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Unité de recherche associée au CNRS

CEA/Saclay, 91191 Gif-sur-Yvette, France

email: pierre.vanhove@cea.fr

Abstract We discuss a string-theory-derived mechanism for localized
gravity, which produces a deviation from Newton’s law of gravitation at cos-
mological distances. This mechanism can be realized for general non-compact
Calabi-Yau manifolds, orbifolds and orientifolds. After discussing the cross-
over scale and the thickness in these models we show that the localized higher
derivative terms can be safely neglected at observable distances. We conclude
by some observations on the massless open string spectrum for the orientifold
models.

1 Introduction

Extra dimensions are a natural concept in string theory which brings many
new options on how to think about gravity couplings in our world. Inter-
estingly, when the extra dimensions are non-compact the dilution of the
gravitational interactions into the bulk affects the effective four-dimensional
potential over cosmological scale. This was first pointed out in the so-called
dgp model [1] where gravity is quasi-localized in four dimensions. Remark-
ably, this model has late time self-expanding cosmological solutions, which
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do not need the introduction of a cosmological constant [2, 3, 4]. The main
properties of the dgp model with one or more non-compact extra-dimensions
have been reviewed in [5]. In the following we discuss a string theoretical
setup of induced gravity. We first consider the issue of localizing gravitational
interactions following the references [6, 7] (see [8] for a different realization
and [9] for a review) and then address the question about constructing a
consistent gauge theory sector within the model of localized gravity.

2 The induced gravity model

The dgp model and its generalization are specified by a bulk Einstein-Hilbert
(eh) term and a four-dimensional term

M2+n

∫

M4+n

d4xdny
√

|G|R(4+n) + M2
pl

∫

M4

d4x
√

|g|R(4) , (1)

with M and Mpl(=:
√

rn
c M2+n) the (possibly independent) respective Planck

scales. The scale M ≥ 1 TeV would be related to the short-distance scale
below which uv quantum gravity or stringy effects are seen. Mpl ∼ 1019 GeV
is our four-dimensional Planck mass. The four-dimensional metric is the
restriction of the bulk metric gµν = Gµν | and we assume the world1 rigid,
allowing the gauge Giµ| = 0 with i ≥ 5. Finally no extrinsic curvature terms
(as the Gibbons–Hawking term) are needed.

The effective potential between two test masses in four dimensions [12]

∫

d3x e−ip·x V (x) =
D(p)

1 + rn
c p2 D(p)

[

T̃µνT
µν − g(p) T̃ µ

µ T ν
ν

]

(2)

D(p) =

∫

dnq
fw(q)

p2 + q2
(3)

g(p) =
1

2

[ (2 − 2n)p2D(p) − 2/rn
c

(2 − 2n)p2D(p) − (2 + n)/rn
c

]

(4)

is a function of the bulk graviton retarded Green’s function G(x, 0; 0, 0) =
∫

d4p eip·x D(p) evaluated for two points localized on the world (y = y ′ = 0).
The integral (3) is uv-divergent for n > 1 unless there is a non-trivial brane
thickness profile fw(q) of width w. If the four-dimensional world has zero

1We avoid calling M4 a brane, since gravity localizes on singularities of orbifold fixed
points [6], orientifold planes [7], and intersection of branes [10]. In all these mechanisms,
four-dimensional gravity is induced by loops of localized twisted fields coupled to the
background metric. These mechanisms are string theory realizations of the field theory
scenario of [1].
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thickness, fw(q) ∼ 1, the bulk graviton does not have a normalizable wave
function. It therefore cannot contribute to the induced potential, which al-
ways takes the form V (p) ∼ 1/p2 and Newton’s law remains four-dimensional
at all distances. For a non-zero thickness w, there is only one crossover length
scale, Rc:

Rc = w
(rc

w

)n

2

, (5)

above which one obtains a higher-dimensional behaviour [8]. Therefore the
effective potential presents two regimes: (i) at short distances (w � r � Rc)
the gravitational interactions are mediated by the localized four-dimensional
graviton and Newton’s potential on the world is given by V (r) ∼ 1/r and,
(ii) at large distances (r � Rc) the modes of the bulk graviton dominate,
changing the potential. For n = 1 the expressions (2) and (3) are finite and
unambiguously give V (r) ∼ 1/r for r � rc.

2 For a co-dimension bigger than
1, the precise behaviour for large-distance interactions depends crucially on
the uv completion of the theory. Embedding this scenario in string theory
will allow us to derive unambiguously all the physical parameters of the
model.

At this point we stress a fundamental difference with the finite extra
dimensions scenarios. In these cases Newton’s law gets higher-dimensional
at distances smaller than the characteristic size of the extra dimensions.

3 String Theory realization

We explain following [6] how to realize (1) with n = 6 as the low-energy
effective action of string theory on a non-compact six-dimensional manifold
M6. We work in the context of N = 1 and N = 2 supergravities in four
dimensions but the mechanism for localizing gravity is independent of the
number of supersymmetries. Of course for N ≥ 3 supersymmetries, there is
no localization.

In string perturbation, corrections to the four-dimensional Planck mass
are in general very restrictive. In the heterotic string, they vanish to all orders
in perturbation theory [13]; in type i theory, there are moduli-dependent
corrections generated by open strings [14], but they vanish when the manifold
M6 is decompactified; in type ii theories, they are constant, independent of

2For n = 1 the propagator (3) is not uv-divergent, but (5) predicts a critical radius
Rc =

√
wrc � rc below which graviton’s Kaluza–Klein excitations (induced by the cutoff)

become massless, and the theory is five-dimensional. See [5] for a lucid discussion of the
perturbation theory for the 5d model.
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the moduli of the manifold M6, and receive contributions only from tree and
one-loop levels (at least for supersymmetric backgrounds) [6, 15, 16].

The origin of the two eh terms in (1) can be traced back to the pertur-
bative corrections to the eight-derivative effective action of type II strings in
ten dimensions. These corrections include the tree-level and one-loop terms
given by:3

M8
s

(2π)7

∫

M10

d10x
√

|G| 1

g2
s

R(10) +
M2

s

3(4π)7

∫

M10

d10x
√

|G|
(

2ζ(3)

g2
s

+ 4ζ(2)

)

t8t8R
4

− M2
s

3(4π)7

∫

M10

(

2ζ(3)

g2
s

∓ 4ζ(2)

)

R ∧ R ∧ R ∧ R ∧ e ∧ e + · · · (6)

where Ms is the string scale and φ is the dilaton field determining the string
coupling gs = e〈φ〉.

On a direct product space-time M6 × R
4 the term t8t8R

4 contributes in
four dimensions to R2 and R4 terms [16] (and to a cosmological constant
which is zero due to N = 2 supersymmetry [6]). At the level of zero modes
the second R4 term splits as 1

3!(4π)3

∫

M6
R ∧ R ∧ R ×

∫

M4
R(4) = χ

∫

M4
R(4),

and we have

M8
s

(2π)7

∫

M4×M6

d10x
√

|G| 1

g2
s

R(10) +
χM2

s

(2π)4

∫

M4

d4x
√

|g|
(

−2ζ(3)

g2
s

± 4ζ(2)

)

R(4) ,

(7)
which gives the expressions for the Planck masses M and Mpl for type ii. A
number of conclusions (confirmed by string calculations in [6, 7, 10]) can be
reached by looking closely at (7):

. Mpl � M requires a large non-zero Euler characteristic for M6 and/or

a weak string coupling constant gs → 0 (Msg
−1/4
s gives the scale of the R(10)

term and Msg
−1
s the scale of the tree level R(4) term).

. Since χ is a topological invariant the localized R(4) term coming from
the closed string sector is universal, independent of the background geome-
try and dependent only on the internal topology.4 It is a matter of simple

3The rank-eight tensor t8 is defined as t8M
4 ≡ −6(trM 2)2 + 24trM 4, and the ± sign

depends on the chirality (type iia/b) of the theory. See [17] for more details.
4In type iia/b, χ counts the difference between the numbers of N = 2 vector multiplets

and hypermultiplets: χ = ∓2(nV − nH) (where the graviton multiplet counts as one
vector). Field theory computations of [11] show that the Planck mass renormalization
depends on the uv behaviour of the matter fields coupling to the external metric. But,
even in the supersymmetric case, the corrections are not obviously given by an index.
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inspection to see that if one wants to have a localized eh term in less than
ten dimensions, namely something linear in curvature, with non-compact in-
ternal space in all directions, the only possible dimension is four (or five in
the strong coupling limit but this setup does not have an interesting phe-
nomenology).

. The width is given by the four-dimensional induced Planck mass [6]

ω ' M−1
pl . (8)

4 Orbifold and Orientifold models

The supersymmetric ZN orbifolds or orientifolds do not have a tree level in-
duced eh term, but one-loop contributions to the induced Einstein term from
the torus T , the annulus A, the Moebius strip M and the Klein bottle K.
We present the arguments of [6, 7] that show that the (quasi-)localization of
gravity is purely a closed string sector phenomenon and that the open string
sector contributions from A, M and K are always subleading or vanishing.
Therefore orbifold and orientifold models give the same estimates for the
width and for the crossover scale.

. The closed string one-loop graviton amplitudes (from the torus) take
the form of sums of quasi-localized contributions at the positions of the fixed
points xf [6]. Focusing on one particular fixed point xf = 0 and sending the
radii to infinity, we obtain the effective action for the quasi-localized eh term

χM2
s

24π2

∫

d4xd6y
√

gfw(y)R(4) (9)

where δM2
pl = M2

s ×O(N) as N → ∞. For odd N orientifold models the torus
contribution is given by one half of the orbifold result (9) and is O(N). For a
more general non-compact background, the Euler number can be distributed
over the various fixed points of the internal space, giving rise to different
localized terms, with a different value for the induced Planck mass.5

. The open string sector given by the sum of the contributions A +
M + K is always subleading as compared with the torus contribution since
δM2

pl ∼ M2
s ×O(1) for large-N (actually it even vanishes for orientifold models

with odd N that have no N = 2 sectors). Importantly the twisted tadpole
cancellation conditions imply that the open string sector contribution to the

5For instance, keeping two fixed points we obtained the bi-gravity scenario discussed in
[18], with (possibly) different Planck mass at each fixed point depending on the distribution
of the twisted fields in the model.
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induced Planck mass is ultraviolet finite, and no new scale can arise in these
models.

. As pointed out in [8] higher derivative R2 terms both on the world
and in the bulk can drastically change the picture as they introduce new
scales. The induced R2 terms can be determined similarly to the induced
Einstein term by considering the piece in forth order in momentum of gravi-
ton amplitudes. The crucial observation is that the torus contribution is
again of O(N) and the sum of the contributions of annulus, Moebius strip
and Klein bottle is O(1) and therefore subleading as compared to the torus
contribution. The leading contribution to the terms in the effective action is
then

∆L(4)

eff = NM2
s b

√

|g|R(4)+Nc1

√

|g|R2+Nc2

√

|g|RµνR
µν+Nc3

√

|g|RµνρσRµνρσ

(10)
with numbers b, ci, i = 1, 2, 3. The induced R2 terms are negligible for
p2 M−2

s � b/ci. Gravity is only measured above 1 mm so even if Ms is as
low as 1 TeV the induced R2 terms can be neglegted if

b

ci

� 10−32. (11)

E.g. if one computes the forth order piece of the off-shell two gravitons
amplitude similarly to [7] one can determine the non-ambiguous coefficient c3

(the value of c1 and c2 are affected by field redefinitions). Though the authors
did not evaluate the final world sheet integral explicitly the expression is
similar to the one for the coefficient b and (11) is satisfied. It is generic that
O(ci) = O(b) as long as the corresponding term is not protected by some
symmetry, and the hierarchy is controlled by the value of Ms. The discussion
generalizes for all induced higher derivative terms. The conclusion is that the
induced higher derivative terms in the orbifold [6] and orientifold models [7]
of induced gravity can be neglegted at observable distances. We expect this
to be valid for general non-compact Calabi-Yau, too. In contrast to them
higher derivative terms in the bulk need further study (see [8] for instance).

5 Phenomelogical implications

The crossover radius of eq. (5) is given by the string parameters (for n = 6)

Rc =
r3
c

w2
' (2π)7/2gs

M3
pl

M4
s

' gs × 1034 cm , (12)

for M8 = M8
s /((2π)7g2

s ) and Ms ' 1 TeV. Because Rc has to be of cosmologi-
cal scale, the string coupling can be relatively small, and |χ| ' 103g2

s M2
pl/M

2
s ∼
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g2
s × 1035 must be very large. The hierarchy is obtained mainly thanks to

the large value of χ, so that lowering the bound on Rc lowers the value of
χ. Our actual knowledge of gravity at very large distances indicates [19]
that Rc should be of the order of the Hubble radius Rc ' 1028 cm, which
implies gs ≥ 10−6 and |χ| ≥ 1023. A large Euler number implies only a large
number of closed string massless particles. All these particles are localized
at the fixed points and should have sufficiently suppressed gravitational-type
couplings, so that their presence with such a huge multiplicity does not con-
tradict observations. In orbifold models we can for instance introduce the
observable gauge and matter sectors on D3-branes placed at the position
where gravity localization occurs and they are otherwise unconstrained. In
orientifold models we already have an open sector and we will determine the
massless open string spectrum for some examples in the next section. Note
that these results depend crucially on the scaling of the width w in terms of
the Planck length: w ∼ M−ν

pl , implies Rc ∼ M2ν+1
pl in string units. If there

are models with ν > 1, the required value of χ will be much lower, becoming
O(1) for ν ≥ 3/2. In this case, the hierarchy will be determined by tuning
the string coupling to infinitesimal values, gs ∼ 10−16.

6 Localization of gauge interactions

After having discussed how gravity is localized in non-compact orbifold and
orientifold models, we now discuss the localization of gauge interactions. We
saw that the hierarchy between the bulk and induced Planck mass required a
huge number of twisted fields (i.e. N has to be large). We analyze the open
spectrum of the non-compact ZN orientifolds constructed in [7] in order to
determine if a consistent gauge theory sector can be induced together with
gravity.

Let us consider the supersymmetric non-compact type iib ZN orientifold
models constructed in [7] and defined by the combined action ΩJ of the
worldsheet parity transformation Ω and

Z i → e2iπvi Zi; JZ i = −Z i;

3
∑

i=1

vi = 0 , (13)

where Z i := X2i+2 + iX2i+3 for i = 1, 2, 3. The last condition ensure that
the model is supersymmetric. We assume N odd, therefore only D3-branes
are needed. We assume that they are sitting on top of the orientifold O3+-
planes. Since we consider non-compact orientifolds the ZN orbifold action
need not act cristallographically and we do not need to impose the untwisted
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tadpole cancellation condition. The Chan-Paton implementation matrices
for the n3 D3-branes will be denoted by the n3 × n3 matrices γk,3 = γk

1,3,
k = 1, . . . , N − 1.

The massless open string spectrum in the non-compact ZN orientifold
models of [7] can be determined using the method of [20, 21]. The twisted
tadpole cancellation conditions on the Chan-Paton implementation matrices
are

Tr γ2k,3 = ±4
3

∏

i=1

1

2 cos(πkvi)
(14)

= ±4
3

∏

i=1

1

1 + e2πkvi

, k = 1, . . . , N − 1 (15)

with the positive sign for the SO projection and the negative sign for the
Sp projection. Let us assume that N is a prime number and that v =

(1/N, 1/N,−2/N ). We define α := e2πi/N and use −1 =
N−1
∑

k=1

αkλ, λ =

1, . . . , N − 1 to find

Tr γ2k,3 = ±4

(

1

1 + αk

)2
1

1 + α(N−2)k
= ∓4





N−1

2
∑

j=1

α(2j−1)k





2 N−1

2
∑

j=1

α(2j−1)(N−2)k.

(16)
As γ1,3 = γN+1

1,3 = γ2N+1

2
,3 we arrive at

Tr γ1,3 = ∓
N−1

2
∑

j1,j2 ,j3=1

αj1+j2+j3(N−2). (17)

There are two cases to distinguish: A) N−1
4

∈ Z and B) N+1
4

∈ Z. We get

A) Tr γ1,3 = ∓4
(N − 1

4
+

N − 1

4
(α−2 + α2)

+

N−1

4
−1

∑

j=1

(N − 1

4
− j

)

(α−4j + α4j + α−(4j+2) + α4j+2)
)

B) Tr γ1,3 = ∓4





N + 1

4
+

N+1

4
−1

∑

j=1

(N + 1

4
− j

)

(α−(4j−2) + α4j−2 + α−4j + α4j)





(18)
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so that γ1,3 is a n3 × n3-block diagonal matrix reading

A) γ1,3 = diag(IM∓4 N−1

4

, α−2IM∓4 N−1

4

, α2IM∓4 N−1

4

, . . . ,

α−4jIM∓4(N−1

4
−j), α

4jIM∓4(N−1

4
−j), α

−(4j+2)IM∓4(N−1

4
−j), α

4j+2IM∓4(N−1

4
−j),

. . . , α−(N−1)IM , αN−1IM)

B) γ1,3 = diag(IM∓4 N+1

4

, . . . , α−(4j−2)IM∓4(N+1

4
−j), α

4j−2IM∓4(N+1

4
−j),

α−4jIM∓4(N+1

4
−j), α

4jIM∓4(N+1

4
−j), . . . , α

−(N−1)IM , αN−1IM), (19)

where M ∈ N with M ≥ ±(N − 1) for A) and M ≥ ±(N + 1) for B). For
both A) and B) this gives

n3 = NM ∓ 1

2
(N2 − 1) . (20)

The freedom of choosing M comes from the fact that we have a non-compact
model and do not need to impose the untwisted tadpole cancellation condi-
tion.

Let us consider the SO projection (the Sp projection works the same).
Similarly to [21] we find the gauge groups

A) SO
(

M − 4
N − 1

4

)

× U
(

M − 4
N − 1

4

)

×

×
N−5

4
∏

j=1

(

U
(

M − 4
(N − 1

4
− j

)))2

× U(M) (21)

B) SO
(

M − 4
N + 1

4

)

×
N−3

4
∏

j=1

(

U
(

M − 4
(N + 1

4
− j

)))2

× U(M)

which we can write as SO(n0) ×
N−1

2
∏

j=1

U(nj) and the chiral spectrum

2





N−1

2
∑

j=1

(�j−1, �̄j) + �
�

N−1

2



+



(�̄N−1

2
−1, �̄N−1

2

) + �
�

1 + (�2,�0) +

N−1

2
−3

∑

j=1

(�j+2, �̄j)



 .

(22)
One can check that the model is free of non-Abelian and U(1)3 anomalies.
Calling nv the number of N = 1 vector multiplets and nch the number of
N = 1 chiral multiplets we get

nv = cv +
4N

3
+

N3

6
+

M2N

2
− MN2

2
(23)
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nch = cch − 5N +
N3

2
+

3M2N

2
− 3MN2

2
, (24)

where cv = −3/2, cch = 9/2 for the case A) and cv = 3/2, cch = 3/2
for the case B). Notice that for any choice M in (21) the number of U(nj)
subgroups is O(N) and some of the nj themself are O(N) as N → ∞. It
does therefore not seem natural to get the standard model gauge group in
these models. Notice that this was derived for the choice that N is prime
and v = (1/N, 1/N,−2/N). For N prime and N − 1 ∈ 4Z with v1 = v2 =
−v3/2 = N−1

4N
or N +1 ∈ 4Z with v1 = v2 = −v3/2 = N+1

4N
one derives similar

results and the conclusions are the same.

7 Conclusions

We have discussed a mechanism in string theory to realize induced grav-
ity. This can be applied to non-compact Calabi-Yau manifolds, orbifolds
and orientifolds. The hierarchy between the ten-dimensional and the four-
dimensional Einstein term is due to a large Euler number and/or weak string
coupling. The thickness is given by the induced Planck mass. The induced
higher derivative terms are negligible at observable distances and we get
four-dimensional Einstein gravity between 1 mm and the Hubble scale. The
standard model can be realized on the world where gravity is localized in
a multitude of ways. However, the easiest orientifold realizations (though
one can easily include the standard model) seem to give way to large gauge
groups and too many chiral fields as to find these models natural and there-
fore of immediate phenomenological interest. One will have to consider more
general models that may or may not be orientifold models. We leave this for
future work.
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