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DISTA, Università del Piemonte Orientale,

Piazza Amborsoli, 1 15100 Alessandria, Italy

pgrassi@insti.physics.sunysb.edu

Pierre Vanhove

CEA/DSM/SPhT, URA au CNRS, CEA/Saclay,

F-91191 Gif-sur-Yvette, France

vanhove@spht.saclay.cea.fr

Abstract: We generalize to the eleven-dimensional superparticle Berkovits’ prescription

for loop computations in the pure spinor approach to covariant quantization of the su-

perstring. Using these ten- and eleven-dimensional results, we compute covariantly the

following one-loop amplitudes: C ∧X8 in M-theory; B ∧X8 in type II string theory and

F4 in type I. We also verify the consistency of the formalism in eleven dimensions by

recovering the correct classical action from tree-level amplitudes. As the superparticle is

only a first approximation to the supermembrane, we comment on the possibility of ex-

tending this construction to the latter. Finally, we elaborate on the relationship between

the present BRST language and the spinorial cohomology approach to corrections of the

effective action.
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1. Introduction

Since the discovery of the web of dualities that relate the five 10-dimensional string the-

ories with each other and with 11-dimensional supergravity [1], it has been realized that

perturbative and nonperturbative effects in ten-dimensions are encoded in the effective

action of an underlying 11-dimensional theory. In particular, both the fundamental string

and the D2-brane originate from the 11-dimensional supermembrane. Although the re-

lationship between this latter M2-brane and the eleven-dimensonal supergravity fields is

what one would expect from a fundamental object and its long-range fields [2], it has

turned out that there is no gap between the massless and massive exitations of the mem-

brane [3, 4]. Nevertheless one can consistently define vertex operators for the massless

fields [5] and study the corresponding scattering amplitudes.1 In full generality, this is still

a task beyond reach. However in the limiting case of the superparticle, i.e. suppressing

the transverse fluctuations of the supermembrane, several successful computations have

been performed in the light cone gauge. More precisely, the 11d four-graviton scattering

was computed to one and two loops in [7, 8] and [9] respectively. Of course, these su-

pergravity amplitudes are UV divergent but the lack of knowledge about the microscopic

degrees of freedom can be compensated by information provided from various dualities.

This is how, for example, the one-loop generated eleven-dimensional R4 term was “renor-

malized” in [7]. The important lesson from the point-particle limit of the membrane is

that quantum supergravity in 11d does indeed reproduce the correct form of certain terms

in the effective action of M-theory, for example the 11d one-loop R4 term which gives rise

to both the tree level and the one-loop R4 terms in the effective superstring action.

However, the light cone gauge, used in the above works, has its drawbacks in that it

is not suitable for computing all possible amplitudes in a generic background and also it

is less efficient in organizing the calculations, in particular making manifest the cancel-

lations between different contributions, than a covariant formulation would be. The first

steps towards a full covariant description were made in [10], based on the recent progress

in the covariant formulation of 10d superstring theory [11]. The idea is to construct

a supermembrane action, alternative to [2], which reduces to the ten-dimensional pure

spinor description of the type IIA superstring after double dimensional reduction. This

action is invariant under a BRST transformation generated by the same type of operator

Q = λAdA as the one used in [11] for the case of superstrings. So again one can define

vertex operators via the cohomology of Q. Using this covariant BRST formulation, the

1On the other hand, vertex operators, analogous to the massive superstring states, are not expected

to exist due to the continuous spectrum of the supermembrane. Instead, the membrane excitations

are interpreted as being related to multi-particle (rather than one-particle) states in the Matrix Theory

proposal of [6].
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general form of the vertex operators relevant for the supermembrane theory massless ex-

citations, namely the graviton gMN , gravitino ψA
M and three-form CMNP , was obtained in

[10], although some of the superfields in that expression remained undetermined. Clearly,

these vertices can be reduced to those of the 11d superparticle by setting to zero the

transverse fluctuations of the supermembrane.

Although [10] gives a tree-level prescription for integration over the zero modes of

the pure spinor ghosts λA and their conjugate momenta wA it does not derive in general

the measure for this integration and so leaves performing loop computations out of reach.

The same problem was resolved only very recently for the pure spinor formulation of 10-

dimensional string theory [12]. The crucial ingredient was the construction of a composite

field playing a role analogous to the one of the NSR b-antighost. This is very nontrivial in

Berkovits’ formalism as the only field with negative ghost number, wA, appears always in

combination with λA, i.e. only in expressions with ghost number zero. This problem was

overcome in [12] by introducing picture-changing operators and defining the b-ghost via

{Q, b} = TZ, where T is the energy-momentum tensor and Z is a picture raising operator

with ghost-number 1. As pointed out in that work, the necessity of picture-changing

operators should have been anticipated, since the pure spinor ghosts are world-sheet

bosons with zero modes similarly to the NSR (β, γ)-ghosts.

Unlike the superstring, the membrane world-volume theory is not conformally invari-

ant. But, as in the string case, it is still reparametrization invariant. Therefore one should

expect an analogue of the b-ghost in eleven dimensions as well. In this paper we show

that the 10-dimensional covariant rules for superstring loop calculations of [12] can be

extended to the case of the 11-dimensional superparticle. In fact, we construct the 11d

generalization of the “antighost” field bB in a form that is also valid for string theory.

The advantage of our different, though equivalent to the one in [12], representation of bB

is that it simplifies the prescription for one loop computations given there. Our construc-

tion of covariant one loop amplitudes, as well as the light-cone calculations of [8], is based

on the string-inspired first quantized approach to field theory developed in [13, 14, 7, 9].

Namely, one inserts vertex operators, describing the external fields, on the world-line of

the particle circulating in the loop and integrates over that world-line. For that purpose

we derive the 11d superparticle vertex operator and show that it is consistent with the

general form obtained in [10].2

Using the superstring formalism of [12] and the 11d one of this paper, we compute

covariantly several one-loop amplitudes: the terms B ∧ X8 in IIA/B string theory and

C3 ∧ X8 in 11d supergravity and also the supersymmetric F 4 in type I (meaning all

2Recall that, as we already mentioned, many of the superfields in that general form are actually still

unknown.
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three cases: four gluons; two gluons and two gluinos; four gluinos), always finding the

correct answers. We also show that the tree-level scattering amplitudes in 11d reproduce

completely the two-derivative action of eleven-dimensional supergravity [15]. We view our

results as a strong confirmation of the viability of the pure spinor approach to covariant

quantization.

Finally, we elaborate on the relashionship/equivalence between pure spinor cohomol-

ogy and the spinorial cohomology developed in [16, 17, 18, 19], recovering the latter from

an extended BRST operator similarly to the construction of [21] that relaxes the pure

spinor constraint.

We conclude with some remarks about a possible extension of the present computation

to the M2-brane.

2. From κ-symmetry to BRST symmetry for 11d superparticle

To introduce basic notions, we review in the current section the path leading from the κ-

symmetric superparticle action of [25] to the action of Berkovits [26], essentially following

[28]. We also explain how the tree-level measure in the pure spinor formalism, introduced

initially ad hoc, maps to the light-cone measure.

The Brink-Schwarz super-Poincaré invariant point-particle action is

Scovariant =

∫
dτ

(
PMΠM − 1

2
ePMP

M

)
, (2.1)

ΠM = ẊM − iΘ̄ΓM Θ̇ ,

where M = 0, . . . , 10, τ parametrizes the superparticle worldline, ΘA are Majorana

spinors with A = 1, . . . , 32, e denotes the worldline einbein and the indices of PM are

lowered by the flat metric. This action is invariant under global supersymmetry,

δεΘ = ε; δεX
M = iε̄ΓMΘ; δεPM = δεe = 0 , (2.2)

and local κ-symmetry,

δκΘ = iPMΓMκ; δκX
M = iΘ̄ΓMδκΘ; δκe = 4e ˙̄Θκ; δκPM = 0 . (2.3)

It is also invariant under local reparametrizations.

Using κ-symmetry one can eliminate half of the components of Θ. This is easily seen

by choosing the light-cone gauge [8]

X+ = x+ + p+τ ; Γ+Θ = 0 ,
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where

X± =
1√
2

(
X0 ±X10

)
; Γ± =

1√
2

(
Γ0 ± Γ10

)
, {Γ+,Γ−} = 1 .

The light-cone gauge action used by Brink and Schwarz [25] is

Sl.c. =

∫
dτ

(
ẊMPM +

1

2
ṠαSα − 1

2
ePMPM

)
, (2.4)

where Sα =
√
p+(Γ−Θ)α are the sixteen surviving SO(9) components of Θ. In this gauge

half of supersymmetry is realized linearly and the other half - nonlinearly:

δεS
α =

√
p+ εα; δεX

M = 0; δεPM = δεe = 0 (2.5)

δηS =
i√
p+
PMΓMΓ+η; δηX

M = − 2√
p+
η̄ΓMΓ+S; δεPM = δεe = 0 , (2.6)

where the parameter of the former, ε, satisfies Γ+ε = 0 and the parameter of the latter

— Γ+η 6= 0. Note also that in order to preserve Γ+Θ = 0 one has to combine a linear

supersymmetry transformation with a κ-symmetry one.

The wavefunction of the system carries SO(9) vector and fermionic degrees of freedom

and can be expanded on the basis of physical states: the metric |IJ〉, 3-form |IJK〉 and

gravitino |αI〉 (see [8] for details), where I, J,K = 1, ..., 9. So the superspace is reduced

from 32 original Grassmann coordinates to 16 free ones, Sα, satisfying the Clifford relations

{Sα, Sβ} = δαβ. At tree level in string expansion, they can be organized into SO(8) spinor

representations Sα = (ξa, ξ
†
a) and the tree level measure can be defined by the path integral

formula

〈ξa1 . . . ξa8〉g=0 =

∫
d8ξ

8∏

i=1

ξa1 . . . ξa8 = εa1...a8 . (2.7)

Accordingly, the states |IJ〉, |IJK〉 and |αI〉 are given in terms of SO(8) representations

obtained by acting with ξa on the vacuum defined by ξ†a|0〉 = 0 with a 6= 0. This agrees

with the fact that at tree level only 8 zero modes coming from ξa have to be saturated

(ξ†a play the role of conjugate momenta, i.e. {ξa, ξ†b} = δab). Alternatively, we can write

the one loop measure in a completely SO(9) covariant way by saturating both the zero

modes of ξa and those of ξ†a:

〈Sα1 · · · Sα16〉g=1 =

∫
d16S

8∏

i=1

Sa1 · · · Sa16 = εα1···α16 . (2.8)

In order to compare (2.4) with the pure spinor approach, one adds two new doublets

(pA, θ
A) and (wA, λ

A), of anticommuting and commuting variables respectively, which are
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not related to the light-cone fermions Sα. Then one defines

d̂A = pA +
1

2
PM

[
ΓM

(
θ +

1√
p+

Γ+S

)]

A

, (2.9)

which satisfies

{d̂A, d̂B} = − i

2p+
PMP

M (Γ+)AB .

In deriving this relation we have used that Sα are their own canonical conjugates (i.e.,

they satisfy {Sα, Sβ} = δαβ). The first-class constraints dA ≈ 0 3 are associated with the

BRST operator

Q′ = λ′Ad̂A; λ′Γ+λ′ = 0 , (2.10)

and the gauge-fixed action

Scov =

∫
dτ

(
PM Ẋ

M − 1

2
ePMP

M + θ̇ApA +
1

2
ṠαSα + λ̇′Aw′

A

)
. (2.11)

In order to bring the BRST charge (2.10) into the form of Berkovits’ BRST charge

Q = λAdA with λΓMλ = 0 , (2.12)

we split the SO(10,1) commutting spinor λ′ into its SO(9) components with respect to

Γ+ as (see Appendix B for more details)

λ′A = (λ′α1 , λ
′α
2 ) .

With this decomposition the BRST charge (2.10) becomes

Q′ = λ′α2d2α + λ′α1 d̂1α ,

where we have used the subspace of SO(9) spanned by Γ+λ′ = 0, d̂2α = d2α. Since

λ′α1 = (Γ+λ′)α = ((Γ+λ′)a, (Γ+λ′)ȧ) is a null SO(9) spinor preserved by a SO(8) subgroup

chosen to act on the indices α, there is a similarity transformation [28] that sends the

components (Γ+S)a onto (Γ+d)a:

Q′ → e−iSΓ+d/
√

p+
Q′ eiSΓ+d/

√
p+

(2.13)

and the components (Γ+S)ȧ are re-absorbed by shifting
(
θ +

√
p+−1

Γ+S
)

ȧ
→ θȧ in

(2.9). The similarity transformation has to preserve the null spinor nature of Γ+λ′ and one

component of (Γ+S)a is not gauged into da by (2.13) but is shifted into an extra component

3Notice that PMP M ≈ 0 is also a first class constraint.
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of θ. As shown in Appendix B the components of λ are identified with the components

of λ′ via λA = (λ′ȧ,
√
v+ − sisi, si, 0) with i = 1, · · · , 7, which gives 16 + 8 − 1 = 23

components.

The final result is the BRST invariant action

Scov =

∫
dτ

(
PM Ẋ

M − 1

2
PMP

M + θ̇ApA + λ̇AwA

)
. (2.14)

where λA satisfies the pure spinor constraint λA
(
ΓM

)
AB

λB = 0.4 The BRST operator

becomes Q = λAdA, which is nilpotent only up to pure spinor constraints and gauge

transformations δwA = ΛM(ΓMλ)A, where ΛM is a local gauge parameter. It is easy to

check that Scov is invariant under δwA and that also Q̇ = 0. Notice that on-shell, the

only non constant field is XM . The action Scov is manifestly super-Poincaré invariant. In

addition, the ghost field part of the Lorentz generators, NMN = 1
2
wΓMNλ, as well as the

ghost current J = wAλ
A are invariant under the gauge transformations of wA.

The light-cone variables satisfy the zero mode saturation identity (2.7), which ex-

presses the fact that the superparticle preserves half of the original supersymmetry. We

will see now that it gets mapped into the tree level measure

〈(λΓM1θ) · · · (λΓM7θ) (θΓM1 ···M7θ)〉g=0 = 1 (2.15)

in the pure spinor formalism. For that purpose, we work in the space with both species

of variables and we define the vertex operator U (3) = λAλBλCAABC(θ) by its expansion

in terms of the background fields CMNP , gMN and ψAM . Now, we use the expressions

for CMNP , gMN and ψAM in terms of the light-cone ξa-expansion and so obtain a vertex

operator of the form U (3) = λAλBλCAABC(θ, ξ). In the same way we have to define a

vertex operator U (4) (see [10] and next sections for details). Then one can show that

εa1...a8ξa1 . . . ξa8 = 〈U (3)(λ, θ, ξ)U (4)(λ, θ, ξ)〉g=0 , (2.16)

where the correlator is taken only in the λ, θ space. This maps the measure for zero modes

in the pure spinor approach into the measure factor for light-cone variables at tree level.

Concluding this section, we note that from the above light-cone discussion it follows

that any correlator with more than sixteen fermions vanishes. This means that any tree-

level correlators 〈λ7+pθ9+q〉, with p and q positive integers, are zero. In other words,
4Note that this definition differs form Cartan’s pure spinors, also used by P. Howe, since the lat-

ter obey in addition λA
(
ΓMN

)
AB

λB = 0. Interestingly enough, similar constraints, more precisely

λA
(
ΓMN

)
AB

λB ΠM = 0, emerge in the quantization of the supermembrane [10] and the covariant de-

scription of D-branes [27]. Another obvious remark about the 11d constraint λA
(
ΓM

)
AB

λB = 0 is that

when written in terms of two 10d pure spinors it coincides exactly with the two conditions for the D0-

brane [27], which should be the case since the latter is related to the 11d superparticle by dimensional

reduction.
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the zero momentum cohomology of Q (see (2.12)) is empty for λ-ghost number bigger

than 7, as shown by a direct computation in [10]. The same reasonning can be applied

for the ten dimensional open string to infer that the zero momentum cohomology of the

corresponding Q is empty for λ-ghost number greater than 3.

3. Supergravity in 11 dimensions and vertex operators

In this section we analyze the structure of the vertex operators for the particle limit of the

eleven-dimensional supermembrane. First we derive them from BRST cohomology and

explain their component field expansion. We also point out that they are consistent with

the general expression with undetermined coefficients of the integrated covariant vertex

of [10]. Then by coupling to a nontrivial background we derive another version of the

integrated and unintegrated operators, which will be useful in the rest of the paper.

From now on we use the following conventions in 11d: M,N, ... − curved vector

indices; A,B, ... − curved spinor indices; r, s, ... − flat vector indices; a, b, ... − flat spinor

indices. Also ZΩ ≡ (XM ,ΘA). In 10d we denote by m,n, ... curved vector indices and by

α, β, ... curved spinor indices. Finally I, J, ... = 1, 2 run over the spatial directions of the

membrane and ∂0 is a derivative w.r.t. the M2 worldvolume time.

3.1 Vertex Operators and N = 1,D = 11 Supergravity

The vertex operator for the 11d superparticle V (0) =
∫
dτ V(0) at ghost number zero can

be viewed as a deformation of the quantum action expanded around flat background. It

emerges as the first non-trivial contribution

Sdef = Scov +

∫
dτ V(0) + O(V ) , (3.1)

where O(V ) denotes higher terms in the expansion. In order that the action Sdef is

still invariant under BRST symmetry, one has {Q,V (0)} = ∂τU
(1), where U (1) is a ghost

number one vertex operator. The latter satisfies {Q,U (1)} = 0 by consistency.

Acting with the BRST operator Q on a generic polynomial of the fields PM , X
M , dA,

θA, λA and NNR = 1
2
(wΓNRλ), one finds that

V(0) = PM
(
gMNP

N + EM
AdA +H

[NR]
M NNR

)
(3.2)

and

U (1) = λAEA
rEM

sPM δrs , (3.3)

where gMN = EM
rEN

sδrs , EM
A and H

[NR]
M are superfields which satisfy the supergravity

field equations. We also note that (3.2) is easily seen to be consistent with the light-cone

vertices of [8].
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The vertex operator V (0) is defined up to a gauge transformation generated by total

derivative terms, i.e. δV (0) = ∂τΩ
(0). Correspondently, the vertex U (1) is defined up

to BRST exact terms of the form δU (1) = {Q,Ω}. For the case at hand, the gauge

transformations are given by

Ω = ΩMPM + ΩAdA + Ω[MN ]NMN . (3.4)

At leading order in the θ expansion their parameters are the following:

ΩM = ξM + O(θ) , ΩA = εA + O(θ) , Ω[MN ] = ω[MN ] + O(θ) , (3.5)

where ξM is the one of infinitesimal diffeomorphisms, εA − of infinitesimal supersymmetry

transformations and ω[MN ] − of Lorentz gauge transformations (i.e., SO(10, 1) rotations).

The superfields E = (EM
r, EM

a, EA
r) and H

[NR]
M , contained in the vertex operator

V(0), are comprised from the fields of the usual 11d supergravity multiplet namely the

graviton er
M , gravitino ψA

M and 3-form CMNR. However, the 11d superparticle does not

couple directly to the potential CMNP , but only feels its field-strength G = dC. As a

result, the tensor gauge transformations cannot be seen among the transformation rules

given in (3.4).

The expansion of the superfields E, HM [NR] up to order O(θ3) in terms of the on-shell

supergravity fields is the following [29, 30]:

EM
r = eM

r + 2θ̄ΓrψM +
(
θ̄U r|NPQL

Mθ
)
GNPQL +

1

4
θ̄Γr stθωM [st] + O(θ3)

EM
a = ψM

a +
1

4
ωM [rs](Γ

rsθ)a +
(
TM

NRSTθ
)a
GNRST + O(θ3)

EA
r = −

(
θ̄Γr

)
A

+ O(θ3)

H
[rs]
M = ω

[rs]
M + O(θ2) (3.6)

with

TM
NRST =

1

288

(
ΓM

NRST − 8ηM
[NΓRST ]

)
; (3.7)

UR|MNPQL =
1

288

(
5ηR[MΓNPQL] + 8ΓR[MNPηQ]L

)
. (3.8)

We note in passing that there are several different ways of obtaining the above expansions.

The most well-known one is the gauge completion method used in [29]. A much easier

alternative is the following: one can use the field equations and Bianchi identities to

derive recursion relations for the component fields in the θ expansion of the supergravity
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superfields similarly to the case of 10-dimensional SYM [31]. This procedure was applied

recently to ten- and eleven- dimensional supergravity in [32] and [30] respectively.5

The superspace description of 11d supergravity, obtained by starting from the ghost

number zero vertex operator V (0), coincides with the superspace description given in [22,

23]. However, as shown in [24, 16], one can also use a formulation based on the constraint

of the spinorial component of the four form G4 = dC3. This constraint can be translated

into a BRST closedness condition by considering another type of vertex operator U (3) =

λAλBλCAABC. The superfield AABC is defined up to gauge transformations δAABC =

ΓM
(ABΞC)M . By requiring that U (3) is BRST closed, one can easily derive the condition

[10]

D(AABCD) = ΓM
(ABACD)M , (3.9)

where AAB M is an auxiliary superfield.6 This form of the unintegrated vertex operator is

related to the integrated one for the supermembrane [10] V
(0)
membrane =

∫
d3xV(0)

membrane ,

where

V(0)
membrane = ∂0Z

Σ
(
AΣΓ∂0Z

Γ + CΣ
AdA + ΩΣB

AwAλ
B
)
+

+
(
AΣΓΛ∂0Z

Σ + CΓΛ
AdA + ΩΣΛB

AwAλ
B
)
∂IZ

Γ∂JZ
ΛεIJ+

+AΣΓΛΞ∂IZ
Σ∂JZ

Γ∂KZ
Λ∂LZ

ΞεIJεKL + YΣB
A∂IZ

ΣwA∂Jλ
BεIJ . (3.10)

By setting to zero the transverse fluctuations of the membrane ∂IZ
Σ = 0, one reduces

(3.10) to the first line, which is indeed of the same form as the vertex given in (3.2).

3.2 Coupling of the action to a background

Recall that in curved space we denote by capital greek letters Ω,Σ, . . . superspace curved

indices in 11d and by latin capital letters the tangent space indices. So PM and dA are

the supersymmetric conjugate momenta to ZΩ. The superparticle action can be written

as

Scurved =

∫
dτ

(
PMEΩ

M∂ZΩ + dAEΩ
A∂ZΩ − 1

2
ηMNPMPN+ (3.11)

+wA

(
∂λA + ∂ZΣΩΣ,[MN ](Γ

MN)B
AλB

))
.

As always the connection couples to the ghost with a spin coupling. Clearly the equations

of motion for the fields xM , θA, pA and PM are changed.

5We should mention yet another way of calculating the component fields in the θ expansion of super-

fields, namely the normal coordinates approach advocated for example in [33].
6These equations are readily solved by imposing the Wess-Zumino gauge θAAABC(x, θ) = 0.
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In addition, the action (3.11) is no longer BRST invariant. This reflects itself in the

lack of nilpotency of the BRST operator

Q = λA
(
dA + EAΣ∂Z

Σ
)

(3.12)

in curved space. The non-invariance of the action implies that Q̇ 6= 0. Imposing

Q̇ = 0 , {Q,Q} = 0 (3.13)

and using the pure spinor conditions, one ends up with the usual supergravity constraints

on the supertorsion T M
NR and field strenght GMNRS:

T A
BC = T N

AM = 0 , TM
AB =

(
ΓM

)
AB

, (3.14)

GABCD = GABCM = 0 , GABMN = (ΓMN)AB .

For later use we write down another version of the vertex operators (3.2) and (3.3),

V =

∫
dτ

(
ΠM + EM

AdA +H
[PQ]
M NPQ

)
gMN

(
ΠN + EN

BdB +H
[PQ]
N NPQ

)
eik·X

U (1) =
(
ΠM + EM

AdA +H
[NR]
M NNR

)
EA

MλA eik·X , (3.15)

obtained after integrating out PM in (3.11). Notice that the integrated vertex operator,

expressed in this form, resembles the integrated vertex of the closed superstring.

4. Tree-level amplitudes

4.1 Path integral definition for the tree-level measure

It is convenient to rewrite (2.15) in a functional integral form for later comparison with

one-loop amplitudes. In order to be able to integrate over the 23 independent pure

spinor components, we have to define a suitable measure Dλ which respects the pure

spinor constraint and by gauge fixing the zero modes of θA and λA (at three level and

for flat worldvolume with marked points, there are no zero mode for wA and dA). So

we introduce the Lagrange multiplier χI and its BRST partner ηI , where I = 1, . . . , 23,

as well as their respective conjugate momenta χ̄I and η̄I . Now the BRST operator Q

changes to Qnew = Q+χI η̄
I . We also introduce the constant gauge fixing parameters C I

A

with the help of which the tree level functional integral becomes

〈
∏

i

U
(ni)
i (λ,X, θ)〉g=0 =

∫
d11Xd11Pd32θd23χd23η[dλA1 . . . dλA23 ] (4.1)

(ε32T −1)
(B1...B7)
[A1...A23 ]

7∏

j=1

∂

∂λBj

(
e[Qnew,ηICI

AλA]
)∏

i

U
(ni)
i (λ,X, θ) ,
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where
∑

i ni = 7 and (ε32T −1)
(B1...B7)
[A1 ...A23 ] is a unique tensor constructed in terms of SO(10, 1)

Lorentz invariants. Integrating over χI and ηI , one can replace the exponential with the

picture lowering operator
∏

I C
I
Aθ

Aδ(CI
Aλ

A). This expression is manifestly independent

of CI
A since the vertex operators U (ni), as well as the measure, are BRST invariant. In

the following section we will see that the measure Dλ is indeed consistent with the pure

spinor constraint. Computing the derivatives in the above expression, we end up with

〈
∏

i

U
(ni)
i (λ,X, θ)〉g=0 =

∫
d11Xd11Pd32θd23χd23η[dλA1 ∧ · · · ∧ dλA23 ] (4.2)

(ε32T −1)
(B1...B7)

[A1...A23 ]

7∏

j=1

(CI
Bj
χI)

(
e[Qnew,ηICI

A
λA]

)∏

i

U
(ni)
i (λ,X, θ) .

Since the amplitude is independent of the gauge fixing parameters C I
A, an easy way to

compute it is to average over those parameters with a Gaussian-type measure such that∫
DC = 1.

4.2 Measure of integration for the pure spinor λ

In this section we construct the bosonic ghost measure [Dλ]. The measure [Dw] for the

canonically conjugate momentum wB (recall that [λA, wB] = δA
B) will be constructed in

section 5.1 when discussing one-loop amplitudes.

The pure spinor condition

λΓMλ = 0 (4.3)

is a set of first class constraints and for constructing the measure of integration we use the

same method as in [12]. Namely, from the zero mode prescription at tree-level (2.15) we

construct a tensor T [A1···A9]
((B1···B7))

, antisymmetric in the Ai=1,...,9 indices and traceless symetric

in Bi=1,...,7, defined by

1 = 〈(λΓm1θ) · · · (λΓm7θ) (θΓm1 ···m7θ)〉
=: λB1 · · · λB7 θA1 · · · θA9 T((B1···B7))[A1···A9 ] (4.4)

and write

[d23λ][α1···α23] := dλα1 ∧ · · · ∧ dλα23 = [Dλ]+16 (ε32T )
[α1···α23]
((β1···β7))

λβ1 · · · λβ7 (4.5)

with ε32 the totally antisymmetric tensor εα1···α32 and [Dλ]+16 as scalar measure factor

with ghost-charge +16.

The inverse tensor T −1 is given by
(
T −1

)((α1···α7))

[ρ1 ···ρ9]
= 〈λα1 · · ·λα7 θρ1 · · · θρ9〉 (4.6)

= Π
((α1···α7))
β1···β7

(ΓM1)β1
[ρ1

· · · (ΓM7)β7
ρ7] (ΓM1 ···M7)ρ8ρ9] ,
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where Π
((α1···α7))
β1···β7

is the projector on symmetric ΓM -traceless 7-tensors:

Π
((α1···α7))
β1···β7

= δ(α1
β1 · · · δα7)

β7 −
21

74
(ΓM1)(α1α2δα3

(β1
· · · δα7)

β5(ΓM1)β6β7) (4.7)

+
21

592
(ΓM1)(α1α2(ΓM2)α3α4δα5

(β1 · · · δα7)
β3(ΓM2)β4β5)(ΓM1)β6β7)

− 21

20128
(ΓM1)(α1α2 · · · (ΓM3)α5α6δα7)

(β1
(ΓM3)β2β3 · · · (ΓM1)β6β7) .

Before concluding this subsection we make a few remarks to stress the differences

between the eleven-dimensional case studied in the present paper and the ten-dimensional

setup.

We can parametrize the pure spinor λA by first splitting the 32 of SO(11) as 16⊕16

of SO(10), i.e. λA = (λα
L, λ

α
R), and then decomposing each SO(10) spinor into U(5)

representations 1 ⊕ 5 ⊕ 1̄0 and 1̄ ⊕ 5̄ ⊕ 10 as

λα
L = (λ+, λa, λ

ab), λα
R = (λ−, λ

a, λab), a = 1, · · · , 5

In this language the pure spinor constraint reads

λ+λ− + λaλ
a +

1

2
λabλ

ab = 0

λ+λa +
1

8
εabcdeλ

bcλde = −λbλab

λ−λ
a +

1

8
εabcdeλbcλde = −λbλ

ab (4.8)

where the first equation comes from λΓ11λ = 0 and the other two from λLΓmλL +

λRΓmλR = 0. We solve these equations as

5!λ[aλbcλde] = 8εabcdeλ+

(
λ+λ− +

1

2
λabλ

ab

)

5!λ[aλbcλde] = 8εabcdeλ−

(
λ+λ− +

1

2
λabλ

ab

)
. (4.9)

This determines completely all components of λa and λa. The solution is very similar to

the one of the ten-dimensional pure spinor constraint, where the 5 is solved in terms of

the 1̄0 of U(5) as 8λ+λa = −εabcdeλ
bcλde (see [10]). But there is a crucial difference since

the 5 of λL is solved in terms of the 1 and 10 of λL and λR. This gives a solution with

2×(1+10) = 22 complex parameters. The SU(5) decomposition of an SO(11) pure spinor

has an extra complex parameter ρ, which leaves equations (4.8) and (4.9) invariant under

the rescaling

(λL, λR) → (ρ λL, ρ
−1 λR) . (4.10)
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This symmetry is related to the constraint λΓ11λ = 0 (i.e. λL,αλ
α
R = 0; this condition can

be solved by a generic choice of λα,L and λα
R up to a scale gauge symmetry), which states

that an eleven dimensional pure spinor is not just the square of two ten dimensional pure

spinors. It is now clear that the measure on λA can also be written in the following form:

d23λA = dρ ∧
(
dλ+ ∧ dλab

)
∧ (dλ− ∧ dλab) . (4.11)

4.3 Tree-level action from scattering amplitudes

In this subsection we will reproduce the effective action for eleven dimensional super-

gravity up to four-fermi terms from tree-level amplitude computations. The supergravity

action up to this order in the fermion fields reads [15]

S =
1

2`9P

∫
d11x

[
eR + e Ψ̄MΓMNP D̂NΨP +

1

2
G4 ∧ ∗G4 +

1

6
C3 ∧G4 ∧G4

]
, (4.12)

where D̂M = ∂M + 1
4
ωrs

MΓrs + TM
r1···r4Gr1···r4 is the supercovariant derivative (again up to

fermion bilinears), involving the G4 field strength. The tensor TM
r1···r4 is defined in (3.7).

The zero momentum cohomology of Q contains a non zero λ-ghost number 3 vertex

operator U (3) whose components are comprised of the supergravity fields and their deriva-

tives and a λ-ghost number 4 vertex operator U (4) containing the antifields. The relevant

components of U (3) are [10]:

U
(3)
C3

= (λΓMθ)(λΓN θ)(λΓKθ)CMNK e
ik·X

U (3)
g = (λΓ(Mθ)(λΓN)Kθ)(λΓKθ) gMN e

ik·X

U
(3)
Ψ = (λΓMθ)

[
(λΓN θ)(λΓP θ)(θΓNP ΨM ) (4.13)

− (λΓNP θ)(λΓN θ)(θΓP ΨM)
]
eik·X .

Derivatives of the supergravity fields appear at higher orders in the θ expansion of U (3).

The U (4) vertex operator has a similar expression in terms of the antifields. However,

it does not enter the definition of tree-level superparticle amplitudes as it is intrinsically

related to the supermembrane. We will comment more on U (4) below.

For performing amplitude computations we also need the part of the U (1) vertex

operator (3.3) which contains the gravitino and the 3-form field strength:

U
(1)
Ψ = (λΓNθ)(θΓ

NΨM )PM eik·X (4.14)

U
(1)
G4

= (λΓNθ)(θUN |r1···r4Mθ)Gr1 ···r4 P
M eik·X . (4.15)

The tensor UN |r1···r4M is defined in (3.8). Because U
(3)
C3 ,g,Ψ are physical vertex operators,

{Q,U (3)} = 0 implies the equations of motion of eleven dimensional supergravity [10].
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This means that all terms containing two fields in the action (4.12) are derivable from

the amplitude 〈U (3)|Q|U (3)〉. The cubic term in the supergravity action (4.12) is obtained

from the amplitude 〈U (3)U (1)U (3)〉.
For instance, we first consider the amplitude given by the insertion of two U (3) vertex

operators for the C3-field at positions τ1 and τ2 and a C3 vertex operator U (1) at position

τ3:

〈U (3)
C3

(τ1)U
(3)
C3

(τ2)U
(1)
G4

(τ3)〉 = CM1···M3 CN1···N3 Gr1 ···r4

× 〈(λΓM1θ) · · · (λΓM3θ)(λΓN1θ) · · · (λΓN3θ)(λΓN θ)(θUN |r1···r4Mθ)PM

3∏

i=1

eik(i)·X〉 .

Using that on shell (k(i))2 = k(i) · k(j) = 0 for i, j = 1, 2, 3, PM = ẊM and also the

tree-level correlator of the world-line formalism [13]:

〈XM (τ1)X
N (τ2)〉tree = ηMN

( |τ1 − τ2|
2

+ a+ bτ2

)
,

where a and b are arbitrary constants not entering in any physical amplitude, the contrac-

tion with the plane-wave from a U (3) vertex operator gives 〈PM (τ3) exp(ik(i) ·X(τi))〉 =

i(k(i))M sign(τ13). So assuming that τ1 < τ3 < τ2 we obtain:

〈U (3)
C3

(τ1)U
(3)
C3

(τ2)U
(1)
G4

(τ3)〉 =
1

288
CM1···M3 CM4···M6 Gr1 ···r4[(k

(2))L − (k(1))L] (4.16)

× 〈(λΓM1θ) · · · (λΓM7θ)
[
5ηM7 [L(θΓr1···r4]θ) + 8(θΓM7 [r1···r3θ)ηr4]L

]
〉 .

Because of the relation

〈(λΓM1θ) · · · (λΓM7θ)(θΓM8 ···M11θ)〉 ∝ εM1···M11
11 ,

with the proportionality constant fixed by the normalization (2.15), this amplitude repro-

duces the Chern-Simons coupling of the supergravity action (4.12)

〈U (3)
C3
U

(3)
C3
U

(1)
G4

〉 = ε11
M1···M11 CM1···M3GM4 ···M7GM8···M11 . (4.17)

The other coupling ΨMΓMNPTN ·G4ΨP from the supercovariant derivative can be derived

in the same way from the amplitude 〈U (3)
C3
U

(3)
Ψ U

(1)
Ψ 〉, which is the only one compatible with

the tree level normalisation 〈λ7θ9〉.
We can therefore summarize the two-derivative non-linear eleven dimensional super-

gravity action in the following way:

S11d = 〈U (3)QU (3)〉 + 〈U (3)[U (1), U (3)]〉 , (4.18)
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where [U (1), U (3)] means using the canonical bracket for the on-shell fields PM and XN

appearing in U (1) and U (3). The symbol 〈· · · 〉 denotes the correlator for zero modes using

the measure (2.15). The action (4.18) varies under the gauge transformation δU (3) = {Q+

U (1),Ω(2)} into 〈U (3)[U (1), {U (1),Ω(2)}]〉. The first term in the transformation, {Q,Ω(2)},
generates gauge symmetries on the physical fields, whereas the second term, {U (1)

Φ ,Ω(2)} =

δU
(3)
δΦ , generates supersymmetry transformations δΦ on the physical fields. The nonzero

variation of the action is due to neglecting7 the four fermion terms in (4.18) necessary for

supersymmetry invariance of (4.12).8

5. Definition of the one-loop amplitude

Using a world-line path integral formulation of a loop amplitude, it is necessary to inte-

grate over the Schwinger parameters, the loop momenta, the 32 fermionic variables θA, the

32 supersymmetric Green-Schwarz constraints dA (representing the conjugate momenta

pA), the pure spinors λA and their conjugate ghosts wA. As explained in [12] it is as well

necessary to insert picture raising operators ZB and ZJ

ZB = BMN(λΓMNd) δ
(
BMNN

MN
)

(5.1)

ZJ = λd δ(J) (5.2)

and picture lowering operators

YC = CAθ
Aδ

(
CAλ

A
)

(5.3)

for absorbing the zero modes of λA and wA. As usual, at one loop translation invariance

requires to have at least one unintegrated vertex operator. Summarizing, the amplitude

is defined as:

A =

∫
dτ

τ

〈
bB ZJ

22∏

P=2

ZB

23∏

I=1

YCI
U (1)(τ1)

N∏

T=2

∫ τ

0

dτTV(τT )
〉
, (5.4)

where U (1) is the unintegrated vertex operator defined as {Q,V(τ )} =: ∂τU
(1). Notice

that the vertex operator U (1) has ghost-number 1 and contains dA terms (see (3.15)). 9

7The reason we have not written out these terms is only aesthetical, not conceptual. They arise as

contact terms of the four-point amplitude containing an integrated vertex operator.
8Recall that they are taken care of by completing the spin connection and four-form with fermion

bilinears to get a supercovariant derivative acting on the fermions [15].
9We already pointed out that the tree-level amplitudes for the superparticle do not involve the ghost

number 4 vertex operator U (4). By unitary arguments, this vertex does not enter the definition of

superparticle loop amplitudes either.
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Before specifying the measure of integration over the λα and wα, we first stress that

this amplitude cannot be just a trivial lift of the one-loop superstring prescription of

Berkovits, since the number of components of λα is 23 which is with one more than for

the left/right doublet of the ten-dimensional pure spinors (λα
L, λ

α
R).

We check the zero mode counting for θA, dA, and λA:

. The bB-ghost does not change the λ-ghost number but only the picture. It brings dα’s

zero modes, which we count: 21 from ZB, 1 from ZJ , 1 from U (1) and 2(N − 1)−M

(notice that the vertex operators V depend on the quadratic combinations: dd, dN

or NN) and db for the bB. ) The total counting is dB = 32−21−1−1+2−2N+M =

11−2N +M and therefore one can find that for the four-point amplitude N = 4, we

have to pickM = 1 one has to extract 4d’s from bB together with a δ′(BMNN
MN) in

the amplitude (5.4). Morever the same counting gives that the first non-vanishing

one-loop amplitude is with four external states.

. We now count the θ’s. There are 32 of them to integrate over; the picture lowering

operators YC contain 23 so 9 have to arise from the vertex operators. For the case

N = 4 and M = 1, we already get 5 θ’s from the integrated vertex operators. So

U (1) has to contribute to 4 θ’s.

. The λ-ghost counting goes as follows: We get +21 from ZB, +1 from ZJ , +1 from

U (1) and −23 from YC , for a total of

21 + 1 − 23 + 1 = 0 , (5.5)

to be compensated by the [Dλ] [Dw] measure constructed in (4.5) and (5.12) below.

5.1 Measure for the conjugate momentum wA

The constraints (4.3) allow the gauge symmetry δΛwA = ΛMΓM
ABλ

B. The only bilinears,

(wΓM1 ···Mrλ), invariant under it are the Lorentz generators NMN = (wΓMNλ)/2 and

the ghost-number operator J = (wλ). The reason is that the variation δΛ(wΓM1 ···Mrλ) =

(δΛwΓM1 ···Mrλ) = ΛP (λΓPM1 ···Mrλ)+rΛ[M1 (λΓM2 ···Mr ]λ) vanishes only for r = 0 and r = 2

because of the commuting nature of λA. Generally the vertex operators are also invariant

under δΛ and depend on N [MN ] := 1
2
(wΓMNλ) and J = (wλ). To construct the measure

for integration over wA we use the change of variables

32wA λ
B = δA

B J +
1

2!
(ΓMN )A

B NMN (5.6)
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and expand ∧23dwA as

(
∧23dwA

)
λB1 · · · λB23 = T m1n1 ···m22n22

1

(
∧22dN [mini] ∧ dJ

)
+ T m1n1···m23n23

2

(
∧23dN [mini]

)
.

(5.7)

Doing so we have obtained two contributions to the measure. The tensors T m1 ···
I=1,2 will be

determined later.

The measure factors in (5.7) satisfy respectively

(λΓm1 )A

(
∧22dN [mini] ∧ dJ

)
= 0 (5.8)

(λΓm1 )A

(
∧23dN [mini ]

)
= (λΓn1)A

(
∧22dN [mini ] ∧ dJ

)
. (5.9)

The first equation follows from the relation

NMNλA (ΓM )AB − 1

2
JλA (ΓN )AB = 0 , (5.10)

valid at the classical level. The second one can be checked directly by using the Fierz

identities (A.4), (A.6), (A.7) and (A.8). Equation (5.9) shows that the second contribution

in (5.7) is not independant of the first one. Hence there is a single measure factor for

∧23dwA compatible with the pure spinor constraint (4.3).

Counting the number of available Lorentz indices and having at most 23 λA we find

that the measure can be decomposed in the following two products of λ-bilinears (see

Appendix A for details about Fierz identities in eleven dimensions):10

∧22dN [mini ] ∧ dJ = [Dw]−16 (λΓ[5]λ)
4(λΓ[6]λ)

4 + [Dw]−20(λΓ[5]λ)
8(λΓ[2]λ)

2 , (5.11)

where [DN ]g=−16,−20 are scalar measure factors of ghost-number −16 and −20. The

constraint (5.8) and the identities in Appendix A forbid the ghost-number −20 term, but

allow the other one with ghost-number −16:

∧22 dN [mini] ∧ dJ = [Dw]−16 × (5.12)

× [(λΓm1n1m2m3m4λ)(λΓm5n5n2m6m7λ)(λΓm8n8n3n6m9λ)(λΓm10n10n4n7n9λ)

× (λΓm11n11m12m13m14m21λ)(λΓm15n15n12m16m17n21λ)(λΓm18n18n13n16m19m22λ)

× (λΓm20n20n14n17n19n22λ) + perms] .

Remarking that (λΓ[6]λ) = ε11(λΓ[5]λ) we can interpret this product as the left-movers

times the right-movers measure factor constructed for the superstring in [12]. For later

10In the following the antisymmetric product of n Gamma-matrices ΓM1···Mn
is abreviated as Γ[n].
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use, we also note that the Ward identity (5.9) allows an alternative form for the measure

factor:

∧23 dN [mini] = [Dw]−16 × [(λΓm1n1m2m3m4λ)(λΓm5n5n2m6m7λ) (5.13)

× (λΓm8n8n3n6m9m23λ)(λΓm10n10n4n7n9n23λ)

× (λΓm11n11m12m13m14m21λ)(λΓm15n15n12m16m17n21λ)(λΓm18n18n13n16m19m22λ)

× (λΓm20n20n14n17n19n22λ) + perms] .

5.2 A different representation of the bB ghost

An important peculiarity of Berkovits’ pure spinor cohomology is that the energy momen-

tum tensor T = P 2/2 is not Q-exact. One can define a (bi-local) ghost b̃B by requiring

that [12] {
Q, b̃B(u, z)

}
= ZB(u)T (z) , (5.14)

where

ZB = BMN(λΓMNd)δ
(
BMNN

MN
)
.

Notice that, since we are considering the superparticle, all the fields entering ZB are

constant and therefore we do not need to specify the position. The same is also true for

the picture raising operator YCI
defined by YC = CAθ

Aδ
(
CAλ

A
)
. Nevertheless, we will

keep writing the position argument for generality as the manipulations we do in the rest

of this subsection are valid for string theory as well.

Instead of working with a bi-local ghost b̃B(u, z) we consider a local one b̃B(u) defined

up to exact terms as

b̃B(u, z) = b̃B(u) + {Q,
∫ z

u

Ω} , (5.15)

where Ω(u, v) is a bi-local superfield. In addition, by recalling that ∂Θ(x) = δ(x), we find

an alternative to the solution of [12]:

{Q, b̃B(u)} = BMNλΓ
MNd δ

(
BMNN

MN
)
T (u) = {Q,Θ

(
BMNN

MN
)
T (u)} (5.16)

where we have used the BRST invariance of T (u). Hence

b̃B(u) = T (u)Θ
(
BMNN

MN
)

+ {Q,Ω} , (5.17)

where the second BRST-exact term is clearly unimportant. The same representation

applies to the left and right b
L/R
B ghosts for type II superstrings.
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Finally notice that, using an integral representation for the Θ-function, the insertion

of the b
L/R
B in the one-loop superstring amplitude, can be rewritten as

∫
µ(z, z̄)bLBb

R
B =

∫
µ(z, z̄)

∫
dtds

eiBmn[(t+s)(NL,mn+NR,mn)+(t−s)(NL,mn−NR,mn)]

(t+ iε)(s+ iε)
. (5.18)

Clearly, the second term in the exponent, that involves the difference of the Lorentz

generators, imposes the level matching condition.

5.2.1 Action of the bB ghost on vertex operators

Let us consider the action of the bB ghost on a vertex operator U (q+1)(τ ) with ghost-

number (q + 1):

b̃B(u)U (q+1)(τ ) = Θ
(
B ·N

)
T (u)U (q+1)(τ ) . (5.19)

Using the fact that for q ≥ 0, U (q+1) = λAΦ
(q)
A and that {Q,GA} = P 2

2
λA, where GA =

ΓAB
M PMdB, we can rewrite (5.19) as

Θ
(
B ·N

)
T (u)U (q+1)(τ ) =

{
Q,GA

}
Φ

(q)
A Θ

(
B ·N

)
(5.20)

=
{
Q,GAΦ

(q)
A Θ

(
B ·N

)}
−GAλBDBΦ

(q)
A Θ

(
B ·N

)
−GAΦ

(q)
A ZB ,

Now we can use that {Q,HAB} = GAλB + g((AB)), where HAB is given by11

HAB =
1

64

[
CAB(dCC

CDdD) + ΓAB
MNPQ(dΓMNPQd)

+ ΓAB
MNP (dΓMNP d+ 2NMNP P ) + 2ΓAB

M (NMRPR + JPM)
]

(5.21)

11It is easy to see that the structure of HAB is the following:

HAB = XAB[CD]dCdD + Y AB
MNP P MNNP + ZAB

M P MJ ,

where

XAB[CD] = xCABC [CD] + x′ΓAB
MNP (ΓMNP )[CD] + x′′ΓAB

MNPQ(ΓMNPQ)[CD]

Y AB
MNP = yΓAB

MNP + y′ΓAB
N ηPM

ZAB
M = zΓAB

M

and x,x′,x′′,y,y′, z are unknown numerical constants. What is more involved is to calculate the numer-

ical coefficients. One can do that by computing {Q, HAB} − λAGB. Since this is equal to g((AB)), i.e.

it is symmetric and traceless, one finds conditions for the unknown constants from the requirement that

the trace and antisymmetric part of this expression vanish. It is most easy to extract those conditions

by contracting {Q, HAB} − λAGB with ΓM ′

AB, ΓM ′N ′P ′

AB , ΓM ′N ′P ′Q′

AB and CAB . Two of the resulting four

equations contain two independent structures each and so one obtains six equations which determine

uniquely the six constants.
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and g((AB)) is traceless and symmetric, to reabsorb part of the vertex into Q-exact terms:

Θ
(
BMNN

MN
)
T (u)U (q+1)(τ ) = −

[
GAΦ

(q)
A −HABDAΦ

(q)
B

]
ZB + {Q,Ω} (5.22)

+
[
HABλCDCDBΦ

(q)
A + g((AB))DAΦ

(q)
B

]
Θ

(
B ·N

)

Then, making use of {Q,KABC} = HABλC +h
((AB))C
1 +h

A((BC))
2 , we rewrite the first term

on the second line as before:

Θ
(
BMNN

MN
)
T (u)U (q+1)(τ ) = {Q,Ω} (5.23)

−
[
GAΦ

(q)
A −HABDAΦ

(q)
B −KABCDCDBΦ

(q)
A

]
ZB

+
[
KABλDDDDCDBΦ

(q)
A + g((AB))DAΦ

(q)
B + hABC

i DCDBΦ
(q)
A

]
Θ

(
B ·N

)
.

Finally, using that {Q,LABCD} = λAKBCD +k
((AB))CD
1 +k

A((BC))D
2 +k

AB((CD))
3 , we obtain:

Θ
(
BMNN

MN
)
T (u)U (q+1)(τ ) = {Q,Ω} (5.24)

−
[
GAΦ

(q)
A −HABDAΦ

(q)
B −KABCDCDBΦ

(q)
A + LABCDDDDCDBΦ

(q)
A

]
ZB

+
[
g((AB))DAΦ

(q)
B + hABC

i DCDBΦ
(q)
A + kABCD

i DDDCDBΦ
(q)
A

]
Θ

(
B ·N

)
.

However, due to {DA,DB} = PM (ΓM )AB and D(AΦ
(q)

B) ∼ (ΓM )ABΦ
(q)
M all tensors

appearing in the third line are Γ[1]-traceless and so the whole expression multiplying

Θ(B · N) vanishes. We can interpret the second line in (5.24) as the vertex operator

U (q+1) as written in a different ’b-picture’:

V
(q+1)
B (τ ) = −

[
GAΦ

(q)
A −HABDAΦ

(q)
B −KABCDCDBΦ

(q)
A + LABCDDDDCDBΦ

(q)
A

]
ZB

= V̂ (q)(τ )ZB . (5.25)

Note that these manipulations do not change the ghost number, since ZB has ghost

number 1 and V̂ (q) has ghost number q. Comparing with Berkovits’ expression for the

b(z)-ghost in section 4.2 of [12], the vertex operator V̂ (q) is a reshuffling of all terms

without a derivative on δ(B ·N) whereas all terms with a derivative on the delta-function

in [12] are now moved to the Q-exact piece. The operators that enter the definition of
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V̂ (0) are of the symbolic form12:

T = PP

GA = dP

HAB = dd+NP + JP

KABC = Nd+ Jd

LABCD = NN + JN + JJ . (5.26)

The operators T and G, which enforce the Virasoro and κ-symmetry constraints respec-

tively, are already present without the introduction of pure spinors. On the other hand,

the operators H, K and L are new since they contain λA and wA.13

Using the above manipulations, we can rewrite the one-loop amplitude prescription

in the following way:

A =

∫
dτ

τ

〈
ZJ

22∏

P=1

ZB

23∏

I=1

YCI
V̂ (0)(τ1)

N∏

T=2

∫
dτTV (τT )

〉
. (5.27)

The counting of zero modes goes as in Section 5, especially if one realizes that the expres-

sion (5.25) just gives a different distribution of the λ’s, d’s and θ’s. This counting shows

that only the second term in V̂
(0)
B , namely HABDBΦ

(q)
A , contributes to the four-point

amplitude.14

Two final remarks: i) Notice that all manipulations are purely algebraic and do not

require any supplementary information such as the constraints coming from conformal

invariance in string theory. In the latter case, CFT is needed in order to evaluate the

contribution of the non-zero modes. But for our purposes the algebraic properties of

pure spinors, together with Lorentz covariance, are completely sufficient. To extend the

present analysis to the membrane one would need to know the contributions coming from

12We restrict ourselves to the superparticle case and do not specify the constant coefficients, which can

be computed as explained in the previous footnote. For more details we refer the reader to section 4 of

[12].
13We would like to elaborate on the relation between the structure of the BRST operator and antighost

field in the pure spinor approach and the NSR superstring: in the former, Q contains only a single term

at zero picture while the antighost bB is a complicated polynomial. In the latter, the BRST charge

QNSR can be decomposed into three pieces, whereas the antighost field bNSR contains only one term.

However, there exists a similarity transformation which maps QNSR into a single nilpotent piece and at

the same time maps the field bNSR into a complicated expression that contains exactly the supersymmetry

generator and the Virasoro constraints.
14In the rest of this paper only the HAB term will be necessary; the other terms will contribute to

higher point and/or higher loop amplitudes.
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the non-zero mode part of the theory. ii) Even if the prescription given in (5.27) does not

seem to be symmetric with respect to the interchange of vertex operators, one can check,

using the descent equations for the vertex operators, that it is symmetric.

6. One loop amplitudes

As a check on the correctness and feasibility of the prescription for loop calculations in

the pure spinor formalism, in this section we compute the effective action terms induced

by several one-loop amplitudes: the ten-dimensional B ∧ X8, found in [34], the eleven-

dimensional C ∧X8, deduced in [35], and also the supersymmetric F 4 in type I.

6.1 B ∧X8 in ten dimensions

We compute the five-point amplitude B ∧ t8R4 both in type IIA and type IIB superstring

using the formalism of [12].

For this calculation we will only need the vertex operators for the graviton and the

B-field in the integrated V (0,0) picture, unintegrated U (1,1) picture, and the mixed pictures

V (1,0) and V (0,1). We use the results of [10, 32] and refer to these papers for complete

expressions. For our purposes it is enough to take the B-field and Riemman curvature to

be constant. The relevant vertex operators are

V (0,0)
g =

∫
d2z Rmnpq Lmn

L Lpq
R eip·X (6.1)

V
(0,0)
B =

∫
d2z Bmn ∂X

m ∂̄Xneip·X

U (0,1)
g =

∫
dz Rmnpq Lmn

L (λRγ
rθR)(θRγr

pqθR) eik·X

U
(0,1)
B =

∫
dz Bmn ∂X

m(λRγ
nθR) eik·X

U (1,1) = (gmn +Bmn + ηmnϕ) (λLγ
mθL)(λRγ

mθR) eip·X ,

where Lmn
L,R are the Lorentz generators

Lmn
L =

1

2
(wLγ

mnλL) + (pLγ
mnθL) +X [m∂Xn] , (6.2)

with the equivalent expression for the right-movers. Since we only need the zero modes

of fields we can, in particular, replace pα|0 by dα|0 + i/2 ∂Xm (γmθL)α|0. From now on we

drop the subscript 0, although we will always mean the zero modes of the corresponding

fields. So the Lorentz generator becomes

L̂mn
L =

1

2
(wLγ

mnλL) + (dLγ
mnθL) +

i

2
∂Xl(θLγ

lmnθL) +X [m∂Xn] . (6.3)
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The five-point amplitude with one B-field and four gravitons can be written in three

different forms depending on how the ghost-charge is distributed among the B-field vertex

operator and the graviton vertex operator

A1 =

∣∣∣∣∣

∫
µbZJ

10∏

i=2

ZB

11∏

i=1

YC

∣∣∣∣∣

2

U
(1,1)
B

(
V (0,0)

g

)4
(6.4)

A2 =

∣∣∣∣∣

∫
µbZJ

10∏

i=2

ZB

11∏

i=1

YC

∣∣∣∣∣

2

U (1,1)
g V

(0,0)
B

(
V (0,0)

g

)3
(6.5)

A3 =

∣∣∣∣∣

∫
µbZJ

10∏

i=2

ZB

11∏

i=1

YC

∣∣∣∣∣

2 [
U

(1,0)
B U (0,1)

g + U
(0,1)
B U (1,0)

g

] (
V (0,0)

g

)3
(6.6)

However, the result is independent on the distribution of the ghost number as can be seen

in the following way: Write

U (1,1) =

∫
d2z ∂∂̄U (1,1) = {QL

B, U
(0,1)} = {QR

B, U
(1,0)}

and circulate the left (right) BRST charge QL
B (QR

B) inside the integral. Now, the picture

changing operators ZB and ZJ are BRST invariant but the b ghost is not, its variation

being {QL
B, b} = ZBT (z). Nevertheless, the latter contribution vanishes after integration

over the moduli since T gives a total derivative with respect to them.

Despite the equivalence of (6.4)-(6.6), similarly to the NSR formalism, there is a

computationally preferred distribution of ghost number, namely the one given by A3.

Using the correlator

〈∂Xm(z)∂̄Xn(0)〉 = πα′

(
δ(2)(z) − 1

τ2

)
ηmn ,

where τ2 = Imτ , the amplitude reduces to

A3 =

∫
d2τ

τ 2
2

∣∣∣∣∣

∫
[Dλ][Dw]d16θd16d

∫
bZJ

10∏

i=2

ZB

11∏

i=1

YC

∣∣∣∣∣

2 (
V (0,0)

g

)3

×RrstuB[[mn gkl]]

[
(λRγ

nθR)(θRγ
mtuθR)(λLγ

kθL)(θLγ
lrsθL)

]
eik(1)·Xeik(2)·X (6.7)

with B[[mngkl]] = Bmngkl −Bklgmn. In the 0-ghost-picture vertex operator only the part

Mmn
L,R =

1

2
(wL,Rγ

mnλL,R) + (dL,Rγ
mnθL,R) (6.8)

– 24 –



of the Lorentz generator L̂mn
L in (6.3) contributes and after integration over the position

of the vertex operator, the leading term in α′ expansion for A3 reduces to

A3 =

∫
d2τ

τ 2
2

t
kl|m1 ···m8

L t
mn|n1 ···n8

R B[[mn gkl]]Rm1m2n1n2 · · ·Rm7m8n7n8 . (6.9)

In (6.9) we have defined the left and right tensors15

tkl|m1···m8 =

∫
[Dλ][Dw] bZJ

10∏

i=2

ZB

11∏

i=1

YC

[
(λγkθ)(θγl<m1m2θ)Mm3m4 · · ·Mm7m8>

]
,

(6.10)

where < · · · > denotes symmetrization over exchanges of the pairs (m2i−1,m2i) i =

1, . . . , 4, as a consequence of the many ways of choosing the distribution of the indices

when performing the zero mode integration. After integrating over the λ’s and d’s as in

section 6.3 of [12], one finds that this tensor reduces to

t
kl|m1···m8

L =

∫
d16θL(ε16T −1

L )
((α1···α3))

[ρ1···ρ11]
θρ1

L · · · θρ11

L (6.11)

× (γp1 ···p3

<m7m8)α2α3(γ
kθL)α1(θLγ

lm1m2θL)(θLγ
m3m4γp1···p3γm5m6>θL)

= (T −1
L )

((α1···α3))
[ρ1 ···ρ5]

(γp1···p3

<m7m8)α2α3(γ
k)α1

[ρ1(γlm1m2)ρ2ρ3(γm5m6γp1···p3γm7m8>)ρ4ρ5 ] .

The tensors T −1
L,R are given by the tree-level normalization (2.15):

(
T −1

L

)((α1···α3))

[ρ1 ···ρ5]
= 〈λα1λα2λα3θρ1 · · · θρ5〉g=0 (6.12)

= Πα1···α3
β1···β3

(γn1)(β1
[ρ1(γ

n2)β2
ρ2(γ

n3)β3)
ρ3(γ

n1 ···n3)ρ4ρ5 ] ,

where

Π
((α1···α3))
β1···β3

= δ
(α1

β1
· · · δα3)

β3
− 1

6
(γm)(α1α2δ

α3)
(β1

(γm)β2β3) (6.13)

projects on γm-traceless symmetric tensors, i.e. (γn)α1α2 Πα1···α3
β1···β3

= 0.

Note that the tensor tL, defined as the one-loop saturation of zero modes in (6.11),

can also be written as a tree-level correlator in the following way:

t
kl|m1···m8

L = 〈(λγkθ)(θγl<m1m2θ)(λγp1 ···p3

m3m4λ)(θγm5m6γp1···p3γm7m8>θ)〉g=0 . (6.14)

We only need the contractions of the kl indices of this tensor with the metric and with

the B-field. To bring the expression for tL in a manageable form, we utilize the Fierz

identity

− 1

3! 16
(λγp1 ···p3

m1m2λ)(θγm3m4γ
p1 ···p3γm5m6θ) = (λγ [m1γm3m4θ)(λγ

m2 ]γm5m6θ) . (6.15)

15Notice that these tensors are elements of the cohomology H (1)(Q) as they arise from an amplitude

with one vertex operator in the ghost-number-1 picture and three vertex operators in the ghost-number-0

picture.
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Then we use the following identities:

〈(λγm1 ···m3θ)(λγm4 ···m6θ)(λγm7θ)(θγm8···m10θ)〉g=0 = ± 1

3!
εm1 ···m10
10 , (6.16)

〈(λγm1θ) · · · (λγm3θ)(θγn1 ···n3θ)〉g=0 =
1

120
δm1···m3
n1···n3

,

〈(λγmθ)(λγnθ)(λγp1···p3θ)(θγq1···q3θ)〉g=0 =
1

30

(
δmp1···p3
nq1···q3

− δnp1···p3
mq1···q3

− 1

4
δm
n δp1···p3

q1···q3

)
.

The sign in the first equation is determined by the chirality of the ten-dimensional complex

Weyl fermions θ. With the help of (6.15)-(6.16) and (A.9), it is not difficult to check that

gkl t
kl|m1···m8

L,R = tm1···m8
8 (6.17)

Bkl t
kl|m1···m8

L,R = Bkl (t
klm1···m8
10 ± εklm1···m8

10 ) . (6.18)

The tensor t10 is only composed of ηMN ’s and contracting it with a set of generic two-forms

F i
mn, i = 1, ..., 4, gives

tklm1 ···m8
10 BklF

1
m1m2

· · ·F 4
m7m8

= a1tr(BF
1)tr(F 2F 3F 4) + a2tr(BF

1 · · ·F 4) + perms ,

symmetrized in the exchange of the F i. However, the antisymmetry of F i and B makes

this expression to vanish. The sign in front of the ε10-term is related to the chirality of

the θ variables. Since for type IIA/IIB θL and θR have the opposite/same chiralities,

by antisymmetry of the B-field the amplitude (6.6) vanishes for type IIB and gives the

B ∧ t8t8R4 term for type IIA.

6.2 C3 ∧X8 in eleven dimensions

The zero mode counting of Section 5 shows that the first non zero amplitudes are with four

external states. In particular, the one-loop four-graviton scattering, that produces the R4

term, is non vanishing.16 In this subsection we will be interested in the supersymmetric

partner of the latter, namely the five-point amplitude with four gravitons and a C3-field.

The relevant vertex operators are restrictions of the vertex operators given in Sub-

section 3.1 to constant curvature RMNPQ. The graviton vertex operators are given by

VR =

∫
dτ RMNPQ L̂MNL̂PQ eik·X

U
(1)
R = RMNPQ L̂MN(λΓRθ)(θΓR

PQθ) eik·X , (6.19)

where L̂MN stands again for the zero mode restriction of the Lorentz generators

L̂MN = NMN + dΓMNθ +
i

2
PL(θΓLMNθ) + P [MxN ] . (6.20)

16This and related amplitudes will be discussed elsewhere [36].
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Unfortunatly the vertex operator for the C3-field is not so simple because the superparticle

is not charged under it. Looking at the vertex operators of section 3.1, and in particular

at the expressions for the super-vielbein components in (3.6), it appears that the field

strength G4 comes always in combination with the connection ωM
rs as

VG4+ω =

∫
dτ [ωM

rs(dΓrsθ) + (dTM ·G4θ)] P
M eik·X . (6.21)

This means that the 5 points amplitude will read

A5 ∼ (G4 + ω)2 R3 ∼ C3R
4 +R4 + (G4)

2R3 ,

which shows that supersymmetry relates automatically the R4 term with the Chern-

Simons C3 ∧ t8R4 one.17

As an illustration we consider the amplitude composed of three integrated vertex

operators for the graviton, one for the spin-connection, one for G4 and one unintegrated

vertex operator for the graviton. It is given by

A = RM1M2N1N2 · · ·RM5M6N5N6 ωM7

N7N8 GR1···R4 (6.22)
∫

[Dλ][Dw]d32θd32d

∫
dτ

τ
b

4∏

i=1

dτi ZJ

22∏

I=2

ZB

32∏

I=1

YC

MM1M2 · · ·MM5M6MN1N2MN3N4

(λΓRθ)(θΓRN5N6θ)PM7NN7N8 (dTS
R1···R4θ)P S

∏

1≤i<j≤5

eik(i)·k(j) Gij ,

where, as for the superstring, only the part

MMN = NMN + (dΓMNθ)

of the Lorentz generator L̂MN contributes from the integrated vertex operators. The

b-ghost has to soak up the zero modes of one Lorentz generator [12], which we choose

to take from the vertex operator for the spin connection. Using that for the on-shell

superparticule PM = ẊM and also the world-line expression for the one-loop propagator

[13]

〈XM (τi)X
N (τj)〉g=1 = ηMN Gij =

ηMN

2

(
|τi − τj | − (τi − τj)

2 + const.
)

and integrating over the position of the vertex operators, we obtain the following result

for the amplitude at leading order in the momenta

A =

∫
dτ

τ 3/2
tSM1···M6R1···R4N1···N8
11 RM1M2N1N2 · · ·RM5M6N5N6 ωS

N7N8 GR1···R4 (6.23)

17Note that R4 contains two contributions: one is the non-linear completion of the four-point t8t8R
4

term and the other gives ε11ε11R
4.
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with

tSM1···M6R1···R4N1 ···N8
11 =

∫
[Dλ][Dw]d32θd32d

∫
bZJ

22∏

I=2

ZB

32∏

I=1

YC (6.24)

×
[
NN7N8MM1M2 · · ·MM5M6MN1N2MN3N4 (λΓRθ)(θΓRN5N6θ) (dTM7

R1···R4θ) + sym.
]
,

where symmetrization between the (M2i−1,M2i) and (N2i−1, N2i) pairs is understood. The

b-ghost insertion requires one NMN zero mode from the Lorentz generator MMN and

we have to get 5 d’s and 9 θ’s to saturate the fermionic zero modes. Similarly to the

superstring, with the help of (4.6) we can rewrite this tensor as a tree-level correlator

tSM1···M6R1···R4N1 ···N8
11 = 〈(λΓRθ)(θΓRN1N2θ) (6.25)

× (λΓN3N4ΓP1 ···P5Γ
N5N6λ)(λΓP6P7λ)(λΓP8P9λ)

× (θTM7

R1···R4ΓP1 ···P3ΓN7N8θ)(θΓM1M2ΓP4 ···P6ΓM3M4θ)(θΓM5M6ΓP7 ···P9ΓM7M8θ)〉g=0 ,

symmetrized over all exchanges of the pairs (M2i−1,M2i) and (N2i−1, N2i) for i = 1, . . . , 4.

By Fierzing and using the tree-level normalization (2.15), one can see that the last ex-

pression has an expansion of the following general form:

∑

n1+n2+···=8
ni≥0

c{ni} tr
(
(Γ[2])

n1
)
· · · tr

(
(Γ[2])

n7
)
tr

(
(Γ[2])

n8TS
R1···R4

)
, (6.26)

where Γ[2] represents any of Γ[M2i−1M2i] or Γ[N2i−1N2i]. The last multiplier in this expression

is nonzero only for n8 = 4, picking the η
[R1

M7
ΓR2···R4] from TM7

R1···R4, to give an eleven

dimensions ε-tensor εR2···R4···
11 . Integrating by parts the derivative on the four-form and

relabelling the pairs of M and N indices, we obtain for the amplitude

A = εM1···M11
11 CM9···M11RM1M2N1N2 · · ·RM7M8N7N8

(
tr

(
(ΓNN )4

)
− 1

16

(
tr(ΓNN)2

)2
)
.

(6.27)

Finally using (A.10) with ∆ = 32, we find that this amplitude gives C3 ∧ t8R4.

Obtaining the correct structure is very satisfying, but we should note that we haven’t

addressed here the issue of the UV regularization of the 11d answer. In the light-cone

computation of [7] it was resolved by considering M-theory on R(8,1) × T 2 and requiring

that the reductions to IIA and IIB give T-dual answers. In the present pure spinor

formulation such a program is a nontrivial task and we intend to come back to it in the

future.
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6.3 Open string amplitudes in ten dimensions

In the previous subsections we verified the correctness of the definition of the one-loop

measure by recovering the known B ∧R4 and C3 ∧ R4 terms in closed srting theory and

eleven-dimensional supergravity respectively. In the current subsection we provide yet

another check on the measure by comparing with known results for a simpler case, namely

one loop in 10d open string theory. More precisely, we compute the supersymmetric F 4

contribution to the effective action. By that we mean all three terms: four gluons; two

gluons and two gluinos; four gluinos.

Again we restrict ourselves to the massless states. The general expression for the

covariant supervertex operator of 10d Super Yang-Mills is18

V(0) = θ̇αAα(x, θ) + ΠmAm(x, θ) + dαW
α(x, θ) + (wγmnλ)Fmn(x, θ) . (6.28)

Using the field equations and Bianchi identities, one can derive the relations [37, 31]:

D(αAβ) = γm
αβAm

DαAm − ∂mAα = γmαβW
β

DαW
β =

1

4
γmn

α
βFmn

DαFmn = (γ[m∂n]W )α . (6.29)

Together with the gauge choice

θαAα = 0 , (6.30)

equations (6.29) allow one to obtain the full expansion in powers of θ of the superfields

Aα, Am, W α and Fmn following the iterative procedure of [31, 43]. The only input is the

identification of the lowest components as

Am|θ=0 = am(x) , W α|θ=0 = uα(x) , Fmn|θ=0 = fmn , (6.31)

where am is the gauge field and uα is the gluino. Using that for a constant field strength

am = fmnx
n, one finds for the first few terms of these expansions:

Aα = am(γmθ)β + (γmθ)(uγmθ) + ...

Am = am + uγmθ + fpqθγ
mpqθ + ...

W α = uα +
1

4
fmn(γ

mnθ)α + · · ·
Fmn = fmn − θγ[m∂n]u+ · · · (6.32)

18For simplicity we take the lowest component of the superfield Fmn, which is the gauge field strength,

to be constant.
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Substituting the last equations in (6.28), we obtain for the supervertex operator (on shell

i.e. using also θ̇ = 0 and ẋm = Pm):

V(0) = uαqα + fmn(Mmn + P [mxn]) − (θγ[m∂n]u)(
1

2
Mmn +

1

3
Ppθγ

pmnθ) , (6.33)

where Mmn is defined as in (6.8) and qα is the supersymmetry generator.

Now we will consider the four-point amplitude at one loop. Our goal will be to check

if the entire effective SYM action to order α′2 [17] is reproduced from the computational

rules of the pure spinor formalism. There are three cases for the external particles: four

gluons; two gluons and two gluinos; four gluinos. We will handle all of them in turn.

For the case of four external gauge fields we take the following vertex operators: one

U
(1)
f = fpqλγrθθγ

pqrθ and three V (0)
f = fpq(Mpq +P [pxq]). Using the results of the previous

sections, the one-loop prescription gives at leading order in the α′ expansion

〈ZJ

10∏

1

ZB

11∏

1

YC(λ, θ) ×
[
Gα +HαβDβ +KαβγDβDγ + LαβγδDβDγDδ

] ∂

∂λα

U
(1)
f (λ, θ)(

∫
dτV(0)

f )3〉 = t8f
4 + O(α′2) , (6.34)

which coincides exactly with the f 4 term in (3.7) of [17].

To describe the interaction of two gauge fields and two gluinos, in addition to a U
(1)
f

and a V(0)
f we also need two gluino vertex operators V (0)

u = uαqα − (θγ[m∂n]u)(
1
2
Mmn +

1
3
Ppθγ

pmnθ). By counting the zero modes of the various fields, it is easy to convince oneself

that the only nonzero contribution comes from

fpqu
α(γm∂nu)β 〈〈U (1)

f Mpq θβ 1

2
Mmnqα〉〉g=1 , (6.35)

where actually only the p θ term of M contributes. In (6.35) we have abbreviated by 〈〈...〉〉
the full one-loop measure, including the picture changing operators and the b-ghost. This

last expression gives the effective interaction

Lf2u2 = −2[fijfpqu
α(γm∂nu)β] δ

m[i|δn[pδq]|j]δα
β , (6.36)

which matches precisely the corresponding term in (3.7) of [17].

Finally, we turn to the four-gluino one-loop amplitude. Now we need three V (0)
u ’s and

one unintegrated vertex operator for uα: U
(1)
u = λγmθ uγmθ. Following the same steps as

before we find for the amplitude

Lu4 = uβ∂nu
γ∂qu

δ 〈〈 (γpθ)δ
1

2
Mpq(γmθ)γ

1

2
MmnU (1)

u qβ 〉〉g=1

= uαuβ∂nu
γ∂qu

δ

(
1

180
γabc

αβ δ
nqγγδ, abc +

3

10
γabc

αβ δ
n
[aγγδ,bδ

q
c]

)
, (6.37)

which again agrees with the corresponding term in (3.7) of [17].
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7. Equivalence between spinorial and BRST cohomology

7.1 Deformations and cohomology

So far we have been reconstructing the effective action from scattering amplitudes. How-

ever, there is another way of achieving the same goal. Namely, one can study the possible

deformations of the equations of motion, consistent with the symmetries of the theory,

and then integrate them to terms in the effective action. This is essentially the spinorial

cohomology approach of [16] − [19], pioneered back in [44].

For instance, in the case of SYM theory the presence of radiative corrections is equiv-

alent to deforming the superspace constraints as [37, 39, 40, 38, 41, 42, 45, 46, 17]:

Fαβ = D(αAβ) − γm
αβAm = J(αβ) . (7.1)

The right hand side contains the symmetric gamma-traceless spinorial 2-form J(αβ)(W,F )

which is a function of a gauge invariant combination of the spinorial field strength W α

and the curvature Fmn. In order that J(αβ) is a consistent deformation it must be closed

with respect to the spinorial differential Dα:

D(αJβγ) = γm
(αβJγ)m , (7.2)

where Jγm takes into account that the left hand side is projected on the gamma-traceless

part. An efficient way to rewrite the above equation is to use the pure spinor BRST

language. So we replace (7.1) and (7.2) with

{Q,U (1)} = U (2) , {Q,U (2)} = 0 , (7.3)

where U (1) = λαAα and U (2) = λαλβJαβ[U (1)]. The functional dependence of U (2) reminds

that the components of this superfield depend upon the gauge invariant combinations of

the superfields in U (1). Notice that J(αβ) automatically contains only the 5-form part; the

vector part is absent because of the pure spinor constraints [45, 46, 17]. Note also that

if U (2) can be expressed as a Q-exact variation of some superfield Ω[U (1)], then it can be

reabsorbed into a complicated non-linear redefinition of the superfield Aα. So, then the

nontrivial U (2)’s are given by the cohomology classes of H (2)(Q).

In the same way, we can consider the case of 11d supergravity. The (linearized)

equations of motion can be written in terms of a gamma-traceless spinorial superfield

AABC as ΓAB
MNPQRDAABCD = 0 and ΓAB

MNDAABCD = 0. The superfield AABC defines a

vertex operator U (3) = λAλBλCAABC from which it is easy to see the invariance under

δAABC = ΓM
(ABΩC)M . Other possible deformations of the linearized equations of motion

can be parametrized by a vertex operator of the form U (4) = λAλBλCλDGABCD[U (3)]
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where the superfield GABCD is the symmetric gamma-traceless part of the 4-superform

G. Again the functional dependence of U (4) is through gauge invariant combinations of

the fields appearing in the vertex U (3). Then, one has

{Q,U (3)} = U (4) , {Q,U (4)} = 0 . (7.4)

This implies that U (4) ∈ H(4)(Q). This group corresponds to the spinorial cohomol-

ogy group H
(0,4)
τ studied in [16, 18, 19, 20]. In the Berkovits’ pure spinor language the

components of U (4) are made out of the antifields of the supergravity fields [10]. Here

the elements of the cohomology H (4)(Q) are viewed as functions of U (3). The linearized

equations of motion for the antifields, obtained from the condition QU (4) = 0, are [10]:

∂Mg∗MN − 1

2
∂N(ηMP gMP ) = 0 , ∂MC∗

MNP = 0 .

At the linearized level one can identify fields with their antifields: g∗MN = gMN , C∗
MNP =

CMNP . This has the effect of fixing the gauge symmetries of the physical fields since the

equations of motion of the antifields are the gauge fixing conditions of the fields. The

above identification fixes the harmonic gauge for the graviton and the ∂MCMNP = 0 gauge

for the three-form. In these gauges the equations of motion become ∂2gMN = ∂2CMNP =

0. It is interesting to note that in this language the O(`3P ) topological deformation of

the equations of motion studied in [20] corresponds to a non-linear correction to the

identification between fields and antifields, namely

C∗
MNP = CMNP + β (`P )3 (ΩL)MNP with dΩL = tr(R ∧R) , (7.5)

G∗
MNPQ = GMNPQ + β (`P )3 tr(R ∧R) .

At this point we can see the limitations of the superparticle approach as a zero mode

approximation to the supermembrane. Namely, since the vertex operator U (4) never enters

in the definition of tree-level and loop superparticle amplitudes, no information about the

value of the parameter β can be extracted from the present formalism. It is necessary to

do a membrane amplitude computation or use topological arguments as in [47] to fix β.

7.2 Spinorial cohomology from an extended BRST operator

The spinorial cohomology group H
(0,4)
F of [19] is defined by the action of a fermionic

derivative dF [ω] = [d1ω] on the elements of H
(0,4)
τ associated with the τ0 part of the full

differential d = d0 +d1 +τ0 +τ1. Here we recover the same cohomology by constructing an

extended BRST operator out of the full d. We view this procedure as more complete than

the somewhat artificial truncation to τ0, although as we show below the two definitions

are ultimately equivalent.
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To achieve the above goal, we introduce a new type of anticommuting vector ghost

ξM with the help of which we can convert the differential d into a BRST operator. In

curved space the four parts of d act as:

(d0ω)M1 ...Mp+1A1 ...Aq = ∇[M1ωM2 ...Mp+1]A1 ...Aq +
p

2
T[M1M2

Rω|R|M3...Mp+1]A1 ...Aq

+q(−1)pT[M1(A1

CωM2 ...Mp+1 ]|C|A2...Aq) (7.6)

(d1ω)M1 ...MpA1 ...Aq+1 = (−1)p∇(A1
ωM1 ...MpA2 ...Aq+1) +

q

2
T(A1A2

CωM1 ...Mp]|C|A3 ...Aq+1)

+p(−1)pT(A1[M1

Rω|R|M2...Mp]A2 ...Aq+1) (7.7)

(τ0ω)M1...Mp−1A1 ...Aq+2 =
p

2
T(A1A2

Rω|R|M1...Mp−1A3 ...Aq+2) (7.8)

(τ1ω)M1...Mp+2A1 ...Aq−1 =
q

2
T[M1M2

BωM3...Ap+2 ]|B|A1...Bq−1) , (7.9)

where ∇ is the covariant derivative, ω is a supeform belonging to Ω(p,q) and T Θ
ΩΣ is the

supertorsion. We consider flat space and therefore the only non-vanishing components of

the latter are T M
AB = −iγ M

AB .

Contracting the different pieces of the differential operator d with the ghost fields λA

and ξM (and the conjugate momenta wA, βM) one finally gets the BRST operator

Q =
2∑

n=−1

Qn = λAλBT R
AB βR +

(
λAλBT C

AB wC + λAξNT R
AN βR + λA∇A

)
+

+
(
ξMλAT B

MAwB + ξM ξNT R
MNβR + ξM∇M

)
+ ξMξNT A

MNwA , (7.10)

where the index n of the different pieces of Q denotes the grading obtained by summing

the gradings of the corresponding ghost fields. The latter have gradings zero for λA, wA

and (1,−1) for ξM , βM . In the present context the grading coincides with the engineering

dimension of the variables PM and dA. Due to the properties of the covariant derivatives

and by the defintion of the supertorsion T , one can check that Q is nilpotent.

The forms of type (p, q) are mapped into vertex operators U (p,q) with p λA-ghosts and

q ξM -ghosts and the action of the BRST operator is

Q : U (p,q) → U (p+2,q−1) ⊕ U (p+1,q) ⊕ U (p,q+1) ⊕ U (p−1,q+2) . (7.11)

The total grading is given by q. Notice that the space has a double filtration: the grading

number (which is given by the number ξM ghosts) and the total ghost number (form

number) which is given by the sum p + q. The BRST operator Q raises by one unit the
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ghost number. It is easy to check that, due to the Poincaré lemma, all the cohomology

groups H(p,q)(Q) are empty, except H (0,0)(Q) which contains only the constant functions.

So any Q-closed form is also Q-exact.

On the other hand, the double filtration means that it is possible to introduce a

new BRST operator which has a definite grading number, is nilpotent and has vanishing

cohomology. For that purpose, we introduce a new pair of ghosts (c, b) with ghost numbers

(1,−1) and grading numbers (1,−1) and we define the new BRST operator as Q′ = c.

This is clearly the simplest possible choice, but it has all the correct properties. The space

of forms has to be enlarged to contain the ghost field b. In this way the vertex operators

U (p,q) might have even negative grading.19 It is easy to see that the cohomology of Q′ is

empty.

Then, we can consider the sum of the two BRST operators Q + Q′ and restrict the

space of vertex operators U (p,q) to those whose grading number n is greater or equal to

the number of anticommuting ghosts that they contain, i.e. n ≥ q. Then we have:

H(p,q)(Q,pure spinors) ' H (p+q)(Q+Q′, n ≥ q) . (7.12)

The right hand side of this equation defines correctly the spinorial cohomology discussed in

[16, 17, 18, 19, 20]. Indeed, although the cohomology of Q is empty due to the constraints

coming from Q(n) with n ≥ 1, the introduction of Q′ allows to recover the pure spinor

cohomology. The technique used here has been applied to the superstring in [21] in order

to prove the equivalence of the BRST cohomologies with and without pure spinors [50].

We conclude the present section with a remark about the construction of different

pictures in the pure spinor approach using standard methods from supergeometry. The

space of forms Ω(p,q) is not sufficient to define a sensible integration on supermanifolds.

One has to consider the space of superforms of the type Ω
(p,q,r)
m

ξM1 . . . ξMpλA1 . . . λAq+m∂λA1
. . . ∂λAm

r∏

k=1

δ(Ck
Bλ

B)

19The situation is very similar to the NSR superstring, where the BRST charge Q is filtered with respect

to the picture number. In the Large Hilbert Space, which contains the zero mode ξ0 of the fermion ξ

(obtained from the fermionization of the β, γ superghosts), the BRST operator Q has no cohomology.

However, one can introduce a second BRST differential Q′ = η0 (namely, the zero mode of the conjugate

momentum of ξ0) with picture number +1 and positive ghost number, which is nilpotent, anticommutes

with Q and has no cohomology [48, 49]. In addition, the vertex operators U (p,q) are labeled by both

the ghost number and the picture number similarly to our superforms, which are labeled by a ghost

number and a grading number. And again similarly to our case, one can see, that by considering the

sum Q + Q′ and restricting the functional space to finite combinations of U (p,q), U (p) =
∑n+

q=n−

U (p,q),

the cohomology is equivalent to the cohomology of Q in the Small Hilbert Space.
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where r denotes the power of delta functions in the generalized forms and it corresponds

to the picture number. For a given supermanifold R(m|n) the picture number can run from

r = 0 to r = n + 1. For the two extreme values r = 0 and r = n + 1 one has that n ≥ 0

and n ≤ m+ 1 respectively whereas for 0 < r < n+ 1 the grading number n can assume

any value. Notice that the derivatives acting on the delta functions introduce negative

spinorial degrees of the form. The differential d maps in the space of forms without

changing the picture. To change the picture, the operators ZB and YC should be used.

Their construction from pure geometrical concepts will be discussed in a forthcoming

publication [51].

8. Recapitulation and discussion

In this paper we developed the rules for calculation of one-loop amplitudes for the eleven-

dimensional superparticle. Using them and the string theory counterpart of [12], we

computed covariantly the following one-loop terms in the 10- and 11- dimensional effective

actions: B ∧ X8 in IIA/B; F4 in type I; C ∧X8 in M-theory. We also verified that the

eleven-dimensional supergravity action of [15] is reproduced by the tree-level scattering

amplitudes, as should be the case for consistency. Hence, using the vertex operators U (3)

and U (1) that were defined in Section 3.1, we can summarize the Cremmer-Julia-Scherk

action by the expression (4.18):

SCJS = 〈U (3)QU (3)〉 + 〈U (3)[U (1), U (3)]〉 ,

where the bracket 〈...〉 is understood with the tree-level normalization 〈λ7θ9〉 = 1, recalled

in Section 2, and [. , .] means taking the canonical commutators for the on-shell fields in

the vertex operators.

It is possible to extend the present construction to multiloop amplitudes, in which

case there will be more zero modes for the Lorentz generators. Also, as can be seen from

the structure of the vertex operators in the new b-picture in (5.25), the tensors KABC and

LABCD will contribute. As these terms are coming with extra fermionic derivatives, the

corresponding amplitude will contain higher-derivatives. It would be interesting to try to

reproduce theD4R4 terms analyzed in [9] from a two-loop amplitude for the superparticle.

However, being an approximation to the super-membrane for configurations with

constant transverse excitations, the superparticle formalism clearly cannot grasp all in-

formation about the `P -corrections to M-theory. In particular, we saw that because the

membrane vertex operator for the anti-fields, U (4), does not enter in the definition of the

tree and loop amplitudes for the superparticle, it is not possible to deduce any information

about the (`P )3-deformations of the four-form field strength addressed in [20, 47].
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Extension of the present work to the full supermembrane is not obvious. First of all,

the BRST operator for the M2-brane requires new secondary constraints [10]:

(λΓMNλ)ΠJM (g,C3) = 0 , λA∂Jλ
A = 0 with ΠJ

M = EΩ
M∂JZ

Ω and J = 1, 2 ,

(8.1)

involving the transverse excitations of the membrane. One can view the first constraint

as a restriction not on the pure spinor but instead on the background metric g and three-

form C3 in which the membrane evolves. It is interesting to notice that the last equation

is not only algebraic but involves the dynamics of the pure spinors.

Another expected difficulty stems from the complicated nonlinear dynamics of the

membrane excitations. In particular, even BPS amplitudes are not expected to be easy

to understand based on the work of [52] which showed that, although the counting of

membrane instantons wrapping T 3 can be obtained by computing the partition func-

tion of an associated 3d Matrix model, the model does not localize on the semi-classical

configurations of the long membrane wrapping the T 3 torus.
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A. Fierz identities and Gamma matrix manipulations in 11d

In this appendix we write down several Fierz identities that we need in the main text.

We refer to [53] for an exhaustive list of the Fierz identities in eleven dimensions.

As Berkovits’ pure spinors satisfy only (4.3) but not λAΓMN
AB λB = 0, the Fierz identity

between two λ’s takes the form:

32λ(AλB) =
1

2!

(
ΓMN

)AB
(λΓMNλ) +

1

5!

(
ΓM1···M5

)AB
(λΓM1 ···M5λ) .
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The d23N -measure (5.11) is expanded on products of bilinears of λA made from Γ-

matrices with two, five and six indices. The relevant Fierz identities are:

(
ΓM

)
(AB

(ΓMN )CD) = 0 , (A.1)

(ΓM )(AB

(
ΓMN1···N4

)
CD)

= 6
(
Γ[N1N2

)
(AB

(
ΓN3N4]

)
CD)

, (A.2)

(ΓM )(AB

(
ΓMN1···N5

)
CD)

= −1

2
δ(AB

(
ΓN1···N5

)
CD)

− 5

2

(
Γ[N1

)
(AB

(
ΓN2···N5]

)
CD)

+ 5
(
Γ[N1N2

)
(AB

(
ΓN3 ···N6 ]

)
CD)

, (A.3)

(
ΓM1M2

)
(AB

(
ΓN1 ···N6

)
CD)

= −1

4
δ(AB

(
ΓM1M2N1 ···N6

)
CD)

+
5

2

(
Γ([M1M2N1N2

)
(AB

(
ΓN3 ···N6 ]

)
CD)

. (A.4)

(A.1) is known as the M2-brane identity and (A.2) − as the M5-brane identity. These

Fierz identities immediatly imply that:

(λΓM )A

(
λΓMNλ

)
= 0 , (A.5)

(λΓM )A

(
λΓMN1···N4λ

)
=

(
λΓ[N1N2

)
A

(
λΓN3N4 ]λ

)
, (A.6)

(λΓM1M2λ)(λΓN1 ···N6λ) = 0 , (A.7)

λA

(
λΓM1 ···M6λ

)
= −6

(
λΓ[M1

)
A

(
λΓM2 ···M6]λ

)

+15
(
λΓ[M1M2λ

) (
λΓM3 ···M6 ]

)
A
. (A.8)

From (A.7) it follows that the measure factor for dN in (5.11) cannot contain any terms of

the form (λΓ[2]λ) (λΓ[6]λ), where as in the main text we denote by Γ[n] the antisymmetric

product of n Gamma-matrices.

It is also useful to recall the explicit form of the t8-tensor:

tm1m2n1n2p1p2q1q2
8 = −2(δm1n2δm2n1δp1q2δp2q1 + δn1p2δn2p1δm1q2δm2q1 + δm1p2δm2p1δn1q2δn2q1)

+ 8(δm1q2δm2n1δn2p1δp2q1 + δm1q2δm2p1δp2n1δn2q1 + δm1n2δm2p1δp2q1δq2n1)

+ anti-sym. in every index pair . (A.9)

In d = 10 and d = 11 it can be represented in terms of gamma-matrices as follows:

2∆ tm1m2n1n2p1p2q1q2
8 = tr (Γm1m2Γm3m4Γm5m6Γm7m8) + tr (Γm5m6Γm1m2Γm3m4Γm7m8) (A.10)

+ tr (Γm3m4Γm5m6Γm1m2Γm7m8) − 2

∆
tr (Γm1m2Γm3m4) tr (Γm5m6Γm7m8)

− 2

∆
tr (Γm1m2Γm5m6) tr (Γm3m4Γm7m8) − 2

∆
tr (Γm1m2Γm7m8) tr (Γm3m4Γm5m6) ,

where ∆ is the dimension of the Clifford algebra.
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B. SO(8) parametrization of the 11d Pure Spinors

In this appendix we explain the SO(8) decomposition of an eleven-dimensional pure

spinor, which makes manifest the number of independent components it has.

In Section 2 we introduced a commuting spinor λ′ = (λ′1, λ
′
2) satisfying the constraint

λ′Γ+λ′ = 0, i.e. λ′1γ
+λ′1 + λ′2γ

+λ′2 = 0. This constraint can be solved in the following

way: decompose λ′1 into sa and sȧ , belonging to the SO(8) representations 8c and 8s

respectively. Then the equation λ′1γ
+λ′1 + λ′2γ

+λ′2 = 0 becomes sasa = v+, where

v+ ≡ λ′2γ
+λ′2 (the SO(8) indices are raised and lowered with the metrics δab and δȧḃ).

The equation is preserved by SO(7) rotations: using the triality to view sa as a vector of

SO(8) and decomposing it into the coset representation S7 × SO(7), one can fix its 8th

component to be equal to
√
v+ − sisi , where si is the SO(7)-part of v. Then, using the

similarity transformation of Section 2, one can find the BRST operator λα
1d1α + λ2αd

α
2 ,

where the 11d pure spinor is given by

λ = (λ1, λ2) =
(
(
√
v+ − s2

i , si), (0, 0), λ
′
2

)
. (B.1)

The first two entries are the sa of λ′1, and the third and the fourth ones, (0,0), are the 1

+ 7 components of sȧ with respect to SO(7) using again triality. Finally, λ′
2 is completely

free. The counting of degrees of freedom gives 7 + 16 = 23 (complex), which is exaclty

the number of independent components of a pure spinor in 11d.

Notice that the above computation is parallel to the 10d one of Berkovits. Indeed, in

ten dimensions the SO(9, 1) spinor λα is reduced to two SO(8) spinors, s̃a and s̃ȧ. Then

one imposes the pure spinor constraint and finds that s̃as̃a = 0. So the spinor γ+λ = s̃a is

null, i.e. λγ+λ = 0. Then one can decompose the rest under a SU(4) subgroup of SO(8),

which preserves the null property of s̃a. Therefore the resulting solution for a pure spinor

is

λ = {s̃a, sA, 0} ,

where sA is a generic spinor of SU(4). Hence there are 4 + 7 = 11 independent compo-

nents, coming respectively from sA and s̃a. Comparing with the above 11d case, we see

that sA replaces λ′2 whereas s̃a replaces (sa, 0) with sa − a spinor of S7.
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