

(1, 2, . . . , k) =
k−1∑

j=1

g1,k,j(1, . . . , j)(j + 1, . . . , k) . (4.56)

Let σ be a permutation of (1, . . . , k−1). Cut it along the line going from the boundary

(x1, yk) to (yσ(1), xSσ(1)). It results from this operation the factor g1,k,σ(1) and the circles

(1, . . . , σ(1)) and (Sσ(1), . . . , k):

(1, . . . , k) →σ g1,k,σ(1)(1, . . . , σ(1))(Sσ(1), . . . , k) (4.57)

Then cutting the circle (Sσ(1), . . . , k) along (yk, xSσ(1)) → (yσSσ(1), xSσSσ(1)) gives:

(Sσ(1), . . . , k) →σ gSσ(1),k,σSσ(1)(Sσ(1), . . . , σSσ(1))(SσSσ(1), . . . , k) (4.58)

One pursues this procedure step by step by always cutting the circle containing k.

Using the former notations, this reads:

(1, . . . , k) →σ
l̃1∏

j=1

gĩ1,j ,k,σ(̃i1,j)
(̃i1,j , . . . , σ(̃i1,j)) . (4.59)

So one has computed the weight associated to the first Sσ - cycle. The remaining

circles correspond to σ-cycles. Let us compute their weight by considering for example

(̃i1,1, . . . , σ(̃i1,1)) = (i1,1, . . . , i1,2).

The cut along the line (xi1,1 , yi1,2) → (yi1,3 , xS(i1,1)) gives:

(i1,1, . . . , i1,2) →
σ gi1,1,i1,2,i1,3(i1,1, . . . , i1,3)(S(i1,3), . . . , i1,2) . (4.60)

Keeping on cutting the circle containing i1,1 at every step gives:

(i1,1, . . . , i1,2) →
σ

l1∏

j=2

gi1,1,i1,j ,i1,j+1(S(i1,j+1), . . . , i1,j) . (4.61)
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One can notice that the remaining circles in the r.h.s. correspond to cycles of Sσ whose

contribution has not been taken into account yet. One can then compute their values by

following a procedure similar to the one used for the first Sσ-cycle.

One can then recursively cut the circles so that one finally obtains only circles contain-

ing only one element. This recursion is performed by alternatively processing on σ-cycles

and Sσ-cycles.

Thus, one straightforwardly finds:

(1, . . . , k) →σ
l∏

n=1

ln∏

j=2

gin,1,in,j ,in,j+1

l̃∏

n=2

l̃n∏

j=2

gĩn,j ,̃in,1,σ(̃in,j)

l̃1∏

j=1

gĩ1,j ,k,σ(̃i1,j)
= fσ . (4.62)

And then:

F (k) =
∑

σ∈Σk−1

fσ (4.63)

Example: let us compute the weight associated to the permutation σ ∈ Σ12 introduced

earlier. Starting from the circle (1, . . . , 13), one will proceed step by step the following

cutting:

6x
5

y

5x

4
y

4x

3
y

3x
2

y2x
1

y
1x

13
y

y

13x

12
y

12x

11x

10
y

10x

9
y

9x

8
y

8x
7

y 7x
6

11
y

(4.64)

The first step consists in cutting along the σ̃1 cycle. The dashed lines show where one

cuts the circles. Note that one do not represent the circles of unite length. The associated

weight is g1,13,3 g4,13,7 g8,13,8 g9,13,12.

The second step consists in cutting along the remaining σ cycles. One associates the

weight g1,3,2 g1,2,1 × g4,7,4 × g9,12,11 g9,11,9 to this step.
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The weights associated to the two last cuttings are g5,7,6 × g10,11,10 and g5,6,5.

y
13

x3

y
3

x4

y
11

y
10

x5

x

y
6

x7

y
7

y
5

y

x10

y
10

x11

x12

y
12

x13

x5

x6

y
6

y
5

9

4

x5

y
5

x6
y

6
x7y

7
x8

y
8

x9

y

6

3

2

y
7

4 y
4

x5

y
5

x6

y
6

7

x

x

y

y
11

y
1

x2 y
2

x1

y
1

x1

x

y
2

x3

11

12x

11
y

11x

10
y

10x
y

12

9
9 yx

x

10x

(4.65)

Finally, the weight of this planar permutation is then:

fσ = g1,13,3 g4,13,7 g8,13,8 g9,13,12 g1,3,2 g1,2,1 g4,7,4 g9,12,11 g9,11,9 g5,7,6 g10,11,10 g5,6,5 . (4.66)

4.7 Proof of the main theorem

We now prove that the function Ŵ defined by the r.h.s. of eq. (3.1) and the functions Û

and P̂ defined in theorem 2 satisfy the system of equations eq. (2.30) and eq. (2.31).

Proof of theorem 2: using eq. (4.32), one has:

Ûk(x1, . . . , yk) = Pol
yk

V ′
2(yk) Ŵk(x1, y1, . . . , xk, yk)

= Pol
yk

V ′
2(yk)

∑

σ∈Σk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

W1(xi, yσ(i))

=
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ (x1, y1, . . . , xk, y′

k)dy′
k

k−1∏

i=1

W1(xσ−1(i), yi) ×

×Pol
yk

V ′
2(yk)W1(xσ−1(k), yk)

yk − yj

=
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ (x1, y1, . . . , xk, y′

k)dy′
k

k−1∏

i=1

W1(xσ−1(i), yi) ×

×Pol
yk

(W̃ (yk) − X(yk))W1(xσ−1(k), yk)

yk − yj

= −
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ (x1, y1, . . . , xk, y′

k)dy′
k

k−1∏

i=1

W1(xσ−1(i), yi) ×
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×Pol
yk

X(yk)W1(xσ−1(k), yk)

yk − yj

=
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ (x1, y1, . . . , xk, y′

k)dy′
k

k−1∏

i=1

W1(xσ−1(i), yi) ×

×Pol
yk

(xσ−1(k) − X(yk))W1(xσ−1(k), yk) − (xσ−1(k) − X(yj))W1(xσ−1(k), yj)

yk − yj

=
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ (x1, y1, . . . , xk, y′

k)dy′
k

k−1∏

i=1

W1(xσ−1(i), yi) × (4.67)

×
(xσ−1(k) − X(yk))W1(xσ−1(k), yk) − (xσ−1(k) − X(yj))W1(xσ−1(k), yj)

yk − yj

.

Indeed, using eq. (2.26), one sees that the last expression is a polynomial in yk:

(xσ−1(k) − X(yk))W1(xσ−1(k), yk) − (xσ−1(k) − X(yj))W1(xσ−1(k), yj)

yk − yj
=

=

E(x
σ−1(k),yk)

yk−Y (x
σ−1(k))

−
E(x

σ−1(k),yj)

yj−Y (x
σ−1(k))

yk − yj
. (4.68)

We have to check eq. (2.31), i.e. that A = 0 with:

A :=
∑

j

Ŵk−j(xj+1, . . . , yk) − Ŵk−j(xj+1, . . . , xk, yj)

yk − yj
Ŵj(x1, . . . , yj) −

−Ûk(x1, . . . , yk) + (x1 − X(yk)) Ŵk(x1, y1, x2, . . . , xk, yk) . (4.69)

We have:

A =
∑

j 6=k

∑

π

∑

τ

C
(j)
τ (x1, . . . , yj)C

(k−j)
π (xj+1, . . . , yk)

yk − yj
×

×

j∏

i=1

W1(xτ−1(i), yi)

k∏

i=j+1

W1(xπ−1(i), yi) −

−
∑

j 6=k

∑

π

∑

τ

C
(j)
τ (x1, . . . , yj)C

(k−j)
π (xj+1, . . . , yj)

yk − yj
W1(xπ−1(k), yj) ×

×

j∏

i=1

W1(xτ−1(i), yi)
k−1∏

i=j+1

W1(xπ−1(i), yi) −

−
∑

σ

∑

j 6=k

(xσ−1(k) − X(yk))

yk − yj
W1(xσ−1(k), yk) ×

×

(
Res

yk→yj

C(k)
σ

) k−1∏

i=1

W1(xσ−1(i), yi) +

+
∑

σ

∑

j 6=k

(xσ−1(k) − X(yj))

yk − yj
W1(xσ−1(k), yj) ×
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×

(
Res

yk→yj

C(k)
σ

) k−1∏

i=1

W1(xσ−1(i), yi) +

+(x1 − X(yk))
∑

σ

C(k)
σ (x1, . . . , yk)W1(xσ−1(k), yk)

k−1∏

i=1

W1(xσ−1(i), yi) . (4.70)

Using eq. (4.32) in the last line, adding it to the 4th line, and using eq. (4.32) again, we

get:

A =
∑

j 6=k

∑

π

∑

τ

C
(j)
τ (x1, . . . , yj)C

(k−j)
π (xj+1, . . . , yk)

yk − yj
×

×

j∏

i=1

W1(xτ−1(i), yi)

k∏

i=j+1

W1(xπ−1(i), yi) +

+(x1 − xσ−1(k))
∑

σ

C(k)
σ (x1, . . . , yk)W1(xσ−1(k), yk)

k−1∏

i=1

W1(xσ−1(i), yi) −

−
∑

j 6=k

∑

π

∑

τ

C
(j)
τ (x1, . . . , yj)C

(k−j)
π (xj+1, . . . , yj)

yk − yj
W1(xπ−1(k), yj) ×

×

j∏

i=1

W1(xτ−1(i), yi)
k−1∏

i=j+1

W1(xπ−1(i), yi) +

+
∑

σ

∑

j 6=k

(xσ−1(k) − X(yj))

yk − yj
W1(xσ−1(k), yj) ×

×

(
Res

yk→yj

C(k)
σ

) k−1∏

i=1

W1(xσ−1(i), yi) . (4.71)

Using eq. (3.2) in the second line, exactly cancels the first line, and thus we get:

A = −
∑

j 6=k

∑

π

∑

τ

C
(j)
τ (x1, . . . , yj)C

(k−j)
π (xj+1, . . . , yj)

yk − yj
W1(xπ−1(k), yj) ×

×

j∏

i=1

W1(xτ−1(i), yi)
k−1∏

i=j+1

W1(xπ−1(i), yi) +

+
∑

σ

∑

j 6=k

(xσ−1(k) − X(yj))

yk − yj
W1(xσ−1(k), yj) ×

×

(
Res

yk→yj

C(k)
σ

) k−1∏

i=1

W1(xσ−1(i), yi) (4.72)

which is a rational fraction in yk with poles at yk = yj for some j. From Lemma 6, A as

defined in eq. (4.69) cannot have poles at yk = yj , thus A = 0.

Now, we have to check eq. (2.30) Using eq. (4.32), one has:

P̂k(x1, . . . , yk) − Ŵk−1(x2, . . . , xk, y1) =
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= Pol
x1

V ′
1(x1) Ûk(x1, y1, . . . , xk, yk)

= Pol
x1

Y (x1)
∑

σ∈Σk

∑

j 6=k

Res
y′

k
→yj

C(k)
σ

k−1∏

i=1

W1(xσ−1(i), yi) ×

×
U1(xσ−1(k), yk) − U1(xσ−1(k), yj)

yk − yj

= Pol
x1

Y (x1)
∑

σ∈Σk, σ(1)=k

∑

j 6=k

Res
y′

k
→yj

C(k)
σ

k−1∏

i=1

W1(xσ−1(i), yi) ×

×
U1(x1, yk) − U1(x1, yj)

yk − yj
+

+ Pol
x1

Y (x1)
∑

σ∈Σk, σ(1) 6=k

∑

j 6=k

Res
y′

k
→yj

C(k)
σ W1(x1, yσ(1))

∏

i6=k,σ(1)

W1(xσ−1(i), yi) ×

×
U1(xσ−1(k), yk) − U1(xσ−1(k), yj)

yk − yj

= −
∑

σ∈Σk, σ(1)=k

∑

j 6=k

∑

l 6=1

Res
x1→xl

Res
y′

k
→yj

C(k)
σ

k−1∏

i=1

W1(xσ−1(i), yi) ×

×
E(x1, yk) − E(x1, yj) − E(xl, yk) + E(xl, yj)

(x1 − xl)(yk − yj)
+

+
∑

σ∈Σk, σ(1) 6=k

∑

j 6=k

∑

l 6=1

Res
x1→xl

Res
y′

k
→yj

C(k)
σ

∏

i6=k,σ(1)

W1(xσ−1(i), yi) ×

×
(yσ(1) − Y (x1))W1(x1, yσ(1)) − (yσ(1) − Y (xl))W1(xl, yσ(1))

x1 − xl
×

×
U1(xσ−1(k), yk) − U1(xσ−1(k), yj)

yk − yj
. (4.73)

In order to satisfy eq. (2.30), we must prove that B = 0, where:

B :=
k∑

l=2

Ŵl−1(x1, y1, . . . , yl−1) − Ŵl−1(xl, y1, x2, . . . , yl−1)

x1 − xl
×

×Ûk−l+1(xl, yl, . . . , xk, yk) +

+
k−1∑

l=1

Ŵl(x1, . . . , yl) Ŵk−l(xk, yl, . . . , yk−1) −

−P̂k(x1, y1, x2, . . . , xk, yk) −

−(Y (x1) − yk) Ûk(x1, . . . , yk) . (4.74)

One does it in a way very similar to the previous one, i.e. first prove, using eq. (3.2),

that B is a rational fraction of x1, with poles at x1 = xl. But B can have no pole at

x1 = xl, so,B = 0.
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5. Matrix form of correlation functions

So far, we have computed mixed correlation functions with only one trace, i.e. the generat-

ing function of connected discrete surfaces with one boundary. In this section, we generalize

this theory to the computation of generating functions of non-connected discrete surfaces

with any number of boundaries. In order to derive those correlation functions, a matrix

approach of the problem, similar to the one developed in [9], is used.

Definition 5. Let k be a positive integer. Let π and π’ be two permutations of Σk and

decompose π′−1π into the product of its irreducible cycles:

π′−1π = P1P2 . . . Pn (5.1)

Each cycle Pi of π′−1π, of length pi, is denoted:

Pm = (im,1 →π jm,1 Ã
π′−1

im,2 →π jm,2 Ã
π′−1

. . . Ã
π′−1

im,pm →π jm,pm Ã
π′−1

im,1) .

(5.2)

For any (x1, y1, x2, y2, . . . , xk, yk) ∈ C, we define:

Wk
π,π′(x1, y1, . . . , xk, yk) :=

〈
n∏

m=1

(
δpm,1 +

1

N
Tr

pm∏

j=1

1

(M1 − xim,j
)(M2 − yjm,j

)

)〉
(5.3)

which is a k! × k! matrix.

Let us now generalize the notion of planarity of a permutation.

Definition 6. Let k be a positive integer. Let π and π’ be two permutations of Σk.

A permutation σ ∈ Σk is said to be planar wrt (π, π′) if

ncycles(π
−1σ) + ncycles(π

′−1σ) = k + ncycles(π
′−1π) . (5.4)

Let Σ
(π,π′)
k ⊂ Σk be the set of permutations planar wrt (π, π′).

Graphically, if one draws the sets of points (xi1,1 , yj1,1 , xi1,2 , yj1,2 , . . . , xi1,p1
, yj1,p1

),

(xi2,1 , yj2,1 , xi2,2 , yj2,2 , . . . , xi2,p2
, yj2,p2

), . . . , (xip,1 , yjp,1 , xip,2 , yjp,2 , . . . , xin,pn
, yjn,pn

) on n

circles and link each pair (xj , yσ(j)) by a line, these lines do not intersect nor go from

one circle to another.

Remark 1. One can straightforwardly see two properties of these sets:

• This relation of planarity wrt to (π, π′) is symmetric in π and π′, that is to say:

Σ
(π,π′)
k = Σ

(π′,π)
k . (5.5)

• The planarity defined in eq. (1) corresponds to π = Id and π′ = S−1:

Σk = Σ
(Id,S−1)
k . (5.6)

– 25 –



J
H
E
P
0
8
(
2
0
0
5
)
0
2
8

Directly from these definitions and the preceding results comes the following theorem

computing any generating function of discrete surface with boundaries.

Theorem 6.

Wk
π,π′(x1, y1, x2, y2, . . . , xk, yk) =

∑

σ

Ck
σ,π,π′(x1, y1, . . . , xk, yk)

k∏

i=1

W1(xi, yσ(i)) (5.7)

where Ck
σ is the k! × k!-matrix defined by:

• Ck
σ,π,π′(x1, y1, x2, y2, . . . , xk, yk) := 0 if σ is not planar wrt (π, π′);

• if σ is planar wrt (π, π′):

Ck
σ,π,π′(x1, y1, . . . , xk, yk) :=

:=

a∏

m=1

F (am)(xrm,1 , yσ(rm,1), xrm,2 , yσ(rm,2), . . . , xrm,am
, yσ(rm,am )) ×

×
ã∏

m=1

F (ãm)(xr̃m,1 , yσ(r̃m,1), xr̃m,2 , yσ(r̃m,2), . . . , xr̃m,am
, yσ(r̃m,am )) . (5.8)

with the decompositions of π−1σ and π′−1σ into their products of cycles:

π−1σ = π1π2 . . . πa , π′−1σ = π̃1π̃2 . . . π̃ã (5.9)

such that:

πm = (rm,1, rm,2, . . . , rm,am) , π̃m = (r̃m,1, r̃m,2, . . . , r̃m,ãm) . (5.10)

Remark 2. From the definition, one can see that σ(rm,am) = π(rm, 1) and σ(r̃m,am) =

π′(r̃m, 1) for any m.

5.1 Properties of the Ck
σ ’s.

Lemma 8. The matrices Ck
σ are symmetric.

Proof. It comes directly from the definition.

Lemma 9. ∑

σ

Ck
σ = Id (5.11)

Proof. One has:

Wk
π,π′(x1, y1, x2, y2, . . . , xk, yk) =

∑

σ

Ck
σ,π,π′

k∏

i=1

W1(xi, yσ(i)) . (5.12)

Let us shift all the x’s by a translation a and send a → ∞, i.e. replace all the xi’s by xi +a.

In the l.h.s. , only the δ-terms of Definition 5 survive in the limit a → ∞, and thus the

l.h.s. tends towards the identity matrix. In the r.h.s. , notice that W1(xi + a, yσ(i)) → 1.

And Ck
σ , which depends only on the differences between xi’s, is independent of a.
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5.2 Some commutation properties

Definition 7. Let Mk(~x, ~y, ξ, η) be the k! × k! matrix defined by:

Mk(~x, ~y, ξ, η)π,π′ :=
∏

i

(δπ(i),π′(i) +
1

(ξ − xi)(η − yπ(i))
) . (5.13)

Let A(k)(x1, y1, . . . , xk, yk) be the k! × k! matrix defined by:




A
(k)
π,π(x1, y1, . . . , xk, yk) :=

∑
i xiyπ(i)

A
(k)
π,π′(x1, y1, . . . , xk, yk) := 1 if ππ′−1 = transposition

A
(k)
π,π′(x1, y1, . . . , xk, yk) := 0 otherwise

(5.14)

Theorem 7.

∀σ, ξ, η , [Mk(~x, ~y, ξ, η), Ck
σ(~x, ~y)] = 0 (5.15)

and

∀ξ, η , [Mk(~x, ~y, ξ, η),Wk(~x, ~y)] = 0 (5.16)

Proof. Let us define:

M̃(~x, ~y, ξ, η) := M(N~x, ~y, Nξ, η) (5.17)

and

W̃k
π,π′(x1, y1, . . . , xk, yk) :=

〈
n∏

m=1


δpm,1 + Tr

pm∏

j=1

1

N

1

(M1 − xim,j
)(M2 − yjm,j

)




〉
.

(5.18)

It was proven in [9] that:

[M̃k(~x, ~y, ξ, η), W̃k(~x, ~y)] = 0 . (5.19)

Now, in the large-N limit, the factorization property [3] 〈Tr Tr〉 ∼ 〈Tr〉〈Tr〉, implies:

W̃k
π,π′(x1, y1, x2, y2, . . . , xk, yk) ∼ Nncycles(π

′−1π)−k ×

×
n∏

m=1

Wpm(xim,1 , yπ(im,1), . . . , xim,pm
, xπ(im,pm ))

∼ Nncycles(π
′−1π)−kWk

π,π′(x1, y1, x2, y2, . . . , xk, yk) (5.20)

and using theorem 6, we have:

W̃k
π,π′(x1, y1, x2, y2, . . . , xk, yk) ∼

∼ Nncycles(π
′−1π)−k

∑

σ

Ck
σ,π,π′(x1, y1, x2, y2, . . . , xk, yk)

k∏

i=1

W1(xi, yσ(i)) . (5.21)

Notice that

Ck
σ,π,π′(x1, y1, x2, y2, . . . , xk, yk) =

= Nk−ncycles(π
−1σ)+k−ncycles(π

′−1σ)Ck
σ,π,π′(Nx1, y1, Nx2, y2, . . . , Nxk, yk)

= Nk−ncycles(π
′−1π)Ck

σ,π,π′(Nx1, y1, Nx2, y2, . . . , Nxk, yk) . (5.22)
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Thus:

W̃k
π,π′(x1, y1, x2, y2, . . . , xk, yk) ∼

∼
∑

σ

Ck
σ,π,π′(Nx1, y1, Nx2, y2, . . . , Nxk, yk)

k∏

i=1

W1(xi, yσ(i)) . (5.23)

Then, from [9], we have:

0 =
∑

σ

[
Mk(N~x, ~y, Nξ, η), Ck

σ(Nx1, y1, . . . , Nxk, yk)
] k∏

i=1

W1(xi, yσ(i)) . (5.24)

In particular, choose a permutation σ, and take the limit where yi → Y (xσ−1(i)), you get

in that limit:

0 =
[
Mk(N~x, ~Y (xσ−1), Nξ, η), Ck

σ(Nx1, Y (xσ−1(1)), . . . , Nxk, Y (xσ−1(k)))
]
. (5.25)

Since this equation holds for any potentials V1 and V2, it holds for any function Y (x), and

thus the Y (xi)’s can be chosen independentely of the xi’s, and thus, for any y1, . . . , yk, we

have:

0 =
[
Mk(N~x, ~y, Nξ, η), Ck

σ(Nx1, y1, . . . , Nxk, yk)
]
. (5.26)

Since it holds for any xi’s and ξ, it also holds for xi/N and ξ/N .

Corollary 1.

∀σ , [A(k)(~x, ~y), Ck
σ(~x, ~y)] = 0 . (5.27)

Proof. The corollary is obtained by taking the large ξ and η limit of theorem 7 (see appendix

of [9]).

5.3 Examples: k = 2.

W(2) =

(
W11W22

W11W22−W12W21
(x1−x2)(y1−y2)

W11W22−W12W21
(x1−x2)(y1−y2) W12W21

)
(5.28)

where Wij = W1(xi, yj).

C2
Id =

(
1 1

(x1−x2)(y1−y2)
1

(x1−x2)(y1−y2) 0

)
(5.29)

C2
(12) =

(
0 1

(x1−x2)(y2−y1)
1

(x1−x2)(y2−y1) 1

)
= 1 − C2

Id . (5.30)

6. Application: gaussian case

There is an example of special interest, in particular for its applications to string theory

in the BMN limit [26], it is the gaussian-complex matrix model case, V1 = V2 = 0. In that

case one has E(x, y) = xy − 1, and thus:

W1(x, y) =
xy

xy − 1
. (6.1)
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The loop equation defining recursively the Wk’s can be written:

(x1yk − 1)Wk(x1, y1, . . . , xk, yk) =

= x1

∑

j

Wj−1(xj , y1, . . . , yj−1) − Wj−1(x1, y1, . . . , yj−1)

x1 − xj
×

×Wk−j+1(xj , yj , . . . , xk, yk) . (6.2)

Its solution is then:

Wk(x1, y1, . . . , xk, yk) =
∑

σ∈Σk

C(k)
σ (x1, y1, . . . , xk, yk)

k∏

i=1

xiyσ(i)

xiyσ(i) − 1
. (6.3)

From the loop equation, one can see that Wk(x1, y1, . . . , xk, yk) may have poles only

when xi → y−1
j for any i and j. Because the Cσ’s are rational functions of all their variables

and because Wk has no singularity when xi = xj or yi = yj , one can write:

Wk(x1, y1, . . . , xk, yk) =
Nk(x1, y1, x2, y2, . . . , xk, yk)∏

i,j(xiyj − 1)
(6.4)

where Nk(x1, y1, x2, y2, . . . , xk, yk) is a polynomial in all its variables.

Moreover, the loop equation taken for the values xk = 0 or yk = 0 shows that

Wk(x1, y1, . . . , 0, yk) = Wk(x1, y1, . . . , xk, 0) = 0. Using the cyclicity property of Wk ×

(x1, y1, . . . , xk, yk), one can claim that it vanishes whenever one of its arguments is equal

to 0. One can thus factorize the polynomial Nk(x1, y1, x2, y2, . . . , xk, yk) as follows:

Wk(x1, y1, . . . , xk, yk) =
Qk(x1, y1, x2, y2, . . . , xk, yk)

∏
i xiyi∏

i,j(xiyj − 1)
(6.5)

where Qk(x1, y1, . . . , xk, yk) is a polynomial of degree k − 2 with integer coefficient in all

its variables.

Notice that Qk(x1, y1, . . . , y
−1
σ(i), yi, . . . , xk, yk) = 0 if σ is not planar.

As an example, we have:

• for k = 2:

W2(x1, y1, x2, y2) =
x1x2y1y2∏
i,j(xiyj − 1)

, Q2(x1, y1, x2, y2) = 1 (6.6)

• for k = 3:

W3(x1, y1, x2, y2, x3, y3) = (2 −
∑

i

xiyi+1 + x1x2x3y1y2y3)
x1x2x3y1y2y3∏

i,j(xiyj − 1)
(6.7)

and

Q3(x1, y1, x2, y2, x3, y3) = (2 − x1y2 − x2y3 − x3y1 + x1x2x3y1y2y3) . (6.8)
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7. Conclusion

In this article, we have computed the generating functions of discs with all possible bound-

ary conditions, i.e. the large-N limit of all correlation functions of the formal 2-matrix

model. We have found that the 2k point correlation function can be written like the Bethe

Ansatz for the δ-interacting bosons, i.e. a sum over permutations of product of 2-point

functions. That formula is universal, it is independent of the potentials.

An even more powerful approach consists in gathering all possible 2k point correlation

functions in a k!×k! matrix Wk. We have found that this matrix Wk satisfies commutation

relations with a family of matrices Mk which depend on two spectral parameters, and are

related to the representations of U(n) [9]. We claim that the theorem 7 is almost equivalent

to the loop equations, and allows to determine Wk.

It remains to understand how all these matrices and coefficients Cσ are related to usual

formulations of integrability, i.e. how to write these in terms of Yang Baxter equations. For

instance, the similarity with equations found in Razumov-Stroganov conjecture’s proof [27]

is to be understood.

One could also hope to find a direct proof of theorem 3, without having to solve the

loop equations. In other words, we have found that the 2k-point function can be written

only in terms of W1, while, in the derivation, we use the one point functions Y (x) and

X(y) although they don’t appear in the final result.

The next step, is to be able to compute the 1/N2 expansion of those correlation

functions, as well as the large-N limit of connected correlation functions. We are already

working that out, by mixing the approach presented in the present article and the Feynman

graph approach of [14] generalized to the 2-matrix model in [15].

Another prospect is to go to the critical limit, i.e. where we describe generating func-

tions for continuous surfaces with conformal invariance, and interpret this as boundary

conformal field theory [4].
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A. Practical computation of fσ

In this appendix, we build a set of trees in bijection with Σk and use it in order to compute

practicaly the weights fσ defined in Definition 4.

Definition 8. Let Tk be the set of trees defined as follows: A tree T belongs to T ∈ Tk,

and is called a k-planar tree if and only if:

• its root is labelled k + 1;

• it is composed of k+1 vertices, labeled by [1, . . . , k + 1];
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• it has k edges which can be either upgoing or downgoing;

• its vertices have valence 1, 2 or 3, and are of one of the following eight possibilities,

in which the point m denotes the origin of the branch containing i:

– two trivalent vertices:

m

i
j+1<m

j
and i

j+1

j>m

m

(A.1)

– four bivalent vertices:

m

i
i+1<m

,

m

i
i-1>m

(A.2)

m

i<m

m-1
and

i>m

m+1m
(A.3)

– two monovalent vertices corresponding to the leaves of the tree:

i<m

m
and

m

i>m
(A.4)

Remark 3. Those trees are often called planar binary skeleton trees.

Remark 4. One can see that the first edge is necessarily upgoing, and its extremity is

necessarily 1.

1

k+1

(A.5)

Theorem 8. There is a bijection between Tk and the set of planar permutations Σk:

Proof. We build explicitly this bijection between Σk−1 and Tk−1.

Consider a planar permutation σ ∈ Σk−1. Planarity means that σ defines a partition

of the disc into faces of two kinds. Let us say that faces which correspond to cycles of Sσ

are colored in white, faces which correspond to cycles of σ are colored in black.

Decompose σ and Sσ into products of irreducible cycles:

σ = σ1σ2 . . . σl , Sσ = σ̃1σ̃2 . . . σ̃l̃ (A.6)

and we assume that σ̃1 and σ1 contain x1.

Because of planarity, we can define a distance of faces (i.e. cycles) to the face σ̃1, as

the number of edges one has to cross for going from a face σi or σ̃i to σ1, and call it D(σi)

or D(σ̃i).
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We also define the “origin” of a face, noted m(σi) or m(σ̃i), as follows: If the face is

σ̃1, we define m(σ̃1) = k, otherwise, because of planarity, there is only one neighbouring

face which is at smaller distance of σ̃1. Because of planarity, those two faces share at most

one x, and the origin is defined as the label of that x.

Thus, each face has a color, white or black, a distance D, and an origin m.

Now, to every face we associate a branch as follows:

• to a white face, σ̃j , i.e. a cycle of Sσ, noted

σ̃j = (̃ij,1, ĩj,2, . . . , ĩj,l̃j ) , ĩj,1 = m(σ̃j) , σ(̃ij,n) = ĩj,n+1 − 1 (A.7)

we associate the upgoing branch ĩj,1 → ĩj,2 → . . . → ĩj,l̃j

j,l

j,l-1

j

~

j

~

j,1

j,3

~i

~i
j,2

~i

~i

~i (A.8)

(if l̃j = 1, the sequence contains only one vertex ĩj,1 = m(σ̃j) and no edge).

• to a black face, σj , i.e. a cycle of σ, noted

σj = (ij,1, ij,2, . . . , ij,lj ) , ij,1 = m(σj) , σ(ij,n) = ij,n+1 (A.9)

we associate the downgoing branch ij,1 → ij,2 → . . . → ij,lj

j

j
ij,l

j,l-1
i

ij,2

ij,3

i
j,1

(A.10)

(if lj = 1, the sequence contains only one vertex ij,1 = m(σj) and no edge).

• to the first face σ̃1,

σ̃1 = (̃i1,1, ĩ1,2, . . . , ĩ1,l̃1
) , ĩ1,1 = 1 , σ(̃i1,n) = ĩ1,n+1 − 1 (A.11)

we associate the upgoing branch k → ĩ1,1 → ĩ1,2 → . . . → ĩ1,l̃1

k

1,2

1,1

1

~
1,l

~i

1

~
1,l-1

~i

~i
~i

(A.12)

By definition of the origin m of a face at distance D, the origin of a branch is necessarily

a vertex on a branch at distance D − 1, and from planarity, it cannot be a vertex on any

other branch. Thus, there is a unique way to attach all branches to their origin, and we

obtain a tree, which belongs to Tk−1.
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Inverse bijection: on the other hand, let us consider a k − 1-tree. One can build a

permutation σ ∈ Σk−1 as follows: the image of an element of (1, . . . , k − 1) is:

• its descendant along a downgoing propagator if it exists;

• the origin of the downgoing branch to which it belongs in the other cases.

Because of the form of the vertices, the upgoing branches are necessarily the cycles

of Sσ. And since the branches form a tree, it implies that two faces touch one another

through zero or one edge. Thus the permutation σ is planar.

It is easy to see that this application is the inverse of the preceding one.

Example: let us carry out explicitly step by step this building for the permutation σ ∈

Σ12 introduced earlier. Notice that it is enrooted in 12 + 1 = 13.

8

9

2

3

7

5

6

4

13

1

σ

σ σ

σ σ

σ

21

3 5

1

4

∼

∼
11

13

1

4

8

9

2

3

7

5

6

12

5

13

1

4

8

9

2

3

13

1

13

1

4

8

9

13

1

4

8

9

2

3

7

13

1

4

8

9

2

3

7

(A.13)

Considering the last non trivial cycle σ̃6 = (10, 11), one obtains finally the tree corre-

sponding to (4.17):

13

1

4

8

9

2

3

7

5

6

12

11

10

(A.14)

Corollary 2. #Tk = Cat (k) , where Cat (k) is the k′th Catalan number.

From now, one can see how to simply compute the weight fσ associated to a permu-

tation σ.
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Consider a planar permutation σ ∈ Σk and its representation under the form of a tree

T ∈ #Tk. Associate a weight to every edge of the tree as follows:

• To every downgoing edge

in,j

in,j+1

of a cycle σn of σ, one associates the weight

gin,1,in,j+1,in,j+2 ;

• To every upgoing edge
i

i

n,j+1

~

~

n,j
of a cycle σ̃n of Sσ, one associates the weight

gĩn,j+1 ,̃in,1,σ(̃in,j+1).

Then, the fσ is the product of all the weights of edges composing T .
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