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1 Introduction

It has been noticed for a long time now, that the so called ”Two-Hermitean-Matrix-Model” (in-

troduced in particular for quantum gravity [19, 10]) and the so called ”Complex-Matrix-Model”

(used in particular for its applications to Laplacian growth models [27, 28], and string theory [1])

share lots of similarities: They have the same leading large N expansion properties, and, both are

associated to some ensembles of biorthogonal polynomials which have formaly the same properties.

Here, we add a new piece to make this correspondence more precise, we prove that both models

have the same loop equations.

Both models are not defined for the same weights, in fact, the set of weights for which one

model is well defined has no intersection with the set of weights for which the other model is well

defined. However, each model can be analyticaly continued to a larger set of weights, and in that

sense, the two models coincide.

When written in terms of eigenvalues, this identification of the 2-hermitean-matrix-model and

complex-matrix-model has some interesting corolary: it gives a formula for computing integrals (of

the Itzykzon-Zuber type) over the unitary group, as gaussian integrals over triangular matrices.

Therefore, we obtain a very explicit formula for all correlators of the Shatashvili’s type [24]. In

[24] S. Shatashvili found a formula for all U(n) correlation functions, but his formula still contains

integrals, is not explicitely symmetric in all variables, and is very difficult to use for practical

purposes, such as [6]. In the particular case of the 2-point correlation function, Morozov has

found a much simpler formula [23]. In [23] A. Morozov computed it for U(n) with n ≤ 3 and

conjectured it for n > 3. Morozov’s formula was later proven for all n in [6], and written in an

even simpler form [13]. Here, we find a natural generalization of Morozov’s formula. The formula

we find here, contains no integration, it gives the U(n) correlation functions as the sum of a finite

number of terms, and is very efficient for effective computations. It also provides an alternative

new proof of Itzykzon-Zuber’s formula.

The derivations proposed in this article are elementary, and it would be interesting to put

them in the more general framework of group representation theory [20, 17].

The main results presented in this paper are:

• Theorem 3.3 and in particular Remark 3.3, which states the equivalence between the

Hermitean-2-matrix model and the complex-matrix model:
∫

Hn×Hn

dM1 dM2 F (M1,M2) e−γ Tr M1M2 ≡
∫

GLn(C)

dZ F (Z,Z†) e−γ Tr ZZ†

(1-1)

The definitions of each terms and the meaning of that equality are explained in section 3.3.

• Theorem 4.1, which allows to compute U(n) integrals as triangular integrals.
∫

U(n)

dU F (X,UY U †) e−Tr XUY U†
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∝
∑

σ

∑

τ (−1)σ(−1)τe−Tr XσYτ
∫

T (n)
F (Xσ + T, Yτ + T †) e−Tr TT †

∆(X)∆(Y )
(1-2)

for any polynomial invariant function F .

• Theorem 5.2, which gives a formula for computing triangular matrix gaussian integrals. We

parametrize polynomial invariant functions by pairs of permutations (of some size R), and a basis

is written Fπ,π′. Theorem 5.2 gives the result of integration over triangular matrices:

∫

T (n)
dT e−Tr TT †

Fπ,π′(~x, ~y,X + T, Y + T †)
∫

T (n)
dT e−Tr TT †

=
(

M(R)(~x, ~y,Xn, Yn)M(R)(~x, ~y,Xn−1, Yn−1) . . .M(R)(~x, ~y,X1, Y1)
)

π,π′ (1-3)

where M(R)(~x, ~y,Xn, Yn) is the matrix of size R!, indexed by pairs of permutations:

M(R)
π,ρ (~x, ~y,Xn, Yn) =

R
∏

i=1

(

δπ(i),ρ(i) +
1

(xi − Xn)(yπ(i) − Yn)

)

(1-4)

Theorem 5.3 shows that the matrices in eq.1-3 commute together, and can be simultaneousy

diagonalized.

• Theorem 6.1, which gives a formula for computing correlation functions in terms of biorthog-

onal polynomials:

∫

Hn×Hn
dM1 dM2 Fπ,π′(~x, ~y,M1,M2) e−Tr (V1(M1)+V2(M2)+M1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (V1(M1)+V2(M2)+γM1M2)

=
(

Mdet
(

M(R)(~x, ~y,Q, P t)
))

π,π′

(1-5)

where notations are explained in section 6.2.

Outline:

• In part 2 we give definitions of groups and measures.

• In part 3, we prove the equivalence between the Hermitean-2-matrix model and the complex-

matrix model, by showing that they have the same loop equations.

• In part 4, we prove the identity between U(n) integrals and triangular integrals, and give

some examples. In particular we rederive Itzykson-Zuber’s formula and Morozov’s formula.

• In part 5, we compute the triangular integrals, by parametrizing polynomial invariant func-

tions with pairs of permutations. In particular we explicit all four point functions.

• In part 6, we integrate over eigenvalues using biorthogonal polynomials technics, and get

expressions for correlation functions.
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2 Definitions

2.1 Ensembles

Let

• U(n) := group of n × n unitary matrices, with the normalized Haar measure.

• Hn := group of n × n hermitean matrices, with the Lebesgue measure:

dM :=
∏

i

dMii

∏

i<j

dReMij dImMij (2-1)

• GLn(C) := group of n × n complex matrices, with the Lebesgue measure:

dZ :=
∏

i,j

dReZij dImZij (2-2)

• Tn := group of n×n strictly upper triangular complex matrices, with the Lebesgue measure:

dT :=
∏

i<j

dReTij dImTij (2-3)

• Dn(R) := group of n × n real diagonal matrices, with the Lebesgue measure:

dX :=
∏

i

dXii (2-4)

• Dn(C) := group of n × n complex diagonal matrices, with the Lebesgue measure:

dX :=
∏

i

dReXii dImXii (2-5)

• Σ(n) := group of permutations of n elements.

2.2 Vandermonde determinant

For any diagonal matrix X = diag(X1, . . . ,Xn) ∈ Dn(C), one writes:

∆(X) :=
∏

i<j

(Xi − Xj) (2-6)

and, for any permutation σ ∈ Σ(n), we define the diagonal matrix:

Xσ := diag(Xσ(1), . . . ,Xσ(n)) (2-7)

Notice that:

∆(Xσ) := (−1)σ ∆(X) (2-8)
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2.3 Invariant functions

Definition 2.1 F (A,B) defined on GLn(C) × GLn(C) → C is an analytical invariant function

if:

• F is analytical in each variable,

• ∀U ∈ GL∗
n(C), F (UAU−1, UBU−1) = F (A,B).

Examples:

F (A,B) =

p
∏

t=1

Tr

(

Rt
∏

rt=1

(xt,rt − A)(yt,rt − B)

)

(2-9)

F (A,B) = e−Tr V1(A) e−Tr V2(B) (2-10)

Definition 2.2 Monomial invariant functions are functions of the form:

F (A,B) =

p
∏

t=1

Tr

(

Rt
∏

rt=1

(Akt,rt Blt,rt )

)

(2-11)

where the kt,rt’s and lt,rt’s are integers such that kt,rt + lt,rt > 0. The total degree is

deg F :=

p
∑

t=1

Rt
∑

rt=1

kt,rt + lt,rt (2-12)

Definition 2.3 Polynomial invariant functions are finite complex linear combinations of mono-

mial invariant functions.

Examples of polynomial invariant functions:

F (A,B) = Tr Ak1 Bl1 Ak2 Bl2 , F (A,B) =
(

1 + Tr Ak1 Bl1
) (

1 + Tr Ak2 Bl2
)

(2-13)

F (A,B) =

p
∏

t=1

det(xt − A)kt

q
∏

u=1

det(yu − B)lu (2-14)

F (A,B) = det(A ⊗ 1 − 1 ⊗B) (2-15)

2.4 Decompositions

2.4.1 Diagonalization

It is a standard result in algebra (see [22, 17, 20] for instance), that any hermitean matrix M ∈ Hn

can be written:

M = UXU † (2-16)

where U ∈ U(n) and X ∈ Dn(R).
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The measure is then:

dM = J̃n ∆2(X) dU dX (2-17)

where the Jacobian is

J̃n =
π

n(n−1)
2

∏n−1
k=0 k!

(2-18)

This decomposition is not unique. It is unique up to a permutation of eigenvalues, and up to

multiplication of U by a diagonal matrix whose elements are on the unit circle. In other words,

M = UXU † provides a mapping between Hn and U(n) ×Dn(R)/(U(1)n × Σ(n)).

2.4.2 Jordanization

A less standard result (see [22, 26, 20, 17] for instance), is that any complex matrix Z ∈ GLn(C)

can be written:

Z = U(X + T )U † (2-19)

where U ∈ U(n), T ∈ Tn and X ∈ Dn(C).

The measure is then:

dZ = Jn |∆(X)|2 dU dT dX (2-20)

where the Jacobian is

Jn =

(

π
2

)
n(n−1)

2

∏n−1
k=0 k!

(2-21)

This decomposition is not unique. It is unique up to a permutation of eigenvalues, and up to

multiplication of U by a diagonal matrix whose elements are on the unit circle. In other words,

Z = U(X + T )U † provides a mapping between Gln(C) and U(n) × Tn × Dn(C)/(U(1)n × Σ(n)).

3 Gaussian matrix integrals

In all what follows, we consider 3 complex numbers α1, α2 and γ, and we define

δ := α1α2 − γ2 (3-1)

and assume that δ 6= 0.

3.1 Gaussian Hermitean model

Consider the measure on Hn × Hn:

e−Tr (α1
2

M2
1 +

α2
2

M2
2 +γM1M2) dM1 dM2 (3-2)
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Definition 3.1 The partition function is:

ZH(n, γ, α1, α2) :=

∫

Hn×Hn

dM1 dM2 e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2) (3-3)

Notice that the integral ZH is absolutely convergent only if

∀φ ∈ R Re(α1e
φ + α2e

−φ ± 2γ) > 0 (3-4)

which implies that Reα1 > 0, Reα2 > 0, (Reγ)2 < Reα1Reα2.

An easy gaussian integral computation gives:

ZH = 2n

(

π√
δ

)n2

. (3-5)

Definition 3.2 The expectation value of an invariant function F (A,B) is:

〈F 〉H :=

∫

Hn×Hn
dM1 dM2 F (M1,M2) e−Tr (

α1
2

M2
1 +

α2
2

M2
2+γM1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (

α1
2

M2
1 +

α2
2

M2
2+γM1M2)

(3-6)

Remark 3.1 It is clear, from Wick’s theorem, that if F is a monomial invariant function, then < F >H

is a polynomial in α1
δ , α2

δ and γ
δ , and can be analiticaly continued to every complex α1, α2, γ, provided

that δ 6= 0.

3.1.1 Gaussian Hermitean loop equations

Consider a monomial matrix valued function, of the form:

f(A,B) = f0(A,B)

p
∏

t=1

Tr ft(A,B) , ∀t = 0, . . . , p, ft(A,B) =
Rt
∏

rt=1

Akt,rt Blt,rt (3-7)

define:

G0(A,B) :=
∏

u6=0

Tr fu(A,B) , and if t ≥ 1 , Gt(A,B) :=
∏

u6=0,t

Tr fu(A,B) (3-8)

Theorem 3.1 One has the ”loop equations”:

α1 〈G0(M1,M2)Tr M1f0(M1,M2)〉H + γ 〈G0(M1,M2)Tr M2f0(M1,M2))〉H

=
R0
∑

r=1

k0,r−1
∑

j=0

〈

G0(M1,M2) Tr

((

r−1
∏

u=1

M
k0,u

1 M2
l0,u

)

M j
1

)

Tr

(

M
k0,r−j−1
1 M2

l0,r

(

R0
∏

u=r+1

M
k0,u

1 M2
l0,u

))〉

H
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+

p
∑

t=1

Rt
∑

r=1

kt,r−1
∑

j=0

〈

Gt(M1,M2) Tr

((

r−1
∏

u=1

M
kt,u

1 M2
lt,u

)

M j
1f0(M1,M2)M

kt,r−j−1
1 M2

lt,r

(

Rt
∏

u=r+1

M
kt,u

1 M2
lt,u

))〉

H

(3 − 9)

and

α2 〈G0(M1,M2)Tr M2f0(M1,M2)〉H + γ 〈G0(M1,M2)Tr M1f0(M1,M2))〉H

=
R0
∑

r=1

l0,r−1
∑

j=0

〈

G0(M1,M2) Tr

((

r−1
∏

u=1

M
k0,u

1 M2
l0,u

)

M
k0,r

1 M2
j

)

Tr

(

M2
l0,r−j−1

(

R0
∏

u=r+1

M
k0,u

1 M2
l0,u

))〉

H

+

p
∑

t=1

Rt
∑

r=1

lt,r−1
∑

j=0

〈

Gt(M1,M2) Tr

((

r−1
∏

u=1

M
kt,u

1 M2
lt,u

)

M1
kt,rM2

jf0(M1,M2)M2
lt,r−j−1

(

Rt
∏

u=r+1

M
kt,u

1 M2
lt,u

))〉

H

(3 − 10)

Notice that the RHS is a linear combination of invariant polynomial functions of degree strictly

lower than the LHS.

Loop equations are a standard method for finding recursion relations among expectation values

[10], they were first studied by [25] for the 2-matrix model, and solved more explicitely by [15, 12,

14].

proof:

Write that the integral of a total derivative is zero:

0 =
∑

i

∫

dM1 dM2
∂

∂M1ii

(

fi,i(M1,M2) e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

)

(3-11)

i.e.

∑

i

∫

dM1 dM2

(

∂

∂M1ii

fi,i(M1,M2)

)

e−Tr (
α1
2

M2
1+

α2
2

M2
2 +γM1M2)

=
∑

i

∫

dM1 dM2 fi,i(M1,M2) (α1M1ii + γM2ii) e−Tr (
α1
2

M2
1+

α2
2

M2
2 +γM1M2)

(3 − 12)

Similarly:

∑

i<j

∫

dM1 dM2

(

∂

∂ReM1ij

fi,j(M1,M2)

)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2 +γM1M2)
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=
∑

i<j

∫

dM1 dM2 fi,j(M1,M2)
(

α1(M1ji + M1ij) + γ(M2ji + M2ij)
)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

(3 − 13)

and

∑

i<j

∫

dM1 dM2

(

∂

∂ImM1ij

fi,j(M1,M2)

)

e−Tr (
α1
2

M2
1+

α2
2

M2
2 +γM1M2)

= i
∑

i<j

∫

dM1 dM2 fi,j(M1,M2)
(

α1(M1ji − M1ij) + γ(M2ji − M2ij)
)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2 +γM1M2)

(3 − 14)

Taking 3-12 + 3-13 −i 3-14 , we get:

∑

i

∫

dM1 dM2

(

∂

∂M1ii

fi,i(M1,M2)

)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

+
1

2

∑

i<j

∫

dM1 dM2

((

∂

∂ReM1ij

− i
∂

∂ImM1ij

)

fi,j(M1,M2)

)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

+
1

2

∑

i<j

∫

dM1 dM2

((

∂

∂ReM1ij

+ i
∂

∂ImM1ij

)

fj,i(M1,M2)

)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

=

∫

dM1 dM2 (Tr f(M1,M2)(α1M1 + γM2)) e−Tr (
α1
2

M2
1 +

α2
2

M2
2+γM1M2)

(3-15)

i.e. one can proceed as if all the M1ij were n2 real indepedent variables, i.e., by abuse of notation

we write:

∑

i,j

∫

dM1 dM2

(

∂

∂M1ij

fi,j(M1,M2)

)

e−Tr (
α1
2

M2
1 +

α2
2

M2
2 +γM1M2)

=

∫

dM1 dM2 (Tr f(M1,M2)(α1M1 + γM2)) e−Tr (
α1
2

M2
1+

α2
2

M2
2 +γM1M2)

(3 − 16)

Now, one can use the following rules:

• split rule: if f(M1,M2) = AMk
1 B (where A and B are matrices), one has:

∑

i,j

∂f(M1,M2)ij

∂M1ij
=

k−1
∑

l=0

Tr
(

AMk−1−l
1

)

Tr
(

M l
1B
)

(3-17)

• merge rule: if f(M1,M2) = ATr (Mk
1 B) (where A and B are matrices), one has:

∑

i,j

∂f(M1,M2)ij

∂M1ij
=

k−1
∑

l=0

Tr
(

AMk−1−l
1 BM l

1

)

(3-18)
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Then, if A and B depend on M1, one has to use the chain rule.

When one considers f given by 3-7, one gets eq.3-9.

Eq.3-10 is obtained by doing the same for M2. �

We find again that 〈F 〉H is a polynomial in α1

δ
, α2

δ
and γ

δ
.

3.2 Gaussian Complex model

Consider the measure on GLn(C):

e−Tr (α1
2

Z2+
α2
2

Z†2+γZZ†) dZ (3-19)

Definition 3.3 The partition function is:

ZC(n, γ, α1, α2) :=

∫

Gln(C)

dZ e−Tr (
α1
2

Z2+
α2
2

Z†2+γZZ†) (3-20)

Notice that the integral ZC is absolutely convergent only if

∀θ ∈ R Re(α1e
iθ + α2e

−iθ + 2γ) > 0 (3-21)

One can see that with θ = π, this condition can never be compatible with 3-4 (with φ = 0).

Therefore, if ZH is an absolutely convergent integral then ZC is not, and vice–versa.

An easy gaussian integration gives (where δ = α1α2 − γ2):

ZC =

(

π√
−δ

)n2

(3-22)

which can be analiticaly continued to every α1, α2, γ, provided that δ 6= 0.

Definition 3.4 The expectation value of an invariant function F (A,B) is:

〈F 〉C :=

∫

Gln(C)
dZ F (Z,Z†) e−Tr (

α1
2

Z2+
α2
2

Z†2
+γZZ†)

∫

Gln(C)
dZ e−Tr (

α1
2

Z2+
α2
2

Z†2+γZZ†)
(3-23)

Remark 3.2 It is clear, from Wick’s theorem, that if F is a monomial invariant function, then < F >C

is a polynomial in α1
δ , α2

δ and γ
δ , and can be analiticaly continued to every complex α1, α2, γ, provided

that δ 6= 0.
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3.2.1 Gaussian complex loop equations

Consider a monomial matrix valued function, of the form:

f(Z,Z†) = f0(Z,Z†)

p
∏

t=1

Tr ft(Z,Z†) , ft(Z,Z†) =
Rt
∏

rt=1

Zkt,rt Z†lt,rt (3-24)

define:

G0(Z,Z†) :=
∏

u6=0

Tr fu(Z,Z†) , and if t ≥ 1 , Gt(Z,Z†) :=
∏

u 6=0,t

Tr fu(Z,Z†) (3-25)

Theorem 3.2 One has the same loop equations than theorem 3.1, with replacing the subscript H

by C.

α1

〈

G0(Z,Z†)Tr Zf0(Z,Z†)
〉

C
+ γ

〈

G0(Z,Z†)Tr Z†f0(Z,Z†))
〉

C

=
R0
∑

r=1

k0,r−1
∑

j=0

〈

G0(Z,Z†) Tr

((

r−1
∏

u=1

Zk0,uZ†l0,u

)

Zj

)

Tr

(

Zk0,r−j−1Z†l0,r

(

R0
∏

u=r+1

Zk0,uZ†l0,u

))〉

C

+

p
∑

t=1

Rt
∑

r=1

kt,r−1
∑

j=0

〈

Gt(Z,Z†) Tr

((

r−1
∏

u=1

Zkt,uZ†lt,u

)

Zjf0(Z,Z†)Zkt,r−j−1Z†lt,r

(

Rt
∏

u=r+1

Zkt,uZ†lt,u

))〉

C

(3 − 26)

and

α2

〈

G0(Z,Z†)Tr Z†f0(Z,Z†)
〉

C
+ γ

〈

G0(Z,Z†)Tr Zf0(Z,Z†))
〉

C

=
R0
∑

r=1

l0,r−1
∑

j=0

〈

G0(Z,Z†) Tr

((

r−1
∏

u=1

Zk0,uZ†l0,u

)

Zk0,r Z†j

)

Tr

(

Z†l0,r−j−1

(

R0
∏

u=r+1

Zk0,uZ†l0,u

))〉

C

+

p
∑

t=1

Rt
∑

r=1

lt,r−1
∑

j=0

〈

Gt(Z,Z†) Tr

((

r−1
∏

u=1

Zkt,uZ†lt,u

)

Zkt,rZ†j
f0(Z,Z†)Z†lt,r−j−1

(

Rt
∏

u=r+1

Zkt,uZ†lt,u

))〉

C

(3 − 27)
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Notice that the RHS is a linear combination of invariant polynomial functions of degree strictly

lower than the LHS.

proof:

The proof is very similar to that of theorem 3.1. Write that the integral of a total derivative

is zero:

0 =

∫

dZ
∂

∂ReZij

(

fr,s(Z,Z†) e−Tr (
α1
2

Z2+
α2
2

Z†2
+γZZ†)

)

(3 − 28)

and

0 = −i

∫

dZ
∂

∂ImZij

(

fr,s(Z,Z†) e−Tr (
α1
2

Z2+
α2
2

Z†2
+γZZ†)

)

(3 − 29)

Taking the sum of both lines, one can proceed as if all the Zij and Z†
ij were real indepedent

variables, and from there, follow the proof of theorem 3.1. �

Remark 3.3 We see that the loop equations of both models are identical. It is clear from the above
derivation that this is general, even for non gaussian measures. When the measure is gaussian, the
loop equations determine completely every expectation value, while for non-gaussian measures, the loop

equations give recursion relations for expectation values, but don’t give the initial conditions.
Let us consider in particular the ”semi-classical case” [4, 7], i.e. with a measure of the type

∂µ(M1, M2) = e−Tr [V1(M1)+V2(M2)+M1M2] (3-30)

where V ′
1 and V ′

2 are rational functions. In that case, the initial conditions which allow to determine all

polynomial expectation values recursively, are in one–to–one correspondance with homology classes of
integration paths for pairs of eigenvalues [7], therefore, there exists a choice of integration path Γ such
that one can write:

∫

(Hn×Hn)(Γ)

dM1 dM2 e−Tr [V1(M1)+V2(M2)+M1M2] ≡
∫

GLn(C)

dZ e−Tr [V1(Z)+V2(Z
†)+ZZ† ] (3-31)

and one can consider that this equality defines the RHS. Somehow, the complex matrix model is nothing
but the analytical continuation of the 2-matrix model defined on some classes of contours.

3.3 Relation between the two models

Theorem 3.3 For any polynomial invariant function F (A,B), one has:

〈F 〉H = 〈F 〉C (3-32)

Notice that 〈F 〉H and 〈F 〉C have been defined for different range of values of α1, α2, and γ,

but, as we have explained above, both are polynomials of α1

δ
, α2

δ
and γ

δ
(and can be analyticaly

continued to any α1, α2, and γ). Theorem 3.3 is thus an equality between polynomials.

11



proof:

It is sufficient to prove it for monomial invariant functions. The proof is clearly obtained from

the loop equations, by recursion on deg F . It is obviously true for deg F = 0, i.e. F = 1. And the

loop equations of both models are identical. �

Definition 3.5 For any two given complex diagonal matrices X and Y , and any polynomial

invariant function F , define:

W̃F (X,Y ) := ∆2(X)∆2(Y )

∫

U(n)

dU F (X,UY U †) e−γ Tr XUY U†

(3-33)

ωF (X,Y ) := ∆(X)∆(Y )

∫

T (n)
dT F (X + T, Y + T †) e−γ Tr TT †

∫

T (n)
dT e−γ Tr TT †

(3-34)

which is a polynomial in all its variables Xi, Yj, and a polynomial in 1/γ, and:

WF (X,Y ) :=
1

n!2

∑

σ

∑

τ

∆(Xσ)∆(Yτ) e−γ Tr XσYτ

∫

T (n)

dT F (Xσ + T, Yτ + T †) e−γ Tr TT †

(3-35)

Theorem 3.4 For any polynomial invariant function F (A,B), one has:

J̃2
n

n!2 ZH(n, γ, α1, α2)

∫

Dn(R)×Dn(R)

dXdY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

W̃F (X,Y )

=
Jn

n!ZC(n, γ, α1, α2)

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

WF (X,X) (3-36)

proof:

Start from theorem 3.3, diagonalize M1 and M2 on the hermitean side, and jordanize Z on the

complex side.

〈F 〉H =
J̃2

n

n!2 ZH(n, γ, α1, α2)

∫

Dn(R)×Dn(R)

dXdY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

W̃F (X,Y )

= 〈F 〉C =
Jn

n!ZC(n, γ, α1, α2)

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

e−γ Tr XX ωF (X,X)

=
Jn

n!ZC(n, γ, α1, α2)

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

e−γ Tr XσXτ ωF (Xσ,Xτ )

=
Jn

n!ZC(n, γ, α1, α2)

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

WF (Xσ,Xτ )

(3 − 37)

The equality in the first line is obtained by diagonalizing M1 and M2 (with Jacobian given in

eq.2-17), the equality in the second line is obtained by Jordanizing Z (with Jacobian given in

eq.2-19), the equality between the second and third line holds for any pair of permutations σ and

τ (it can be proven with the Lemma A.1 given in appendix), and the equality of the last line

comes from the definition of WF . �
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4 Unitary group integrals

Here is one of the most important theorems of this paper:

4.1 Unitary integrals and triangular integrals

Theorem 4.1 For any invariant function F (A,B) one has:
∫

U(n)

dU F (X,UY U †) e−γ Tr XUY U†

=
cn

n!

∑

σ

∑

τ(−1)σ(−1)τe−γ Tr XσYτ
∫

T (n)
F (Xσ + T, Yτ + T †) e−γ Tr TT †

dT

∆(X)∆(Y )
(4 − 1)

where

cn =

∏n−1
k=0 k!

(−2π)
n(n−1)

2

(4-2)

i.e.

W̃F (X,Y ) = n! cn WF (X,Y ) (4-3)

proof:

Using the Lemma A.1 given in appendix, and using theorem 3.4, we have:
∫

Dn(R)×Dn(R)

dX dY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

W̃F (X,Y )

=
n!2 ZH

J̃2
n

Jn

n!ZC

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

WF (X,X)

=
n!2 ZH

J̃2
n

Jn

n!ZC

1

n!2

∑

σ,τ

∫

Dn(C)

dX e−
α1
2

Tr X2

e−
α2
2

Tr X
2

e−γ Tr XσXτ ωF (Xσ,Xτ )

=
n!2 ZH

J̃2
n

(

2π√
δ

)n

Jn

(

π√
−δ

)n

n!ZC

1

n!2

∑

σ,τ

∫

Dn(R)×Dn(R)

dX dY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

e−γ Tr XσYτ ωF (Xσ, Yτ)

=
n!2 ZH

J̃2
n

(

2π√
δ

)n

Jn

(

π√
−δ

)n

n!ZC

∫

Dn(R)×Dn(R)

dX dY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

WF (X,Y )

= n!cn

∫

Dn(R)×Dn(R)

dX dY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

WF (X,Y )

(4 − 4)

Notice that if f(A) and g(B) are invariant functions i.e. f(UAU−1) = f(A) for all A and U (resp.

g(UBU−1) = g(B) for all B and U), one has:

Wf(X)g(Y )F (X,Y )(X,Y ) = f(X)g(Y )WF (X,Y ) , W̃f(X)g(Y )F (X,Y )(X,Y ) = f(X)g(Y )W̃F (X,Y )

(4-5)
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Thus, for any f and g:

0 =

∫

Dn(R)×Dn(R)

dX dY e−
α1
2

Tr X2

e−
α2
2

Tr Y 2

f(X)g(Y )(n! cn WF (X,Y ) − W̃F (X,Y )) (4-6)

Since W̃F (X,Y ) and n!cnWF (X,Y ) are symmetric functions and entire functions of all their vari-

ables, they must be identicaly equal to one another. �

4.2 Examples

Let us illustrate theorem 4.1 on some simple examples and recover some classical results.

4.2.1 Harish-Chandra–Itzykson–Zuber’s formula

We can use theorem 4.1, to find a new proof of the famous Harish-Chandra–Itzykson–Zuber’s

formula [18, 20].

Indeed, consider F (A,B) = 1, theorem 4.1 gives:

∫

U(n)

e−γ Tr XUY U†

=
cn

n!

∑

σ,τ (−1)σ (−1)τ
∏

i e
−γXσi

Yτi

∆(X)∆(Y )

∫

Tn

dT e−γ Tr TT †

= cn

(

π

γ

)
n(n−1)

2 detE

∆(X)∆(Y )
(4 − 7)

which is the famous Harish Chandra-Itzykzon-Zuber integral. Here E is the matrix

Eij := e−γXiYj (4-8)

4.2.2 Morozov’s formula

Consider TrAkBl for any integers k and l. It is in fact simpler to introduce a generating function:

F (A,B) = Tr
1

x − A

1

y − B
=

∞
∑

k=0

∞
∑

l=0

1

xk+1

1

yl+1
Tr AkBl (4-9)

which is to be understood as a formal power series in its large x and large y expansion. F (A,B)

is merely a convenient way of considering all polynomial invariant functions of type Tr AkBl at

once.

We have:
1

x− (X + T )
=

n
∑

p=0

(

1

x − X
T

)p
1

x − X
(4-10)

and thus:

1
∫

T (n)
dT e−γ Tr TT †

∫

T (n)

Tr
1

x − (X + T )

1

y − (Y + T †)
dT e−γ Tr TT †
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=
1

∫

T (n)
dT e−γ Tr TT †

n
∑

p=0

n
∑

q=0

∫

T (n)

Tr

(

1

x − X
T

)p
1

x − X

1

y − Y

(

T † 1

y − Y

)q

dT e−γ Tr TT †

=

n
∑

p=0

n
∑

q=0

∑

i1<i2 ...<ip+1

∑

j1<j2 ...<jq+1

δi1,j1δip,jq

p+1
∏

k=1

1

x− Xik

q+1
∏

l=1

1

y − Yjl

∫

T (n)
Ti1,i2Ti2,i3 . . . Tip,ip+1T

†
jq+1 ,jq

. . . T †
j2,j1

dT e−γ Tr TT †

∫

T (n)
dT e−γ Tr TT †

(4-11)

That last integral is non vanishing only if p = q, and according to Wick’s theorem, it is the sum

of all possible pairings. Because of the ordering of the ik’s and jl’s, the only non vanishing pairing

is obtained for ik = jk for all k. Therefore:

1
∫

T (n)
dT e−γ Tr TT †

∫

T (n)

Tr
1

x− (X + T )

1

y − (Y + T †)
dT e−γ Tr TT †

=
∞
∑

p=0

∑

i1<i2...<ip+1

1

γp

p+1
∏

k=1

1

(x − Xik )(y − Yik)

= −γ + γ

n
∏

i=1

(

1 +
1

γ(x− Xi)(y − Yi)

)

(4-12)

and then theorem 4.1 gives:

(γ

π

)
n(n−1)

2

∫

U(n)

dU Tr

(

1

x− X
U

1

y − Y
U †
)

e−γ Tr XUY U†

=
cn γ

n!

∑

σ,τ (−1)σ(−1)τ
(

−∏i e
−γXσi

Yτi +
∏

i

(

e−γXσi
Yτi + 1

γ
1

x−Xσi

e−γXσi
Yτi

1
y−Yτi

))

∆(X)∆(Y )

= γ cn

−detE + det
(

E + 1
γ

1
x−X

E 1
y−Y

)

∆(X)∆(Y )

= γ

(

−1 + det

(

1 +
1

γ

1

x −X
E

1

y − Y
E−1

))

cn
detE

∆(X)∆(Y )
(4-13)

i.e.

∫

U(n)
dU Tr

(

1
x−X

U 1
y−Y

U †
)

e−γ Tr XUY U†

∫

U(n)
dU e−γ Tr XUY U†

= γ

(

−1 + det

(

1 +
1

γ

1

x − X
E

1

y − Y
E−1

))

(4-14)

which is identical (for γ = −1) to what was found in [6, 13], i.e. the compact version of Morozov’s

formula [23].

5 Computation of triangular integrals

The goal of this section is to compute the triangular integral on the RHS of theorem 4.1. Here,

we consider γ = 1.
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5.1 Parametrization of polynomial invariant functions

Definition 5.1 Let R be a positive integer. Let ~x = (x1, . . . , xR) and ~y = (y1, . . . , yR) be 2R

complex numbers. Let π and π′ be two permutations of ΣR.

The permutation ππ′−1 is made of p cycles C1, . . . , Cp of lenght R1, . . . , Rp which we note:

Ck = (ik,1
π→ jk,1

π′−1

 ik,2
π→ jk,2

π′−1

 ik,3
π→ . . .

π′−1

 ik,Rk

π→ jk,Rk

π′−1

 ik,1) (5-1)

We define, for (A,B) ∈ GLn(C)2 in any dimension n:

Fπ,π′(~x, ~y,A,B) :=

p
∏

k=1

(

δRk,1 + Tr

Rk
∏

l=1

1

xik,l
− A

1

yjk,l
− B

)

(5-2)

As explained above, this definition is to be understood as a formal power series in the large xi and

yj expansions, it is merely a way of considering all polynomial invariant functions at once.

Examples: with R = 2, we have:

F(1)(2),(1)(2)(x1, x2, y1, y2, A,B) =

(

1 + Tr
1

x1 − A

1

y1 −B

) (

1 + Tr
1

x2 − A

1

y2 − B

)

F(12),(12)(x1, x2, y1, y2, A,B) =

(

1 + Tr
1

x1 − A

1

y2 − B

) (

1 + Tr
1

x2 −A

1

y1 − B

)

F(1)(2),(12)(x1, x2, y1, y2, A,B) = Tr
1

x1 − A

1

y1 − B

1

x2 − A

1

y2 − B

F(12),(1)(2)(x1, x2, y1, y2, A,B) = Tr
1

x1 − A

1

y2 − B

1

x2 − A

1

y1 − B
(5 − 3)

Definition 5.2 Let R be a positive integer, ~x = (x1, . . . , xR) and ~y = (y1, . . . , yR) be 2R complex

numbers. Let π and π′ be two permutations of ΣR. Let n be an integer, and X = diag(X1, . . . ,Xn)

and Y = diag(Y1, . . . , Yn) be two complex diagonal matrices of size n, We define:

W
(n)
π,π′(~x, ~y,X, Y ) := 1 if n = 0 or R = 0 (5-4)

W
(n)
π,π′(~x, ~y,X, Y ) := Fπ,π′(~x, ~y,X1, Y1) if n = 1 (5-5)

and otherwise

W
(n)
π,π′(~x, ~y,X, Y ) :=

∫

T (n)
dT e−Tr TT †

Fπ,π′(~x, ~y,X + T, Y + T †)
∫

T (n)
dT e−Tr TT †

(5-6)

Here, 1
x−(X+T )

is defined by:

(

1

x − (X + T )

)

i,j

:=
δij

x − Xi
+

(j−i)
∑

p=1

∑

i<i1<...<ip<j

1

x − Xi
Ti,i1

1

x − Xi1

Ti1,i2 . . .
1

x − Xip

Tip,j
1

x − Xj

(5-7)

16



5.2 Computation of triangular integrals of invariant functions

We are now going to find some recursion relation in n for the W ’s.

Theorem 5.1

W
(n)
π,π′(~x, ~y,X, Y ) =

∑

ρ

M(R)
π,ρ (~x, ~y,Xn, Yn) W

(n−1)
ρ,π′ (~x, ~y, X̃, Ỹ ) (5-8)

where X̃ := diag(X1, . . . ,Xn−1), Ỹ := diag(Y1, . . . , Yn−1), and:

M(R)
π,ρ (~x, ~y,Xn, Yn) =

R
∏

i=1

(

δπ(i),ρ(i) +
1

(xi − Xn)(yπ(i) − Yn)

)

(5-9)

proof:

If T is a strictly upper triangular matrix of size n, we define T̃ the triangular matrix of size

n−1, such that T̃i,j = Ti,j for all i, j < n, and ~u the vector made of the last column of T , uk = Tk,n:

T =















. . . . . . . . .
... u1

. . . T̃
...

...
. . .

...
...

. . . un−1

0















(5-10)

We define
(

1
x−(X̃+T̃ )

)

i,j
:= 0 if i = n or j = n.

Notice that:

(

1

x − (X + T )

)

i,j

=

(

1

x − (X̃ + T̃ )

)

i,j

+
δj,n

x − Xn

n−1
∑

k=1

(

1

x − (X̃ + T̃ )

)

i,k

uk +
δi,nδj,n

x −Xn
(5-11)

and

1 + Tr
1

x − (X + T )

1

y − (Y + T †)

= 1 + Tr
1

x − (X̃ + T̃ )

1

y − (Ỹ + T̃ †)

+
1

(x − Xn)(y − Yn)

(

1 +
n−1
∑

k=1

n−1
∑

l=1

(

1

y − (Ỹ + T̃ †)

1

x − (X̃ + T̃ )

)

l,k

ukul

)

(5 − 12)

Now, we integrate u out, using Wick’s theorem, i.e. take the sum over all possible pairings of a u

and a u. The pairing (uk, ul) gives a factor δk,l.

Let us represent W as a bivalent graph G, whose edges are pairs (xi, yπ(i)), and whose vertices

are pairs (yπ′(i), xi).
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Relation eq.5-11 means that, for each edge (xi, yπ(i)) of G, we can either:

- let the edge untouched (first term in eq.5-11), with weight 1,

- remove the edge (second term in eq.5-11), with weight 1
(xi−Xn)(yπ(i)−Yn)

,

- remove the vertex (yπ′(i), xi) (third term in eq.5-11), with weight 1
(xi−Xn)(yπ′(i)−Yn)

, which

means that either the neighboring edges cannot stay untouched.

Then, we integrate u out, i.e. we take the sum over all possible pairings, i.e. we draw new

edges between vertices (those not removed), so that the final graph is bivalent. For each pairing,

we get a new graph G′. The sum over possible pairings, is thus the sum over bivalent graphs G′,

whose vertices form a subset of the vertices of G, i.e.

W
(n)
G =

∑

G′

MG,G′ W
(n−1)
G′ (5-13)

where the coefficient MG,G′ is computed as follows:

- MG,G′ receives a factor 1 + 1
(xi−Xn)(yπ(i)−Yn)

for each edge (xi, yπ(i)) of G which is unchanged,

i.e. which is an edge of G′. (1 if it was not removed, and 1
(xi−Xn)(yπ(i)−Yn)

if it was removed and

drawn again).

- the weight of each edge (xi, yπ(i)) of G, which is not an edge of G′, is 1
(xi−Xn)(yπ(i)−Yn)

.

- the weight of removing a vertex is the same as the weight of creating a lenght 1 cycle at that

vertex. In other words, if G′ has less vertices than G, consider G′′ obtained from G′ by adding

lenght 1 cycles at each missing vertex, one has MG,G′ = MG,G′′ . The sum over G′ can thus be

written as a sum over G′′, where G′′ has as many vertices as G, and all cycles of lenght 1 come

together with a 1 added.

- relation eq.5-12 ensures that the previous rules apply also when G has lenght 1 cycles.

To sumarize, we have:

W
(n)
G =

∑

G′′

MG,G′′ W
(n−1)
G′′ (5-14)

where

MG,G′′ =
∏

(xi,yπ(i))∈G′′

(

1 +
1

(xi − Xn)(yπ(i) − Yn)

)

∏

(xi,yπ(i))/∈G′′

1

(xi −Xn)(yπ(i) − Yn)
(5-15)

when G and G′′ are written in terms of pairs of permutations, it reduces to eq.5-9. �

Remark 5.1 Notice that:

M(R)(~x, ~y, Xn, Yn) = M(R)(~x, ~y, Xn, Yn)t (5-16)

M(R)
π,π′(~x, ~y, Xn, Yn) = M(R)

π−1 ,π′−1(~y, ~x, Yn, Xn) (5-17)

M(R)
πρ,π′ρ(~x, ~y, Xn, Yn) = M(R)

π,π′(~xρ−1 , ~y, Xn, Yn) (5-18)
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Theorem 5.2

W
(n)
π,π′(~x, ~y,X, Y ) =

(

M(R)(~x, ~y,Xn, Yn)M(R)(~x, ~y,Xn−1, Yn−1) . . .M(R)(~x, ~y,X1, Y1)
)

π,π′ (5-19)

proof:

For n = 1, we have

W
(1)
π,π′(~x, ~y,X1, Y1) = Fπ,π′(~x, ~y,X1, Y1) = M(R)

π,π′(~x, ~y,X1, Y1) (5-20)

The proof follows from recursion on n. �

Theorem 5.3 The matrices M(R)(~x, ~y, ξ, η) commute among themselves:

M(R)(~x, ~y, ξ, η)M(R)(~x, ~y, ξ′, η′) = M(R)(~x, ~y, ξ′, η′)M(R)(~x, ~y, ξ, η) (5-21)

proof:

Let n = 2, X = diag(X1,X2) and Y = diag(Y1, Y2) be two diagonal matrices, and X̃ =

diag(X2,X1) and Ỹ = diag(Y2, Y1). Let T be a 2× 2 upper triangular matrix with non vanishing

element T12. Let U be the 2 × 2 matrix:

U =

(

T 12 Y2 − Y1

X1 − X2 T12

)

(5-22)

it satisfies:

U(X + T ) = (X̃ + T )U , U(Y + T †) = (Ỹ + T t)U (5-23)

If U is invertible (which is true for almost every T ), one has:

Fπ,ρ(~x, ~y,X + T, Y + T †) = Fπ,ρ(~x, ~y, X̃ + T, Ỹ + T t) (5-24)

for every T (except a zero measure subset). Since the Jacobian
∣

∣

∣

∂T
∂T

∣

∣

∣ = 1, one has:

∫

T (2)
dT e−Tr TT †

Fπ,ρ(~x, ~y,X + T, Y + T †)
∫

T (2)
dT e−Tr TT †

=

∫

T (2)
dT̃ e−Tr T̃ T̃ †

Fπ,ρ(~x, ~y, X̃ + T , Ỹ + T t)
∫

T (2)
dT̃ e−Tr T̃ T̃ †

(5-25)

Using theorem 5.2 for n = 2, we have:

M(R)(~x, ~y,X1, Y1)M(R)(~x, ~y,X2, Y2) = M(R)(~x, ~y,X2, Y2)M(R)(~x, ~y,X1, Y1) (5-26)

�

Corollary 5.1 therefore, there exists an orthogonal matrix U(~x, ~y), independent of ξ and η, such

that:

Λ(~x, ~y, ξ, η) := U(~x, ~y)M(R)(~x, ~y, ξ, η)U t(~x, ~y) (5-27)

is a diagonal matrix

Λ(~x, ~y, ξ, η) = diag (Λπ(~x, ~y, ξ, η)) (5-28)
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Notice that Λ is a rational function of ξ and η.

Thus:
∫

T (n)
dT e−Tr TT †

Fπ,π′(~x, ~y,X + T, Y + T †)
∫

T (n)
dT e−Tr TT †

=
∑

ρ

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y)
n
∏

i=1

Λρ(~x, ~y,Xi, Yi) (5-29)

and:
∫

U(n)
dU e−Tr XUY U†

Fπ,π′(~x, ~y,X,UY U †)
∫

U(n)
dU e−Tr XUY U†

=
∑

ρ

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y)
det
(

e−XiYjΛρ(~x, ~y,Xi, Yj)
)

det (e−XiYj )

(5-30)

Remark 5.2 if one defines the ”Matricial determinant” as follows:

Definition 5.3 Let M ∈ GLn(Glm(C)), i.e. for each i = 1, . . . , n, j = 1, . . . , n, Mi,j is a square matrices

of size m. We define:

Mdet(M) :=
1

n!

∑

σ∈Σ(n)

∑

τ∈Σ(n)

(−1)σ(−1)τ
n
∏

i=1

Mσ(i),τ(i) (5-31)

which is a m × m square matrix.

then we have:

∫

U(n)

dU Fπ,π′(~x, ~y, X, UY U †) e−Tr XUY U†

= cn (π)
n(n−1)

2

(

Mdet
(

e−XiYj M(R)(~x, ~y, Xi, Yj)
))

π,π′

∆(X)∆(Y )
(5-32)

if R = 0, one immediately recovers the Itzykson–Zuber’s formula, and if R = 1, one immediately recovers

Morozov’s formula.

5.3 Examples

• Example R = 1:

M(1)
1,1(x, y, ξ, η) = 1 +

1

x− ξ

1

y − η
(5-33)

and thus:

∫

T (n)
dT e−Tr TT †

(

1 + Tr 1
x−(X+T )

1
x−(Y +T †)

)

∫

T (n)
dT e−Tr TT †

=
n
∏

i=1

(

1 +
1

x − Xi

1

y − Yi

)

(5-34)

• Example R = 2:

We have:

F(1)(2),(1)(2)(x1, x2, y1, y2, A,B) =

(

1 + Tr
1

x1 − A

1

y1 − B

) (

1 + Tr
1

x2 −A

1

y2 −B

)

F(12),(12)(x1, x2, y1, y2, A,B) =

(

1 + Tr
1

x1 − A

1

y2 − B

) (

1 + Tr
1

x2 − A

1

y1 −B

)
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F(1)(2),(12)(x1, x2, y1, y2, A,B) = Tr
1

x1 − A

1

y1 − B

1

x2 − A

1

y2 − B

F(12),(1)(2)(x1, x2, y1, y2, A,B) = Tr
1

x1 − A

1

y2 − B

1

x2 − A

1

y1 − B
(5 − 35)

and


























M(2)

(1)(2),(1)(2)(x1, x2, y1, y2, ξ, η) =
(

1 + 1
x1−ξ

1
y1−η

)(

1 + 1
x2−ξ

1
y2−η

)

M(2)
(12),(12)(x1, x2, y1, y2, ξ, η) =

(

1 + 1
x1−ξ

1
y2−η

)(

1 + 1
x2−ξ

1
y1−η

)

M(2)
(1)(2),(12)(x1, x2, y1, y2, ξ, η) = 1

x1−ξ
1

y1−η
1

x2−ξ
1

y2−η

M(2)
(12),(1)(2)(x1, x2, y1, y2, ξ, η) = 1

x1−ξ
1

y2−η
1

x2−ξ
1

y1−η

(5-36)

i.e., the matrix M(2)(x1, x2, y1, y2, ξ, η) is:




(

1 + 1
x1−ξ

1
y1−η

)(

1 + 1
x2−ξ

1
y2−η

)

1
x1−ξ

1
y1−η

1
x2−ξ

1
y2−η

1
x1−ξ

1
y2−η

1
x2−ξ

1
y1−η

(

1 + 1
x1−ξ

1
y2−η

)(

1 + 1
x2−ξ

1
y1−η

)



 (5-37)

i.e.

M(2)(x1, x2, y1, y2, ξ, η) =

(

1 +
1

2

(

1

x1 − ξ
+

1

x2 − ξ

)(

1

y1 − η
+

1

y2 − η

))(

1 0
0 1

)

+
1

(x1 − ξ)(x2 − ξ)(y1 − η)(y2 − η)

(

1 + S 1
1 1 − S

)

(5 − 38)

where

S =
1

2
(x1 − x2)(y1 − y2) (5-39)

Define the following orthogonal matrix (U (2)(x1, x2, y1, y2)U (2)(x1, x2, y1, y2)
t = 1):

U (2)(x1, x2, y1, y2) :=
1

√

2λ(λ − S)

(

1 λ − S
S − λ 1

)

, where λ =
√

1 + S2 (5-40)

one has:

M(2)(x1, x2, y1, y2, ξ, η) = U (2)(x1, x2, y1, y2) Λ(2)(x1, x2, y1, y2, ξ, η)U (2)(x1, x2, y1, y2)
t (5-41)

where Λ(2)(x1, x2, y1, y2, ξ, η) = diag(Λ+(x1, x2, y1, y2, ξ, η),Λ−(x1, x2, y1, y2, ξ, η) ) with

Λ±(x1, x2, y1, y2, ξ, η) = 1 +
1

2

(

1

x1 − ξ
+

1

x2 − ξ

)(

1

y1 − η
+

1

y2 − η

)

+
1 ± λ

(x1 − ξ)(x2 − ξ)(y1 − η)(y2 − η)
(5-42)

Eventualy, one gets:
∫

T (n)
dT e−Tr TT †

Tr 1
x1−(X+T )

1
y1−(Y +T †)

1
x2−(X+T )

1
y2−(Y +T †)

∫

T (n)
dT e−Tr TT †
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=
1

2λ

(

n
∏

i=1

Λ−(x1, x2, y1, y2,Xi, Yi) −
n
∏

i=1

Λ+(x1, x2, y1, y2,Xi, Yi)

)

(5-43)

∫

T (n)
dT e−Tr TT †

(

1 + Tr 1
x1−(X+T )

1
y1−(Y +T †)

)(

1 + Tr 1
x2−(X+T )

1
y2−(Y +T †)

)

∫

T (n)
dT e−Tr TT †

=
1

2λ

(

(λ + S)
n
∏

i=1

Λ+(x1, x2, y1, y2,Xi, Yi) + (λ − S)
n
∏

i=1

Λ−(x1, x2, y1, y2,Xi, Yi)

)

(5-44)

6 Mixed correlation functions and biorthogonal polyno-

mials

Let us consider two polynomial potentials V1(x) and V2(y) . Our goal is to compute the following

matrix expectation values:

∫

Hn×Hn
dM1 dM2 Fπ,π′(~x, ~y,M1,M2) e−Tr (V1(M1)+V2(M2)+M1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (V1(M1)+V2(M2)+M1M2)

(6-1)

6.1 Biorthonormal polynomials

We recall here a few elementary notions about biorthogonal polynomials. More detailed descrip-

tions can be found in particular in [22, 21, 6, 9, 8, 5].

We introduce two families of polynomials pn(x) = 1√
hn

xn +O(xn−1), qn(y) = 1√
hn

yn +O(yn−1),

with the same leading coefficient 1√
hn

, and orthonormal with respect to the pairing:

(pn, qm) =

∫ ∫

dx dy pn(x) qm(y) e−(V1(x)+V2(y)+xy) = δnm (6-2)

The integration path is a priori R × R, but this condition can be relaxed (see [4, 8]). When they

exist, the biorthonormal polynomials are uniquely determined.

Since the biorthonormal polynomials form a basis, one can decompose xpn(x) onto the basis

of pm(x) with m ≤ n + 1:

x pn(x) =
n+1
∑

m=0

Qnm pm(x) (6-3)

and similarly:

y qn(y) =
n+1
∑

m=0

Pnm qm(y) (6-4)

Q and P are infinite matrices. In the case where V2 (resp. V1) is a polynomial, then Q (resp. P )

is a finite band matrix.
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We also introduce the following ∞× n rectangular matrix:

Πn−1 :=

















1
. . .

1

0

















(6-5)

which is the projector onto the n first polynomials.

6.2 Mixed correlation functions

Theorem 6.1

∫

Hn×Hn
dM1 dM2 Fπ,π′(~x, ~y,M1,M2) e−Tr (V1(M1)+V2(M2)+M1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (V1(M1)+V2(M2)+M1M2)

=
∑

ρ

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y) det
(

Πt
n−1 : Λρ(~x, ~y,Q, P t) : Πn−1

)

(6-6)

where for any function of two variables f(ξ, η), we define : f(Q,P t) : by putting the Q’s on the

right of the P ’s. This is always possible in this case because Λρ(~x, ~y, ξ, η) is a rational function of

ξ and η.

proof:

It works as usual (see [21, 22]), by writings Vandermonde determinants as:

∆(X) = det(Xj−1
i ) = det(

√

hj−1 pj−1(Xi)) =
n−1
∏

i=0

√

hi

∑

σ

(−1)σ
∏

i

pσ(i)(Xi) (6-7)

∆(Y ) = det(Y j−1
i ) = det(

√

hj−1 qj−1(Yi)) =

n−1
∏

i=0

√

hi

∑

τ

(−1)τ
∏

i

qτ(i)(Yi) (6-8)

Then, we use eq.5-30, i.e.

1

cn J̃2
n π

n(n−1)
2

∫

Hn×Hn

dM1 dM2 Fπ,π′(~x, ~y,M1,M2) e−Tr (V1(M1)+V2(M2)+M1M2)

=
1

n!2

n−1
∏

i=0

hi

∑

ρ∈Σ(R)

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y)
∑

σ,τ,ν∈Σ(n)

(−1)στν

∫

∏

i

Λρ(~x, ~y,Xi, Yν(i))pσ(i)(Xi)e
−V1(Xi)qτν(i)(Yν(i))e

−V2(Yν(i))e−XiYν(i)dXidYν(i)

=
1

n!2

n−1
∏

i=0

hi

∑

ρ∈Σ(R)

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y)
∑

σ,τ,ν∈Σ(n)

(−1)στν

n
∏

i=1

: Λρ(~x, ~y,Q, P t) :σ(i),τν(i)
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=
n−1
∏

i=0

hi

∑

ρ∈Σ(R)

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y)
∑

σ∈Σ(n)

(−1)σ

n
∏

i=1

: Λρ(~x, ~y,Q, P t) :i,σ(i)

=
n−1
∏

i=0

hi

∑

ρ∈Σ(R)

Uπ,ρ(~x, ~y)Uπ′ ,ρ(~x, ~y) det
(

Πt
n−1 : Λρ(~x, ~y,Q, P t) : Πn−1

)

(6 − 9)

�

or, using the matricial determinant defined in def.5.3:

∫

Hn×Hn
dM1 dM2 Fπ,π′(~x, ~y,M1,M2) e−Tr (V1(M1)+V2(M2)+M1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (V1(M1)+V2(M2)+M1M2)

=
(

Mdet
(

Πt
n−1 : M(R)(~x, ~y,Q, P t) : Πn−1

))

π,π′ (6-10)

Example: with R = 1, we find:

∫

Hn×Hn
dM1 dM2 (1 + Tr 1

x−M1

1
y−M2

) e−Tr (V1(M1)+V2(M2)+M1M2)

∫

Hn×Hn
dM1 dM2 e−Tr (V1(M1)+V2(M2)+M1M2)

= det

(

Πt
n−1

(

1 +
1

y − P t

1

x− Q

)

Πn−1

)

(6-11)

which is identical to what was found in [6].

7 Conclusions

In this article, we have shown that the hermitean 2-matrix model and the complex matrix model

have the same loop equations. In the gaussian case, that implies they are identical. In case the

weight is non–gaussian, the loop equations, which are recursion equations, determine all correlation

functions when some initial conditions (moduli) are fixed. The generalization of the hermitean

2-matrix model to homology classes of contours (as in [8]), allows to have any arbitrary initial

condidtions, so, there exists a choice of homology class of contours for each set of initial conditions,

i.e. for which the complex matrix model is identical to the 2-hermitean matrix model. Conversely,

the initial conditions for the complex matrix model are not fully understood yet, they depend on

how the complex matrix model is defined. If the complex matrix model is only a formal integral

defined by its large n properties as in [27, 28], initial conditions are associated to filling fractions,

and can thus be chosen arbitrarily. If the complex matrix model is defined as the result of a

convergent integral for all n, it is not known yet how to find which homology class of contours it

corresponds to.

The consequence of that identification, through diagonalization of hermitean matrices and Jor-

danization of complex matrices, yields an identity between unitary group integrals and triangular

matrices integrals, which seems to be a special case of the identification of GLn(C)/T (n) and
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the quotient of SU(n) by its Cartan subalgebra. The nature of that identification needs to be

further understood, in particular in terms of characters of both groups, and in terms of group

representation theory, in terms of Weyl’s character formula, or Harish-Chandra formulae.

The gaussian triangular matrix integrals are easily computed, and we thus get very explicit

expressions for all expectation values of the type which were studied by Shatashvili [24]. In

particular, we have provided a new proof of the Itzykson-Zuber-Harish-Chandra integral, as well

as Morozov’s integral. The key piece in this computation is that the matrices M commute

together. This fact seems to be related to some Yang-Baxter relations, and it would be interesting

to understand how.

It would be interesting also to understand these formulae in the framework of Duistermaat-

Heckman semiclassical theories [11].

Then, we have been able to perform the integral over eigenvalues, in a way very similar to

what was done in [6], i.e. in terms of n × n determinants. It would then be interesting to rewrite

these n× n determinants in terms of determinants of size independent of n, using kernels, as it is

known for non-mixed expectations values (see [2, 3, 16]).
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Appendix A Gaussian integrals

Let δ = α1α2 − γ2.

Real integrals:
∫

R×R

dx dy e−(
α1
2

x2+
α2
2

y2+γxy) =
2π√

δ
(1-1)

∫

R×R
dx dy xkyl e−(

α1
2

x2+
α2
2

y2+γxy)

∫

R×R
dx dy e−(

α1
2

x2+
α2
2

y2+γxy)
= 0 if k + l is odd

=

(√
δ

2π

)

(

−2
∂

∂α1

)
k−l
2
(

− ∂

∂γ

)l (
2π√

δ

)

if k ≥ l

=

(√
δ

2π

)

(

−2
∂

∂α2

)
l−k
2
(

− ∂

∂γ

)k (
2π√

δ

)

if k ≤ l

(1 − 2)

∫

Dn(R)×Dn(R)

dX dY e−Tr (
α1
2

X2+
α2
2

Y 2+γXY ) =

(

2π√
δ

)n

(1-3)
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Complex integrals:

∫

C

dx e−(
α1
2

x2+
α2
2

x2+γxx) =
π√
−δ

(1-4)

∫

C
dx xk xl e−(

α1
2

x2+
α2
2

x2+γxx)

∫

C
dx e−(

α1
2

x2+
α2
2

x2+γxx)
= 0 if k + l is odd

=

(
√
−δ

π

) (

−2
∂

∂α1

)
k−l
2
(

− ∂

∂γ

)l (
π√
−δ

)

if k ≥ l

=

(
√
−δ

π

) (

−2
∂

∂α2

)
l−k
2
(

− ∂

∂γ

)k (
π√
−δ

)

if k ≤ l

(1 − 5)

∫

Dn(C)

dX e−Tr (
α1
2

X2+
α2
2

X
2
+γXX) =

(

π√
−δ

)n

(1-6)

Lemma A.1 Let ω(X,Y ), be a polynomial in all its variables X1, . . . ,Xn and Y1, . . . , Yn, one

has:

∫

Dn(R)×Dn(R)
dX dY ω(X,Y ) e−Tr (

α1
2

X2+
α2
2

Y 2+γXY )

∫

Dn(R)×Dn(R)
dX dY e−Tr (

α1
2

X2+
α2
2

Y 2+γXY )
=

∫

Dn(C)
dX ω(X,X) e−Tr (

α1
2

X2+
α2
2

X
2
+γXX)

∫

Dn(C)
dX e−Tr (

α1
2

X2+
α2
2

X
2
+γXX)

(1-7)

proof:

Eqs 1-2 and 1-5 show that it is true for n = 1. By decomposing ω into monomials, the integral

decouples into a product of n = 1 type integrals. �

Appendix B Some Commutations

Theorem B.1 The matrix M(R)(~x, ~y, ξ, η) commutes with the matrix A(~x, ~y) defined by:







Aπ,π(~x, ~y) :=
∑

i xiyπ(i)

Aπ,π′(~x, ~y) := 1 if ππ′−1 = transposition
Aπ,π′(~x, ~y) := 0 otherwise

(2-1)

Theorem B.2 The matrices Aα,β(~x, ~y) defined by:

Aα,β
π,π′(~x, ~y) := δβ,π(α)

∏

i6=α

(

δπ(i),π′(i) +
1

xα − xi

1

yβ − yπ(i)

)
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+
1 − δβ,π(α)

(xα − xπ−1(β))(yβ − yπ(α))

∏

i6=α,π−1(β)

(

δπ(i),π′(i) +
1

xα − xi

1

yβ − yπ(i)

)

(2 − 2)

commute together for all α, β. They also commute with M(~x, ~y, ξ, η) and with A(~x, ~y).

One has:

M(R)(~x, ~y, ξ, η) = 1 +
∑

α,β

1

(ξ − xα)(η − yβ)
Aα,β(~x, ~y) (2-3)
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