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Abstract:

We rewrite the loop equations of the hermitian matrix model, in a way which

involves no derivative with respect to the potential, we compute all the correlation

functions, to all orders in the topological 1/N 2 expansion, as residues on an hyperel-

liptical curve. Those residues, can be represented as Feynmann graphs of a cubic field

theory on the curve.

1 Introduction

We consider the formal hermitian matrix integral:

Z =

∫

HN

dM e−N tr V (M) (1.1)

where M is a N ×N hermitian matrix, dM is the product of Lebesgue measures of all

real components of M . V (x) is a polynomial of degree d + 1 ≥ 2 called the potential.

Z is called the partition function.

Our goal is to compute the large N limit, as well as the full 1/N 2 expansion, of the

following formal expectation values (<> is the average computed with the probability

measure 1
Z

e−N tr V (M) dM):

W k(x1, . . . , xk) := Nk−2

〈

tr
1

x1 −M
tr

1

x2 −M
. . . tr

1

xk − M

〉

c

(1.2)

1 E-mail: eynard@spht.saclay.cea.fr
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Wk(x1, . . . , xk) := lim
N→∞

W k(x1, . . . , xk) (1.3)

where the subscript c means connected part or cumulant.

When Z is considered as a formal generating function, it is well known [11] that

the correlation function W k(x1, . . . , xk) has a 1/N2 expansion, also called topological

expansion, noted:

W k(x1, . . . , xk) :=
∞
∑

h=0

N−2hW
(h)
k (x1, . . . , xk) (1.4)

Let us emphasize that in general Z is not a convergent integral, the partition func-

tion as well as the W k’s are to be understood as formal series in the coefficients of the

potential, see [11] for details.

In that formal sense, the expectation value of a product of k traces is the com-

binatoric generating function for enumerating discrete surfaces with k holes, and the

variables x1, . . . , xk are fugacities for the lengths of the k boundaries [23, 9, 8, 24].

It is well known [11] that the power of N associated to each discrete surface is

its Euler characteristic χ. For a genus h connected surface with k holes, we have

χ = 2 − k − 2h. This is why the quantity 1.2 has a large N limit. The large N limit

1.3 Wk(x1, . . . , xk) = W
(0)
k (x1, . . . , xk) is therefore the generating function of genus

zero discrete surfaces with k boundaries, and each W
(h)
k (x1, . . . , xk) is the generating

function of genus h discrete surfaces with k boundaries.

The problem of computing the W k’s has been addressed many times, for various

applications to physics and mathematics. Indeed, the correlation functions of eigen-

values (and thus of traces of powers) of a random matrix have a universal behavior

which (this is what universality means) is observed in many physical phenomena, rang-

ing from solid state physics (quantum chaos, mesoscopic conductors, see [30, 25] ) to

high energy physics (nuclear physics [30], Quantum chromodynamics [32], string theory

[12]), and in mathematics (distribution of Riemann zeta’s zeroes [6]).

In the 90’s, random matrices were extensively studied in the context of quantum

gravity (see [11]), which is nothing but statistical physics on random discretized sur-

faces, i.e. the combinatorial problem of enumerating discrete surfaces of given topology,

as described above.

Quantum gravity is also deeply related to conformal field theory (CFT), when one

takes a “double scaling limit” where very large discrete surfaces are dominant, in other

words, CFT is the limit of continuous surfaces. Depending on the limit chosen, and

on the coefficients of the potential V (x), one may reach different double scaling limits,

which are in relationships with the (p, q = 2) minimal models in CFT. All the critical

exponents of such surfaces are given by KPZ’s formula [27].
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It is thus expected, that in appropriate double scaling limits, expectation values of

the form 1.2, can be computed from a quantum field theory, namely Liouville’s theory.

Here, without taking any double scaling limit,we will find a quantum-field-theory-

like Feynmann expansion for the W k(x1, . . . , xk).

The Wk’s have been computed in the literature by various methods. A formula of

Dyson [14] gives the W k’s for finite N in terms of orthogonal polynomials, but is not

very convenient for large N limit calculations, and is not convenient for the formal

model. The method of loop equations [11, 31, 2, 3, 19, 16] gives recursion relations

between the W k’s, which simplify in the large N limit. The loop equations have been

known for a while, and give a very effective algorithm for computing explicitly the

Wk’s (see [2, 1, 3]). The method developed by [2, 1] for computing the Wk’s, consists

in computing W1 and then obtain the Wk’s by taking iterated derivatives with respect

to the potentials (loop insertion method). This method has two drawbacks: first in

order to find Wk+1, one should know Wk for all potentials (in particular one must

take infinite degree potentials); second, before computing Wk, one has to compute

W1,W2, . . . ,Wk−1, i.e. it has not been found how to integrate the recursion formulae

of [1].

Here we consider new loop equations, which allow to find recursion relations between

the Wk’s, without taking any derivatives with respect to the potential (we may work

with fixed potential). Moreover, the recursion relations for the W
(h)
k ’s obtained in

this paper can be integrated: the kth-loop function to order N−2h is a k-legs, h-loops

Feynmann graph of a φ3 theory living on an hyperelliptical curve.

Outline:

- in section 2 we introduce the notations.

- in section 3 we introduce some basic tools of algebraic geometry.

- in section 4 we write and solve the loop equations to large N leading order, i.e.

we compute the Wk’s.

- in section 5 we write and solve the loop equations recursively to each order in

1/N2, i.e. we compute the W
(h)
k ’s.

- in section 6 we do explicitly the computation in the one-cut case.

- in section 7 we conclude by presenting perspectives of applications to other matrix

models (2 matrix model).

2 Definitions and notations

From now on, we assume that V ′(x) is monic of degree d ≥ 1.
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2.1 Loop functions

For k ≥ 1, we define (the subscript c means connected part or cumulant):

W k(x1, . . . , xk) := Nk−2

〈

tr
1

x1 −M
tr

1

x2 −M
. . . tr

1

xk − M

〉

c

(2.1)

Uk(x1;x2, . . . , xk) := Nk−2

〈

tr
V ′

1(x1) − V ′
1(M1)

x1 − M
tr

1

x2 − M
. . . tr

1

xk − M

〉

c

(2.2)

and their large N limits:

Wk(x1, . . . , xk) := W
(0)
k (x1, . . . , xk) := lim

N→∞
W k(x1, . . . , xk) (2.3)

Uk(x1;x2, . . . , xk) := U
(0)
k (x1;x2, . . . , xk) := lim

N→∞
U k(x1;x2, . . . , xk) (2.4)

as well as their formal 1/N 2 expansions (k ≥ 1, h ≥ 0):

W k(x1, . . . , xk) :=
∞
∑

h=0

N−2h W
(h)
k (x1, . . . , xk) (2.5)

Uk(x1;x2, . . . , xk) :=
∞
∑

h=0

N−2h U
(h)
k (x1;x2, . . . , xk) (2.6)

Notice U
(0)
1 is a monic polynomials of degree d − 1, and as soon as k + h ≥ 2, U

(h)
k

is a polynomial of degree at most d − 2 in x1. We have:

U
(h)
k (x1;x2, . . . , xk) = Pol

x1→∞
V ′

1(x1)W
(h)
k (x1, . . . , xk) (2.7)

The functions W k are called loop-functions, because they are generating functions

for discrete surfaces with k boundaries, i.e. k loops.

2.2 Filling fractions

If the integral 1.1 were to be considered as a convergent integral, the 1/N 2 expansion

would exist only in the so-called one-cut case (see [7, 10]). Here 1.1 is considered as

a formal power series, by its expansion in the vicinity of a minimum of the potential

trV (M). The potential V (x) has in general d = deg V ′ extrema, and thus, the potential

Tr V (M) can have extrema indexed by the number of eigenvalues of M lying in the

vicinity of each extrema of V (x). The formal perturbative expansion around such local

extrema cannot change the number of eigenvalues near each extrema. The fractions

of eigenvalues near each extrema of V are called filling fractions, and are thus moduli

characterizing the vacuum near which the perturbative formal expansion is computed.
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The filling fractions play an important role in recent applications of random matrix

models to string theory [12].

The filling fractions are denoted:

ε1, ε2, . . . , εs ,
s
∑

j=1

εj = 1 (2.8)

It is well known [2, 11] (and we recover it below) that the function W1(x) is solution

of an algebraic equation, it has s cuts [a2j−1, a2j], j = 1, . . . , s, which correspond to the

location of eigenvalues in the large N limit. The condition that the filling fractions are

given can be written:

∀j = 1, . . . , s ,
1

2iπ

∮

[a2j−1,a2j ]

W1(x) dx = εj (2.9)

where the contour surrounds the segment [a2j−1, a2j] in the trigonometric direction.

Let us for a moment, use the method of [1, 2] for finding the filling fraction condi-

tions for other loop functions.

If V (x) =
∑

k tkx
k, from [1] we introduce the loop insertion operator2:

∂

∂V (x)
:= −

∞
∑

k=1

1

xk+1

∂

∂tk
(2.10)

we then have [2]:

Wk+1(x1, . . . , xk, xk+1) =
∂

∂V (xk+1)
Wk(x1, . . . , xk) (2.11)

and thus, since the filling fractions are given parameters independent of V and N , we

must have for all k ≥ 1, h ≥ 0, h + k > 1:

∀j = 1, . . . , s ,

∮

[a2j−1,a2j ]

W
(h)
k (x1, x2, . . . , xk) dx1 = 0 (2.12)

From the same argument, since we assume that there is no eigenvalue elsewhere in the

complex plane, we can write, for any m in the complex plane, away from the cuts:
∮

m

W1(x1) dx1 = 0 (2.13)

(where the contour integral is a small circle around m) and thus:
∮

m

W
(h)
k (x1, x2, . . . , xk) dx1 = 0 (2.14)

2The loop insertion operator
∑

∞

k=1

1

xk+1

∂

∂tk

is a formal notation which makes sense order by order

in the 1/x expansion, and eq 2.12 is perfectly rigorously proven.
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3 The one-loop function and algebraic geometry

3.1 The one–loop function

It is well known [11, 2] (and it is re-derived below) that the one loop function is

algebraic:

W1(x) =
1

2

(

V ′(x) −M(x)
√

σ(x)
)

(3.1)

U1(x) =
1

4

(

V ′2(x) − M2(x)σ(x)
)

(3.2)

where M and σ are monic polynomials (remember V ′(x) is monic), determined by:

W1(x) ∼
x→∞

1

x
(3.3)

and by 2.9, which can be rewritten as follows: let a1, . . . , a2s be the zeroes of σ:

σ(x) =
2s
∏

i=1

(x− ai) (3.4)

we must have:

∀ j ∈ [1, s − 1],

∫ a2j

a2j−1

M(x)
√

σ(x) dx = 2iπεj (3.5)

For a given s ∈ [1, d], the equations 3.3 and 3.5 give a finite number of solutions for M

and σ. Let us assume that we have chosen one of them.

3.2 More notations

For convenience we introduce m1, . . . ,md−s the zeroes of M :

M(x) =
d−s
∏

i=1

(x − mi) (3.6)

We also define for k ≥ 1, h ≥ 0, and h + k > 1:

F
(h)
k (x1, . . . , xk) :=

(

2kWk(x1, . . . , xk) +
2δk,2δh,0

(x1 − x2)2

) k
∏

i=1

√

σ(xi) (3.7)

and:

Fk(x1, . . . , xk) := F
(0)
k (x1, . . . , xk) (3.8)

It is well known that the Fk’s and F
(h)
k ’s are rational functions of all their arguments

(see [1, 2, 3]).
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Another useful notation is in terms of multi-linear differential forms:

Gk(x1, . . . , xk) := Wk(x1, . . . , xk) dx1 . . . dxk (3.9)

and for higher orders:

G
(h)
k (x1, . . . , xk) := W

(h)
k (x1, . . . , xk) dx1 . . . dxk (3.10)

It is well known that they are all multi-linear differentials defined on an hyperelliptical

surface. All of them, except G1 and G2, have poles only at the branch-points (i.e. the

zeroes of σ), and have vanishing contour integrals around the cuts.

All this is re-derived below.

3.3 Hyperelliptical surfaces

We need to introduce some basic notions of algebraic geometry [21, 22].

Equation 3.1 defines an hyperelliptical surface of genus s − 1. Let y = V ′(x) −
2W1(x), we have:

y2 = M2(x)σ(x) (3.11)

That equation defines a Riemann surface with two sheets (corresponding to the two

determinations of the square root). In other word, for each x, there are two values of

y(x).

Let us define the physical sheet as the sheet where:

x−s
√

σ(x) ∼
x→∞

+1 (3.12)

and the second sheet as the one where:

x−s
√

σ(x) ∼
x→∞

−1 (3.13)

If x is a point in the physical sheet, let us note x the point corresponding to the same

x in the second sheet. By definition, we have:

√

σ(x) = −
√

σ(x) , M(x) = M(x) , y(x) = −y(x) , dx = dx

(3.14)

The branch points ai are the points where the two sheets meet, they are such that:

∀i = 1, . . . , 2s , ai = ai (3.15)

Near a branch point ai, the surface is better parameterized by the local coordinate:

τi(x) :=
√

x − ai = −τi(x) (3.16)
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i.e.

x = ai + τ 2
i , dx = 2τidτi (3.17)

In particular, the differential dx has a (simple) zero at x = ai.

Holomorphic differentials: Let L(x) be any polynomial of degree ≤ s − 2. Since
√

σ(x) has a simple zero at x = ai, the differential L(x) dx√
σ(x)

has no singularity on the

whole surface (neither near the branch points, nor at ∞), it is thus called a holomorphic

differential. One has the following classical theorem: there exist a unique set of s − 1

polynomials of degree s − 2, which we note Lj(x), such that:

∀ l, j ∈ [1, s − 1]2,

∮

[a2l−1,a2l]

Lj(x)
√

σ(x)
dx = 2iπ δl,j (3.18)

The differentials
Lj(x)√

σ(x)
dx are called the normalized holomorphic differentials. Notice

that the Lj’s form a basis of degree ≤ s − 2 polynomials. For any polynomial P (x)

such that deg P ≤ s − 2, we have:

P (x) =
s−1
∑

j=1

(

1

2iπ

∮

[a2j−1 ,a2j ]

P (x′)
√

σ(x′)
dx′

)

Lj(x) (3.19)

Notice that on the sth cut, we have:

∀ j ∈ [1, s − 1],

∮

[a2s−1,a2s]

Lj(x)
√

σ(x)
dx = −2iπ (3.20)

We define:

Ls(x) := 0 (3.21)

so that 3.19 holds also with the sum on j running from 1 to s.

Normalized differential of the third kind: For any x′ on the curve, there exists a

unique meromorphic differential, noted dS(x, x′), which has only two simple poles in

x, located at x = x′ and x = x′, and such that:



























dS(x, x′) ∼
x→x′

dx

x − x′
+ finite

dS(x, x′) ∼
x→x′

− dx

x − x′
+ finite

∀j = 1, . . . , s − 1 ,

∮

[a2j−1 ,a2j ]

dS(x, x′) = 0

(3.22)

Notice that dS(x, x′) is a meromorphic differential in the variable x, and a multi-valued

function of the variable x′.
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It is easy to check that we have the following expression:

dS(x, x′) =

√

σ(x′)
√

σ(x)

(

1

x − x′
−

s−1
∑

j=1

Cj(x
′)Lj(x)

)

dx (3.23)

where

Cj(x
′) :=

1

2iπ

∮

[a2j−1 ,a2j ]

dx
√

σ(x)

1

x − x′
(3.24)

In this formula, it is assumed that x′ lies outside the contours [a2j−1, a2j]. One has to

be careful when x′ approaches some branch point aj. When x′ lies inside the contour

around [a2j−1, a2j], then one has:

Cl(x
′) +

δl,j
√

σ(x′)
=

1

2iπ

∮

[a2l−1,a2l]

dx
√

σ(x)

1

x− x′
(3.25)

which is analytical in x′ when x′ approaches a2j−1 or a2j.

For i = 1, . . . , s, we define:

dS2i−1(x, x′) := dS2i(x, x′) := dS(x, x′) − Li(x)
√

σ(x)

=

√

σ(x′)
√

σ(x)

(

1

x − x′
− Li(x)
√

σ(x′)
−

s−1
∑

j=1

Cj(x
′)Lj(x)

)

dx (3.26)

which is a one-form in x, with poles at x = x′ and x = x′, and which is analytical in x′

when x′ is close to a2i−1 or a2i.

Bergmann kernel: For any x′ on the curve, there exists a unique bilinear differential,

noted B(x, x′), called the Bergmann kernel, which has only one double pole in x, located

at x = x′ (in particular no pole at x = x′), with no residue, and such that:














B(x, x′) ∼
x→x′

dx dx′

(x − x′)2
+ finite

∀j = 1, . . . , s − 1 ,

∮

x∈[a2j−1,a2j ]

B(x, x′) = 0
(3.27)

It is easy to check that B(x, x′) = B(x′, x) and:

B(x, x′) =
1

2
√

σ(x)
dx dx′ ∂

∂x′

(

√

σ(x) +
√

σ(x′)

x− x′
−

s−1
∑

j=1

Cj(x
′)Lj(x)

√

σ(x′)

)

=
1

2
dx′ ∂

∂x′

(

dx

x− x′
+ dS(x, x′)

)

(3.28)

It can be written:

B(x, x′) =
dxdx′

2(x − x′)2
+

Q(x, x′)dxdx′

4(x − x′)2
√

σ(x)
√

σ(x′)
(3.29)
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where Q(x, x′) is a symmetric polynomial in x and x′, of degree at most s, such that

Q(x, x) = 2σ(x) and ∂x′Q(x, x′)|x′=x = σ′(x):

Q(x, x′) = 2σ(x) + (x′ − x)σ′(x) +
4

3

(x′ − x)2

2
S(x) + O(x′ − x)3 (3.30)

where S(x) is called projective connection at x. We can write:

Q(x, x′) = 2σ(x) + (x′ − x)σ′(x) + (x− x′)2A(x, x′) (3.31)

where A(x, x′) is a polynomial in both variables. We have:

B(x, x′)

dxdx′
=

1

2(x − x′)2
+

σ(x)

2(x − x′)2
√

σ(x)
√

σ(x′)

+
σ′(x)

4(x′ − x)
√

σ(x)
√

σ(x′)
+

A(x, x′)

4
√

σ(x)
√

σ(x′)
(3.32)

4 Loop equations

Now, we will introduce a method for computing the W
(h)
k ’s. It is based on the so-called

loop equations or Schwinger-Dyson equations, i.e. invariance of the integral 1.1 under

local infinitesimal change of variable.

4.1 Useful notations

Let K = {2, . . . , k}. For any j ≤ k − 1 we denote:

Kj := {I ⊂ K /#I = j} (4.1)

and for any subset I ∈ Kj we define:

I = {i1, i2, . . . , ij} −→ xI := xi1, xi2, . . . , xij (4.2)

as well as:
√

σ(xI) :=

j
∏

l=1

√

σ(xij) (4.3)

and

dxI :=

j
∏

l=1

dxij (4.4)
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4.2 Loop equations

The invariance of the matrix integral 1.1 under the change of variable M → M + ηδM

(see [11, 18, 19]for detailed derivations):

δM =
1

x1 − M

k
∏

j=2

tr
1

xj −M
(4.5)

implies, to first order in η:

k = 1 : W 1(x1)
2 +

1

N2
W 2(x1, x1) = V ′(x1)W 1(x1) − U 1(x1)

k ≥ 2 : 2W 1(x1)W k(x1, . . . , xk) +
1

N2
W k+1(x1, x1, x2, . . . , xk)

+
k−2
∑

j=1

∑

I∈Kj

W j+1(x1, xI)W k−j(x1, xK−I)

+
k
∑

j=2

∂

∂xj

W k−1(x2, . . . , xj, . . . , xk) − W k−1(x2, . . . , x1, . . . , xk)

xj − x1

= V ′(x1)W k(x1, . . . , xk) − Uk(x1;x2, . . . , xk) (4.6)

i.e., to leading order in 1/N 2 we have:

k = 1 : W1(x1)
2 = V ′(x1)W1(x1) − U1(x1)

k ≥ 2 : 2W1(x1)Wk(x1, . . . , xk)

+

k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I)

+
k
∑

j=2

∂

∂xj

Wk−1(x2, . . . , xj, . . . , xk) − Wk−1(x2, . . . , x1, . . . , xk)

xj − x1

= V ′(x1)Wk(x1, . . . , xk) − Uk(x1;x2, . . . , xk) (4.7)

Notice that it implies 3.1 for k = 1.

Now assume k ≥ 2, and using 3.1, we rewrite:

M(x1)
√

σ(x1)Wk(x1, . . . , xk)

=
k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I )

+
k
∑

j=2

∂

∂xj

Wk−1(x2, . . . , xj, . . . , xk) − Wk−1(x2, . . . , x1, . . . , xk)

xj − x1

+Uk(x1;x2, . . . , xk) (4.8)
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4.3 Case k=2

For k = 2, 4.8 reads:

M(x1)
√

σ(x1)W2(x1, x2) =
∂

∂x2

(

W1(x2) −W1(x1)

x2 − x1

)

+ U2(x1;x2)

= −1

2

∂

∂x2

(

M(x2)
√

σ(x2) − M(x1)
√

σ(x1)

x2 − x1

)

+
1

2

∂

∂x2

(

V ′(x2) − V ′(x1)

x2 − x1

)

+ U2(x1;x2)

= −1

2

∂

∂x2

(

M(x1)

√

σ(x2) −
√

σ(x1)

x2 − x1

)

−1

2

∂

∂x2

(

√

σ(x2)
M(x2) − M(x1)

x2 − x1

)

+
1

2

∂

∂x2

(

V ′(x2) − V ′(x1)

x2 − x1

)

+ U2(x1;x2)

(4.9)

which can be written:

√

σ(x1)W2(x1, x2) = −1

2

∂

∂x2

(

√

σ(x2) −
√

σ(x1)

x2 − x1

)

+
R2(x1;x2)

M(x1)

(4.10)

where R2(x1;x2) is a polynomial in x1 of degree at most d − 2. From 2.14, we know

that the LHS has no pole at the zeroes of M , thus

R2(x1;x2) = M(x1)P2(x1;x2) (4.11)

where P2(x1;x2) is a polynomial in x1, of degree s − 2. We have:

√

σ(x1)W2(x1, x2) = −1

2

∂

∂x2

(

√

σ(x2) −
√

σ(x1)

x2 − x1

)

+ P2(x1;x2)

(4.12)

In terms of the function F2 introduced in 3.8 we have:

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2
√

σ(x1)

∂

∂x2

√

σ(x2)

(x1 − x2)
+

P2(x1;x2)
√

σ(x1)
(4.13)

which proves that F2 is a rational function of x1, and by symmetry, it is also a rational

function of x2.

Then using 2.12 as well as 3.19 and 3.24, we find P2:

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2

∂

∂x2

√

σ(x2)
√

σ(x1)

(

1

(x1 − x2)
−
∑

l

Cl(x2)Ll(x1)

)

(4.14)
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then using 3.23:

F2(x1, x2)

4
√

σ(x1)
√

σ(x2)
=

1

2

∂

∂x2

dS(x1, x2)

dx1
=

B(x1, x2)

dx1dx2
− 1

2

1

(x1 − x2)2
(4.15)

where we recognize B the Bergmann kernel introduced in 3.27. Finally, we have the

two-loop function in the form:

W2(x1, x2) =
B(x1, x2)

dx1dx2
− 1

(x1 − x2)2
= −B(x1, x2)

dx1dx2
(4.16)

or, using 3.29

F2(x1, x2) =
Q(x1, x2)

(x1 − x2)2
(4.17)

The result 4.16 or 4.13 is well known and can be found in many places in the literature

[15]. We have just presented one derivation for completeness. Now, let us move to

higher loop functions.

Remark: we can write

F2(x, x1) = 2
σ(x)

(x − x1)2
− σ′(x)

x − x1
+ A(x, x1) (4.18)

where A(x, x1) is a polynomial in both variables. It implies:

W2(x, x) = −σ′′(x)

8σ(x)
+

σ′(x)2

16σ(x)2
+

A(x, x)

4σ(x)
(4.19)

which is a rational function of x, with double poles at the branch-points.

4.4 k=3

Starting from 4.8 for k = 3, i.e.

M(x1)
√

σ(x1)W3(x1, x2, x3) = 2W2(x1, x2)W2(x1, x3)

+
∂

∂x2

W2(x2, x3) − W2(x1, x3)

x2 − x1

+
∂

∂x3

W2(x2, x3) − W2(x1, x2)

x3 − x1

+U3(x1;x2, x3) (4.20)

and using the results for k = 2, we get:

F3(x1, x2, x3)
√

σ(x2)
√

σ(x3)
=

F2(x1, x2)F2(x1, x3)

σ(x1)M(x1)
√

σ(x2)
√

σ(x3)
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+
8

M(x1)

∂

∂x2

W2(x2, x3)

x2 − x1
+

8

M(x1)

∂

∂x3

W2(x2, x3)

x3 − x1

+
8U3(x1;x2, x3)

M(x1)
(4.21)

i.e. F3(x1, x2, x3) is a rational function of x1, and by symmetry, it is a rational function

of all its arguments. Expression 4.20 clearly shows that F3 has no pole when x1 = x2

or x1 = x3. Moreover, from 2.14, we know that it has no pole at the zeroes of M . Thus

the only possible poles of F3 are at the branch points and at ∞. Notice that only the

first term in the RHS of 4.21 has poles at the branch points.

Before continuing, let us study the case k > 3.

4.5 k larger or equal to 3

Now assume k > 3. We start from 4.8:

√

σ(x1)Wk(x1, xK) =

k−2
∑

j=1

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I)

M(x1)

+
k
∑

i=2

∂

∂xi

Wk−1(xK) − Wk−1(x1, xK−{i})

(xi − x1)M(x1)

+
Uk(x1;xK)

M(x1)
(4.22)

and we consider separately the terms corresponding to j = 1 and j = k−2 in the RHS,

and we write
∑

I∈K1
=
∑k

i=2, we get:

√

σ(x1)Wk(x1, xK) =

k−3
∑

j=2

∑

I∈Kj

Wj+1(x1, xI)Wk−j(x1, xK−I)

M(x1)

+2
k
∑

i=2

(

W2(x1, xi) + 1
2(x1−xi)2

)

Wk−1(x1, xK−I)

M(x1)

+
k
∑

i=2

∂

∂xi

Wk−1(xK)

(xi − x1)M(x1)
+

Uk(x1;xK)

M(x1)
(4.23)

This clearly proves, by induction on k, that for all k ≥ 3, Fk(x1, xK) is a rational

function of x1 (and by symmetry, of all its arguments), with poles only at the branch

points and at ∞. We have just re-derived it in a way different from [1, 2].

Now, assume k ≥ 3. Consider the Euclidean division of the polynomial

Uk(x1;x2, . . . , xk) by M(x1):

Uk(x1;xK) =
2−k

√

σ(xK)
Pk(x1;xK)M(x1) + Qk(x1;xK) (4.24)
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where deg Pk = s − 2 and deg Qk < d − s.

Thus, we have found that for any k ≥ 3, we have:

Fk(x1, xK) − Pk(x1;xK)
√

σ(xK)
=

1

2

k−2
∑

j=1

∑

I∈Kj

Fj+1(x1, xI)Fk−j(x1, xK−I)

σ(x1)M(x1)
√

σ(xK)
+Rk(x1;xK) (4.25)

where Rk(x1;xK) is a rational fraction of x1 with no poles at the branch points neither

at ∞ (it has poles at the zeroes of M and at the xi’s).

4.6 Cauchy formula

Cauchy formula gives:

Fk(x1, xK) − Pk(x1;xK)
√

σ(xK)
= Res

x→x1

dx

x − x1

Fk(x, xK) − Pk(x;xK)
√

σ(xK)
(4.26)

where the integrand has poles only at the branch points. Therefore we may deform

the integration contour used to compute the residue, into residues at the branch points

only:

Fk(x1, xK) − Pk(x1;xK) =
2s
∑

l=1

Res
x→al

dx

x1 − x
(Fk(x, xK) − Pk(x;xK)) (4.27)

using 4.25 we get the recursion formula for the Fk’s, for all k ≥ 3:

Fk(x1, xK) − Pk(x1;xK) =
1

2

2s
∑

l=1

Res
x→al

k−2
∑

j=1

∑

I∈Kj

Fj+1(x, xI)Fk−j(x, xK−I)

σ(x)M(x)(x1 − x)
dx (4.28)

Pk(x1, xK) which is a polynomial in x1 of degree at most s − 2, is computed with

formula 3.19.

Starting from 2.12, i.e.:

∮

[a2l−1,a2l]

Fk(x1, xK)
√

σ(x1)
dx1 = 0 (4.29)

we have:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)

=
2s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1,a2l]

dx1
√

σ(x1)
Res
x→ai

Fj+1(x, xI)Fk−j(x, xK−I)

2(x1 − x)M(x)σ(x)
dx

=
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1,a2l]

dx1
√

σ(x1)

∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2(x1 − x)M(x)σ(x)
dx

15



(4.30)

Notice that for i = l, the contour of integration of x1 encloses the contour of x. We

may exchange the position of the two contours, by picking a residue at x1 = x, thus:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)

=
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1 ,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

∮

[a2l−1,a2l]

dx1

(x1 − x)
√

σ(x1)

+

k−2
∑

j=1

∑

I∈Kj

∮

[a2l−1,a2l]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)
√

σ(x)σ(x)
dx

(4.31)

Using the function Cl(x) introduced in 3.24, we have:

−
∮

[a2l−1,a2l]

Pk(x1;xK)dx1
√

σ(x1)

=

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

(

Cl(x) +
δi,l

√

σ(x)

)

(4.32)

and thus we have computed Pk:

− Pk(x1;xK) =
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

(

Li(x1)
√

σ(x)
+

s−1
∑

l=1

Cl(x)Ll(x1)

)

(4.33)

4.7 The recursion relation

That gives the recursion relation for the Fk’s:

Fk(x1;xK) =
1

2iπ

s
∑

i=1

k−2
∑

j=1

∑

I∈Kj
∮

[a2i−1,a2i]

Fj+1(x, xI)Fk−j(x, xK−I)

2M(x)σ(x)
dx

(

1

x1 − x
− Li(x1)
√

σ(x)
−

s−1
∑

l=1

Cl(x)Ll(x1)

)

(4.34)
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where it is important to remember that the term inside the bracket is analytical when

x approaches a2i−1 or a2i. This allows to write the contour integrals as the sum of two

residues around a2i−1 and a2i.

It is interesting and more intrinsic to rewrite 4.34 in terms of multi-linear differen-

tials Gk on the hyperelliptical curve.

First, notice that a contour around ai in the hyperelliptical curve (τi(x) =
√

x − ai

around 0) is twice the contour in the complex plane (x around ai), i.e. we will have an

extra factor 2 in the denominator.

Then, notice that G2 and F2 differ by a term, which is an even function of the local

parameter τi(x), i.e. which does not contribute to residues near the branch-points (this

can be checked separately for k = 3 and k > 3).

Thus we get the recursion relation for the Gk’s:

Gk(x1;xK) =
2s
∑

i=1

k−2
∑

j=1

∑

I∈Kj

Res
ai∈Σ

Gj+1(x, xI)Gk−j (x, xK−I)

2y(x)dx
dSi(x1, x)

(4.35)

where now the residues are computed on the hyperelliptical surface (i.e. extra factor 2 in

the denominator), and dSi(x, x′) is the abelian differential of the third kind introduced

in 3.26.

That recursion relation allows to compute Wk in a tree-like recursion from residues

of lower loop-functions.

4.8 Solution of the recursion relation as cubic-Feynmann trees

Equation 4.35 is conveniently represented with diagrams ”a la Feynmann”.

Let us represent the k-loop correlation function Gk(x1, . . . , xk) as a black disk with

k legs:

x1

x
2

x
k

:= Gk(x1, . . . , xk) (4.36)

and introduce the following Feynmann rules:

17



Arrowed propagator: x1 x2 := dSi(x, x′)

Vertex: x := 1/(2 y(x) dx)

Non-arrowed propagator x1 x :=
x1 x

2 = G2(x1, x2)

=2-loop correlator:

Then 4.35 can be represented as follows

j+1

k−j

k

Σ
j=1

k−2

∋
Σ
I K j

x

I

K−I

= xx
1 1

x

x

2

k

Whose solution is clearly that the k-loop correlator Gk is the sum over all plane

binary trees with 1 root and k − 1 leaves, with a skeleton made of oriented arrows

(oriented from root toward leaves), and whose k−1 leaves are non-arrowed propagators

finishing at the xj’s with 2 ≤ j ≤ k.

Notice that two trees which differ only by the ordering of branches at a vertex give

the same contribution to Gk, so that instead of summing over plane trees, one can sum

over non-plane trees, with a factor 2k−2.

Let Tk be the set of plane rooted binary trees with k−1 labeled leaves (x2, . . . , xk).

and let T k be the set of non-plane rooted binary trees with k − 1 labeled leaves

(x2, . . . , xk). We have:

Nk+2 := Card Tk+2 = k + 1!Ck =
2k!

k!
= 2k (2k − 1)!! (4.37)

where Ck is the Catalan number which enumerates plane trees. And:

Nk+2 := Card T k+2 = 2−kCard Tk+2 = 2−k 2k!

k!
= (2k − 1)!! (4.38)

For any given tree T ∈ Tk, with root x1, leaves xj (j = 2, . . . , k), and with k − 2

vertices noted x′
v (v = 1, . . . , k−2), so that its inner edges are of the form v1 → v2 and

its outer edges are of the form v → j, we define the weight of T as:

W(T ) :=
k−2
∏

vertexv=1

2s
∑

iv=1

Res
x′

v→aiv

1

2y(x′
v)dx′

v
∏

inneredgesv→w

dSiv(x
′
v, x

′
w)

∏

outer edgesv→j

G2(x
′
v, xj)
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(4.39)

Thus we have:

Gk(x1, . . . , xk) = 2k−2
∑

T∈T k

W(T ) =
∑

T∈Tk

W(T )

(4.40)

G3 is thus given by N3 = 1 tree, G4 is the sum of N 4 = 3 diagrams, G5 is the sum

of N5 = 15 diagrams,...

4.9 Example: 3-point function

As an example, let us carry out explicitly the computation for the 3-point function.

Diagrammatically, we have:

x
1

x
2

x
3

x
1

x
2

x
3

= 2
x

Eq.4.28 can be written for k = 3:

F3(x1, x2, x3) =

2s
∑

i=1

Res
ai

dx
F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)

σ′(x)

(x − x1)
+ P3(x1, x2, x3) (4.41)

where P3 is a polynomial in x1. Using 4.18, notice that F2(ai, x) = σ′(ai)
x−ai

+ A(ai, x) is

finite, and that:
σ′(x)

x − x1
= 2

σ(x)

(x − x1)2
− F2(x, x1) + A(x, x1) (4.42)

i.e.

F3(x1, x2, x3) = 2
2s
∑

i=1

Res
ai

dx
F2(x, x2)F2(x, x3)

M(x)(x − x1)2σ′(x)

−
2s
∑

i=1

Res
ai

dx
F2(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)

+

2s
∑

i=1

Res
ai

dx
A(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)
+ R3(x1, x2, x3)

(4.43)
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The first line has no residue at the branch-points (indeed, using 4.18, notice that

F2(ai, x) is finite), and the last line is a polynomial in x1 (indeed A(x, x1) is), therefore:

F3(x1, x2, x3) = −
2s
∑

i=1

Res
ai

dx
F2(x, x1)F2(x, x2)F2(x, x3)

M(x)σ(x)σ′(x)
+ R̃3(x1, x2, x3)

= −
2s
∑

i=1

F2(ai, x1)F2(ai, x2)F2(ai, x3)

M(ai)σ′(ai)2
+ R̃3(x1, x2, x3)

(4.44)

where R̃3(x1, x2, x3) is a polynomial in x1, of degree at most s − 2. Condition 2.12

implies that R̃3(x1, x2, x3) = 0, thus:

F3(x1, x2, x3) = −
2s
∑

i=1

F2(ai, x1)F2(ai, x2)F2(ai, x3)

M(ai)σ′(ai)2

(4.45)

This is a generalization of what was found in [1, 2, 3] for the one-cut case s = 1.

Let us redo this computation in a more intrinsic way. Start from 4.35 for k = 3:

G3(x1, x2, x3) = 2
2s
∑

i=1

Res
ai

G2(x, x2)G2(x, x3)

2y(x)dx
dSi(x1, x)

(4.46)

Notice that both dSi(x1, x) and y(x) have a simple zero at x = ai thus,

dSi(x1, x)

y(x)
=

dxdSi(x1, x)

dy(x)
+ O(

√
x − ai)

=
B(x1, x) + B(x1, x)

dy(x)
+ O(

√
x− ai)

= 2
G2(x1, x)

dy(x)
+ O(

√
x − ai) (4.47)

This implies:

G3(x1, x2, x3) = 2

2s
∑

i=1

Res
ai

G2(x, x2)G2(x, x3)G2(x, x1)

dx dy

(4.48)

This agrees with [29, 5] (our dy is half the dy of [5]). One can also write:

W3(x1, x2, x3) = 2

2s
∑

i=1

Res
ai

W2(x, x2)W2(x, x3)W2(x, x1)
dx2

dy
(4.49)
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4.10 Example: 4 point function

Diagrammatically, we have:

x
2

x
4

x
3

x
1

x
1

x
2

x
3

x
4

x
1

x
2

x
3

x
4

+ x4 x
1

x
2

x
4

x
3

+ x4= 4
x

Explicit computation of 4.34 for k = 4 gives:

F4(x1, x2, x3, x4) = −
2s
∑

i6=j=1

F2(x3, aj)F2(x4, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x2, ai)F2(x1, ai)

M(ai)σ′(ai)2

−
2s
∑

i6=j=1

F2(x3, aj)F2(x2, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x4, ai)F2(x1, ai)

M(ai)σ′(ai)2

−
2s
∑

i6=j=1

F2(x2, aj)F2(x4, aj)

M(aj)σ′(aj)2
F2(ai, aj)

F2(x3, ai)F2(x1, ai)

M(ai)σ′(ai)2

−
2s
∑

i=1

(F2(x3, ai)F2(x4, ai)F2(ai, x2)F2(ai, x1))
′

M(ai)2σ′(ai)3

+3
2s
∑

i=1

F2(x3, ai)F2(x4, ai)F2(ai, x2)F2(ai, x1)

M(ai)2σ′(ai)3

(

M ′(ai)

M(ai)
− A(ai, ai)

σ′(ai)
+

5σ′′(ai)

6σ′(ai)

)

(4.50)

5 Higher genus

Now, we don’t drop the 1/N 2 term in 4.6, and we expand to order h:

2
h
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, . . . , xk)

+W
(h−1)
k+1 (x1, x1, x2, . . . , xk)

+

h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)

+
k
∑

j=2

∂

∂xj

W
(h)
k−1(x2, . . . , xj, . . . , xk) − W

(h)
k−1(x2, . . . , x1, . . . , xk)

xj − x1

= V ′(x1)W
(h)
k (x1, . . . , xk) − U

(h)
k (x1;x2, . . . , xk) (5.1)

thus:

M(x1)
√

σ(x1)W
(h)
k (x1, xK)
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= 2
h−1
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, xK) + W

(h−1)
k+1 (x1, x1, xK)

+
h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)

+

k
∑

j=2

∂

∂xj

W
(h)
k−1(xK) − W

(h)
k−1(x1, xK−{j})

xj − x1
+ U

(h)
k (x1;xK)

(5.2)

In particular for k = 1, 5.2 reads :

M(x1)
√

σ(x1) W
(h)
1 (x1) =

h−1
∑

m=1

W
(h−m)
1 (x1)W

(m)
1 (x1)+ W

(h−1)
2 (x1, x1) +U

(h)
1 (x1) (5.3)

It is easy to prove, by double recursion on k and h, that

F
(h)
k (x1, . . . , xk) = 2k W

(h)
k (x1, . . . , xk)

k
∏

i=1

√

σ(xi) (5.4)

is a rational function. Introduce the Euclidean division of the polynomial U
(h)
k (x1;xK)

by M(x1):

U
(h)
k (x1;xK) =

2−k

√

σ(xK)
P

(h)
k (x1;xK)M(x1) + Q

(h)
k (x1;xK) (5.5)

where deg P
(h)
k = s − 2 and deg Q

(h)
k < d − s. 5.2 becomes:

√

σ(x1)W
(h)
k (x1, xK) − 2−k

√

σ(xK)
P

(h)
k (x1;xK)

= 2
h−1
∑

m=0

W
(h−m)
1 (x1)W

(m)
k (x1, xK)

M(x1)
+

W
(h−1)
k+1 (x1, x1, xK)

M(x1)

+
h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)

M(x1)

+
k
∑

j=2

∂

∂xj

W
(h)
k−1(xK) − W

(h)
k−1(x1, xK−{j})

(xj − x1)M(x1)
+ Q

(h)
k (x1;xK)

(5.6)

where the LHS is a rational function of x1 with poles only at the branch points, there-

fore:

√

σ(x1)W
(h)
k (x1, xK) − 2−k

√

σ(xK)
P

(h)
k (x1;xK)
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= Res
x→x1

dx

x − x1

(

√

σ(x)W
(h)
k (x, xK) − P

(h)
k (x;xK)

)

=

2s
∑

i=1

Res
x→ai

dx

x1 − x

(

√

σ(x)W
(h)
k (x, xK) − P

(h)
k (x;xK)

)

=

2s
∑

i=1

Res
x→ai

dx

x1 − x

(

2

h−1
∑

m=0

W
(h−m)
1 (x)W

(m)
k (x, xK)

M(x)
+

W
(h−1)
k+1 (x, x, xK)

M(x)

)

+

2s
∑

i=1

Res
x→ai

dx

x1 − x





h
∑

m=0

k−2
∑

j=1

∑

I∈Kj

W
(m)
j+1 (x, xI)W

(h−m)
k−j (x, xK−I)

M(x)





+
2s
∑

i=1

Res
x→ai

dx

x1 − x

(

k
∑

j=2

∂

∂xj

W
(h)
k−1(xK) − W

(h)
k−1(x, xK−{j})

(xj − x)M(x)
+

Q
(h)
k (x;xK)

M(x)

)

(5.7)

Two terms in the last line have no pole at x1 = ai, and the other term in the last line

combines with other lines so as to transform W2 in F2. Thus we get:

F
(h)
k (x1, xK) =

1

2

2s
∑

i=1

Res
x→ai

dx

x1 − x

h
∑

m=0

k−1
∑

j=0

(1 − δm,0δj,0 − δm,hδj,k−1)

∑

I∈Kj

F
(m)
j+1 (x, xI)F

(h−m)
k−j (x, xK−I)

M(x)σ(x)

+
1

2

2s
∑

i=1

Res
x→ai

dx

x1 − x

F
(h−1)
k+1 (x, x, xK)

M(x)σ(x)

+P
(h)
k (x1;xK)

(5.8)

where P
(h)
k (x1;xK) is obtained from 3.19 in a way very similar to what we have done

to leading order. Finally we find:

G
(h)
k (x1, xK) =

∑2s
i=1 Res x→ai dSi(x1, x)

G
(h−1)
k+1 (x,x,xK)

y(x)dx

+2
∑2s

i=1 Res x→ai

∑h−1
m=0 dSi(x1, x)

G
(h−m)
1 (x)G

(m)
k (x,xK)

y(x)dx

+
∑2s

i=1 Res x→ai

∑h
m=0

∑k−2
j=1

∑

I∈Kj

dSi(x1, x)
G

(m)
j+1(x,xI)G

(h−m)
k−j (x,xK−I)

y(x)dx

(5.9)

where one should notice that the first line correspond to j = 0 and j = k − 1 in the

second line.

Let us represent the order N−2h k-loop correlation function G
(h)
k (x1, . . . , xk) as a
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Figure 1: The 3 skeleton trees contributing to T (2)
2 , i.e. with k + 2h − 2 = 4 edges.

black disk with k legs and h holes:

x1

x
2

x
k

h

:= G
(h)
k (x1, . . . , xk) (5.10)

Using the Feynmann rules introduced above, 5.9 can be represented as:

x1
x1

x2

x
k

xK−I

x I x 2

x k

x1=

g+1

+

h

g+1−h

Σ
h=1

g

g

xx

which means that G
(h)
k is obtained by summing over all Feynmann graphs with k

external legs and h loops.

The set T (h)
k of all possible graphs with k external legs, and with h loops, can be

described as follows: First, draw all rooted skeleton trees (i.e. trees whose vertices

have valence 1,2 or 3), containing k+2h−2 edges. Draw arrows on the edges, oriented

from root toward leaves (see fig 1). Then draw, in all possible ways, k−1 external legs,

and h inner edges, with the constraint that all the vertices of the whole graph have

valence 3, and so that an inner edge can be drawn only between a vertex and one of

its descendents (inner edges can never connect different branches of the tree), see fig 2

for the example k = 2, h = 2. Then, each such graph has a symmetry factor.

We have (see appendix 7):

N
(h)
k := Card T (h)

k = sh (k − 1)! 4k−1

(

3(h−1)
2

+ k − 1
k − 1

)

(5.11)

where sh = N
(h)
1 is the number of one-leg graphs in a usual φ3 field theory. The

generating function s(x) =
∑∞

h=1 shx
h−1 is computed in appendix 7 in terms of Airy
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2 4 4

4

4 4

4 4

44

4

4

4

Figure 2: All the possible ways of drawing k − 1 = 1 external leg and h = 2 inner
edges, so that the graphs are trivalent, and that inner edges never connect different
branches. Notice that all but one graph have symmetry factor 4, and one has 2.

function. We have:

s1 = 1 , s2 = 5 , s3 = 60 , . . . (5.12)

In particular for genus h = 1:

N
(1)
k := Card T (1)

k = 4k−1 (k − 1)! (5.13)

Similarly to 4.40:

G
(h)
k (x1, . . . , xk) =

∑

T∈T
(h)
k

W(T )

(5.14)

where the weight W was defined in 4.39

5.1 Example: One-loop function, genus one

Let us carry out explicitly the case k = 1, h = 1, and recover the result of [16, 17, 15]:

In that case, 5.1 reads:

√

σ(x1) W
(1)
1 (x1) =

W2(x1, x1) + U
(1)
1 (x1)

M(x1)
(5.15)

The RHS is clearly a rational function of x1, and from 2.14, we know that the LHS has

poles only at the branch-points , and at ∞. Introduce the Euclidean division of the
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polynomial U
(h)
1 (x1) by M(x1):

U
(1)
1 (x1) = P

(1)
1 (x1)M(x1) + Q

(1)
1 (x1) (5.16)

where deg P
(1)
1 = s − 2 and deg Q

(1)
1 < d − s.

We may thus write:

√

σ(x1)W
(1)
1 (x1) − P

(1)
1 (x1) = Res

x→x1

dx

x − x1

(
√

σ(x)W
(1)
k (x) − P

(1)
1 (x))

=
2s
∑

i=1

Res
x→ai

dx

x1 − x
(
√

σ(x)W
(1)
k (x) − P

(1)
1 (x))

=
2s
∑

i=1

Res
x→ai

dx

x1 − x

W2(x, x) + Q
(1)
1 (x)

M(x)

=

2s
∑

i=1

Res
x→ai

dx

x1 − x

W2(x, x)

M(x)

(5.17)

It clearly gives:

G
(1)
1 (x1) =

2s
∑

i=1

Res
x→ai

G2(x, x)

y(x)dx
dSi(x1, x)

(5.18)

Diagrammatically we have:

=

One can check that this result is identical to the function W
(1)
1 (x) computed in [15].

Similarly we have:

x1
x1x2

x2
x1 x2

= + 22
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x1

x2

x3

x1

x3

x2
x1

x2
x2

x3
x3

x1

x1
x1

x1
x1

x2

x2

x2

x2

x2

x3

x3

x3

x3

x3

= 4 + +

++ 4 +

+ 4 + 4

4 4

44

and at genus 2 we have:

x1
x1

x1
x1

= + +2 2

and so on...

6 Example, One-cut case s=1, i.e. genus zero curve

We write:

σ(x) = (x − a)(x− b) (6.1)

It is convenient to map the genus zero hyperelliptical surface into the complex plane

with the rational map:

x(λ) =
a + b

2
+ γ(λ + λ−1) (6.2)

γ =
b− a

4
(6.3)
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The x-physical sheet is sent to the exterior of the unique disc in the λ-plane, and the

x-second sheet is sent to the interior of the unique disc in the λ-plane. We have:

√

σ(x(λ)) = γ(λ − λ−1) (6.4)

With this parameterization, all correlation functions are rational functions of the λ’s.

6.1 Recursion relations

All Pk’s are identically vanishing. We have the formula:

F2(x1, x2) = 2
√

σ(x2)
∂

∂x2

√
σ(x2)

(x1−x2)
= 2x1x2−(a+b)(x1+x2)+2ab

(x1−x2)2

Fk(x1, . . . , xk) = −1
2
Res

ai





k−2
∑

j=1

∑

I∈Kj

Fj+1(x, xI)Fk−j(x, xK−I)

(x − x1)M(x)σ(x)



 dx for k ≥ 3

(6.5)

and for k + h > 1, 5.9 gives:

F
(h)
k (x1, xK) = 2

∑2s
i=1 Res x→ai

∑h−1
m=0

F
(h−m)
1 (x)F

(m)
k (x,xK)

(x1−x)M(x)σ(x)
dx

+
∑2s

i=1 Res x→ai

∑h
m=0

∑k−2
j=1

∑

I∈Kj

F
(m)
j+1 (x,xI)F

(h−m)
k−j (x,xK−I)

(x1−x)M(x)σ(x)
dx

+
∑2s

i=1 Res x→ai

F
(h−1)
k+1 (x,x,xK)

(x1−x)M(x)σ(x)
dx

(6.6)

6.2 2 point function

The 2-point function can be written as:

W2(x1, x2) = − ∂

∂x1

∂

∂x2
ln (λ1 − λ−1

2 ) =
∂

∂x1

∂

∂x2
ln

(

λ1 − λ2

x1 − x2

)

(6.7)

where

x1 = γ(λ1 + λ−1
1 ) , x2 = γ(λ2 + λ−1

2 ) (6.8)

or:

W2(x1, x2) = − 1

4
√

σ(x1)
√

σ(x2)



1 −
(

√

σ(x1) −
√

σ(x2)

x1 − x2

)2




= − 1

2(x1 − x2)2
+

2x1x2 − (a + b)(x1 + x2) + 2ab

4(x1 − x2)2
√

σ(x1)
√

σ(x2)
(6.9)
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In particular we have:

F2(a, x) =
(a − b)

(x − a)
, F2(b, x) =

(b − a)

(x− b)
(6.10)

The polynomial A(x1, x2) introduced in 3.31 vanishes identically, and we have:

W2(x, x) =
(b − a)2

16σ(x)2
(6.11)

All this is well known, see for instance [1].

6.3 Other correlation functions

We just give some examples of applications of the general theory described above:

F3(x1, x2, x3) = −Res
a,b

(

F2(x, x2)F2(x, x3)

(x− x1)M(x)σ(x)

)

dx

= − F2(a, x2)F2(a, x3)

(a− x1)M(a)(a − b)

− F2(b, x2)F2(b, x3)

(b− x1)M(b)(b− a)

=
b − a

(a− x1)(a− x2)(a− x3)M(a)

− b − a

(b− x1)(b− x2)(b− x3)M(b)
(6.12)

i.e.

W3(x1, x2, x3) = (b − a)

1
(a−x1)(a−x2)(a−x3)M(a)

− 1
(b−x1)(b−x2)(b−x3)M(b)

8
√

σ(x1)
√

σ(x2)
√

σ(x3)
(6.13)

which is the usual of [1].

√

σ(x1)W (1)(x1) = Res
a,b

W2(x, x)
dx

2(x1 − x)M(x)

=
(b − a)2

32
Res
a,b

dx

(x1 − x)M(x)σ(x)2

=
(b − a)2

32
Res

a

dx

(x − a)2

1

(x1 − x)M(x)(x − b)2

+
(b − a)2

32
Res

b

dx

(x − b)2

1

(x1 − x)M(x)(x − a)2

=
(b − a)2

32

(

1

(x1 − x)M(x)(x − b)2

)′∣
∣

∣

∣

x=a
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+
(b − a)2

32

(

1

(x1 − x)M(x)(x − a)2

)′∣
∣

∣

∣

x=b

=
(b − a)2

32

(

1

M(a)

−2x1 − b + 3a

(a − b)3(x1 − a)2
− M ′(a)

M(a)2

1

(a − b)2(x1 − a)

)

+
(b − a)2

32

(

1

M(b)

−2x1 − a + 3b

(b − a)3(x1 − b)2
− M ′(b)

M(b)2

1

(b− a)2(x1 − b)

)

(6.14)

which again agrees with [3] and other results in the literature.

7 Conclusions and prospects

In this article, we have found a φ3 Feynmann graph formulation for computing all

correlations functions to all powers of N in the one-hermitian matrix model. First, it

would be interesting to find out to which field theory it corresponds. One is tempted

to compare with Liouville’s theory (which is not cubic) or to a fermionic theory.

We claim that this approach is more efficient for actual calculations, than the

method existing previously in the literature [2, 3]. Indeed, in [2, 3], one has to construct

the correlation functions recursively, by expanding them on basis functions which are

themselves constructed recursively by taking derivatives with respect to the potential.

For instance, one does not get any simplification in the method of [2, 3] by assuming

an even potential, or by assuming a quadratic potential. The method presented here,

works for fixed potential (for instance quadratic), and does not need to construct any

basis of functions.

Another important point for the method presented here, is that it is expressed

in terms of geometrical fundamental objects on the spectral curve. This is another

evidence of the deep link between tau functions and complex geometry.

There are other expressions in the literature involving Residues of geometrical ob-

jects (for instance [33, 29, 4, 5, 13, 15, 28, 26]), namely, only the Bergmann kernel and

not the abelian differential. However, we claim that it should be simpler to compute

the residue of a function with a simple pole (the abelian differential), than the residue

of a function with a double pole (Bergmann kernel).

Moreover, the whole procedure described here, can be applied with very small

adaptations to other matrix models, in particular the 2-matrix model, and to non-

hermitian matrix models (in particular β = 1, 2, 4 models), this work is in progress and

will be available shortly [20]. In the 2-matrix model with potentials of degree d1 + 1

and d2 + 1, the computation of correlation functions of the first matrix only involves

d2 vertices (i.e. cubic, quartic, ..., d2 + 2–legs–vertex), instead of only one cubic vertex

equal to 1/2y(x) for the 1-matrix model. This will be further explained in [20].
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The observable we have not computed in this article is the free energy:

G0 := − 1

N2
lnZ :=

∞
∑

h=0

N−2h G
(h)
0 (7.1)

The free energy does not appear in the loop equations. It satisfies:

∂G
(h)
0

∂V (x1)
= −W

(h)
1 (x1) (7.2)

therefore, in order to compute the free energy, one has to integrate with respect to the

potential, i.e. one can no longer keep the potential constant. One would reasonably

make the following conjecture for h ≥ 2:

G
(h)
0 →

∑

T∈T
(h)
0

W(T ) (7.3)

for example for h = 2

= +

unfortunately, these Feynmann graph don’t make sense (the abelian differential diverges

at coinciding points). The conjecture is that the G
(h)
0 are related to traces of powers

of the laplacian on the spectral curve. For instance it is known that G
(1)
0 is related to

the determinant of the laplacian [15].
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Appendix A Cardinal of T (h)
k

The cardinal of Tk and of T (h)
k can be computed by setting W = 1 in 4.40 and in 5.14,

and then using the recursion relations 4.35 and 5.9.

One thus gets for k ≥ 3:

N2 = 1 , Nk =
k−2
∑

j=1

(

k − 1
j

)

Nj+1 Nk−j (A.1)
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writing:

r0 := 0 , r1 := 1 , rk :=
Nk+1

k!
(A.2)

A.1 becomes for k ≥ 2:

rk =
k
∑

j=0

rj rk−j (A.3)

We introduce the generating function:

R(x) :=
∞
∑

k=0

rk xk (A.4)

and thus A.3 becomes:

R(x) − x = R2(x) (A.5)

whose solution is:

R(x) =
1 −

√
1 − 4x

2
= −1

2

∞
∑

k=1

(

1
2

k

)

(−4x)k (A.6)

which implies:

rk = −(−4)k

2

(

1
2

k

)

= (−1)k+1 22k−1
1
2

(

−1
2

)

. . .
(

3
2
− k
)

k!
= 2k−1 (2k − 3)!!

k!
=

2k − 2!

k!k − 1!
(A.7)

and thus, we obtain 4.37

Nk = 2k−2 (2k − 5)!! =
2k − 4!

k − 2!
(A.8)

For higher genus, we have for k ≥ 1 and h ≥ 1:

N
(0)
1 := 0 , N

(h)
k = N

(h−1)
k+1 +

k−1
∑

j=0

h
∑

m=0

(

k − 1
j

)

N
(m)
j+1 N

(h−m)
k−j (A.9)

writing:

r
(0)
0 := 0 , r

(h)
k :=

N
(h)
k+1

k!
(A.10)

A.9 becomes for k ≥ 0, h ≥ 1:

r
(h)
k = (k + 1)r

(h−1)
k+1 +

k
∑

j=0

h
∑

m=0

r
(m)
j r

(h−m)
k−j (A.11)

We introduce the generating function:

Rh(x) :=

∞
∑

k=0

r
(h)
k xk (A.12)
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and thus A.11 becomes for h ≥ 0:

R0(x) = R(x) , Rh(x) = R′
h−1(x) +

h
∑

m=0

Rm(x)Rh−m(x) (A.13)

which can also be written for h ≥ 1:

(1 − 2R(x))Rh(x) = R′
h−1(x) +

h−1
∑

m=1

Rm(x)Rh−m(x) (A.14)

using A.6, it is easy to see, by induction on h that for h ≥ 1 one has:

Rh(x) = sh (1 − 4x)−
3h−1

2 (A.15)

where the coefficients sh obey for h ≥ 1:

s1 = 1 , sh = 2(3h − 4)sh−1 +
h−1
∑

m=1

smsh−m (A.16)

or, if we define s0 := −1
2
, it can be written for any h ≥ 1:

0 = 2(3h − 4)sh−1 +
h
∑

m=0

smsh−m (A.17)

we introduce the generating function:

S(x) :=
∞
∑

h=0

sh xh (A.18)

it obeys:

0 = S2(x) − 1

4
+ 6x2S ′(x) − 2xS(x) (A.19)

If one writes

ξ =
x−2/3

4
(A.20)

and

S(x) = −x
1
3 h(ξ) (A.21)

one has:

ξ = h2(ξ) + h′(ξ) (A.22)

whose solution is;

h(ξ) =
Ai′(ξ)

Ai(ξ)
=

∫

t dt e−
t3

3
+tξ

∫

dt e−
t3

3
+tξ

=
√

ξ

∫

t dt eξ3/2(− t3

3
+t)

∫

dt eξ3/2(− t3

3
+t)

=
x−1/3

2

∫

t dt e
1
8x

(− t3

3
+t)

∫

dt e
1
8x

(− t3

3
+t)

(A.23)
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and thus:

S(x) = −1

2

∫

t dt e
1
8x

(− t3

3
+t)

∫

dt e
1
8x

(− t3

3
+t)

= −1

2

(

1 +

∫

t dt e
1
8x

(−t2− t3

3
)

∫

dt e
1
8x

(−t2− t3

3
)

)

(A.24)

or

S(x) = −1

2
−

√
x

∫

t dt e−
t2

2 e−
√

xt3

3

∫

dt e−
t2

2 e−
√

xt3

3

(A.25)

S(x) = −1

2
+

∑∞
h=0

xh+1

32h+1 (2h+1)!

∫

dt t2(3h+2) e−t2/2

∑∞
h=0

xh

32h (2h)!

∫

dt t2(3h) e−t2/2
(A.26)

S(x) = −1

2
+

∑∞
h=0

xh+1 (6h+3)!!
32h+1 (2h+1)!

1 +
∑∞

h=1
xh (6h−1)!!
32h (2h)!

= −1

2
+ x

∑∞
h=0

xh (6h+4)!
32h+1 23h+2 (2h+1)! (3h+2)!

∑∞
h=0

xh (6h)!
32h 23h (2h)! (3h)!

(A.27)

In the end we have:

N
(h)
k := Card T (h)

k = sh (k − 1)! 4k−1

(

3(h−1)
2

+ k − 1
k − 1

)

(A.28)

The whole function is thus:

R(x, z) :=
∑

k

∑

h

N
(h)
k xkzh =

∑

h

Rh(x)zh

= −z

∫

dt t e−
z2

3
t3 e

t
4
(1−4x)

∫

dt e−
z2

3
t3 e

t
4
(1−4x)

(A.29)
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