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We reply to the Comment by Aryanpour, Maier, and Jaijfelys. Rev. B71, 037101(2005] on our paper
[Phys. Rev. B65, 155112(2002]. We demonstrate, using general arguments and explicit examples, that
whenever the correlation length is finite, local observables converge exponentially fast in the clustgr size
within cellular dynamical mean field theory. This is a faster rate of convergence thanl.tflbehavior of the
dynamical cluster approximation, thus refuting the central assertion of their Comment.
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The development of cluster extensions of dynamical meawconverge much faster than a power lawlip Then, we
field theory is an active area of research. Cluster dynamicgbresent the numerical results for the Bl spin chain stud-
mean field theories construct approximations to the solutioiied in Ref. 1 that agree completely with our general argu-
of model Hamiltonians on the lattice in terms of the solutionments and we display explicitly an example of the exponen-
of a cluster impurity model. Different cluster schemes shouldial convergence in this model. Finally, we discuss another
be viewed as different truncations of the full guantum many-simple case, the semiclassical limit of the Falikov-Kimball
body problem. As the size of the cluster tends to infinite, allmodel in one dimension. Previous work establishit in
cluster schemes approach the exact solution of the latticthis limit quantum cluster approximations reduced to classi-
model. A relevant question is, for a given computationalcal cluster approximations. This allows us to compare DCA
power (which only allows the investigation of small cluster and CDMFT in detail using simple analytical considerations.
sizeg, which truncation is closer to the result in the thermo-In particular, we unveil, in an explicit example, that the DCA
dynamic limit. predictions for local observables converge ag?Zéven

Our previous publicatiohinvestigated and extended two when the same quantities obtained solving a finite system of
cluster schemes, the cellular dynamical mean field tHeorysizel . (with for example periodic boundary conditipoon-
(CDMFT) and the dynamical cluster approximafiqdCA),  verge exponentially fagin L.) to their thermodynamic limit
by applying them to an exact solvable model and concludedalue.
that CDMFT converges faster than DCA to the exact solution Let us start with some general considerations. If one was
of that model. In their CommertAryanpouret al.introduce  able to trace out exactly all the degrees of freedom outside
a generalization of the original DCA equations that take intothe cluster to get an exact effective action for the degrees of
account better the nonlocal interaction, and they argue thdteedom inside the cluster, then the translation invariance of
their method converges faster than CDMFT to the exact sothe effective action would be brokemlegrees of freedom
lution of the model as the size of the cluster increases. Thegear the boundary of the cluster are affected by the enviro-
also comment that our findings of rapid convergence of CM-ment more than the bulk degrees of freeddmt observables
DFT are surprising, in light of an earlier publicatoin  within the cluster would still be translationally invariant. So,
which they concluded that CDMFT converges to the infiniteon very general grounds we expect that the Weiss fietd
cluster size limit with corrections of ord€¥(1/L.), whereL,  hybridization functionA), which describes the effects of the
is the size of the cluster while DCA converges faster, withdegrees of freedom integrated out, is large near the boundary
corrections of orde©(1/L2). and small(in fact exponentially small if the correlation

In this Reply to their Comment we point out thiaical  length is finitg inside the cluster.
observablesn CDMFT generally converge exponentially at ~ CDMFT is an approximate way to realize this cavity con-
finite temperatures, as long as the relevant correlation lengttruction. It produces a Weiss field which is large at the
is finite (a situation that excludes a critical poinThis state- boundary and small in the bulk, but because of its approxi-
ment persists at zero temperature in systems which have amate character it produces nontranslation invariant observ-
energy gap. ables. However, whenever the correlation length is firgitg:

We demonstrate the exponential convergence of CDMFDulk quantities for a free system of sizewith, for example,
in three steps. First, we present general arguments in favor dfee boundary conditions converge exponentially fadt io
exponential convergence of local observables in CDMFTtheir thermodynamic limit an@2) the CDMFT approxima-
whenever the relevant correlation length is finite. This is ation should improve the convergence of bulk quantities,
direct consequence of the cavity construction underlying thevhich as a consequence should be at least as fast as the one
method. In the process we explain why the convergencef the system with free boundary conditions. Note that this is
criterion introduced in Ref. 5 and used to conclude thamot the case of DCA that still converges ad.1ivorse than
CDMFT converges as 1/ is not an appropriate measure of the results for a finite system with, for example, free bound-
convergence of local observables in CDMFT, which insteadary conditions which would converge exponentially fast in
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alization of DCA which takes into account better the nonlo-
B cal interactions. Our procedure is therefore not an incorrect
application of DCA, as claimed by Aryanpoet al., but only
a different generalization of DCA to the case of nonlocal
interaction. The results of the two different generalizations
are discussed in Refs. 1 and 4, and in the following we shall
— focus on the generalization of Aryanpoet al., which has
| been shown to converge to the thermodynamic limit with an
error of the order of 112 whereL is the size of the cluster.
N This rate of convergence is a general property of DG,
1 least far from critical points.
. In the following we will useJ as the unit of temperature
! ‘ ! , and therefore we pul=1 and we rescale the hopping term
X 0 0 t—1t/J. The thermodynamics of this model can be solved
exactly since in the largeN Ilimit the quantity y
FIG. 1. Ax=(xx—x)/x as a function ofx, for g, the inverse :l/NE(,fIU(t)fHLU(t) does not fluctuate. Indedd) reduces
temperature, equal to £,=38, andt=n=1. The continuous lineis  to a free-fermions Hamiltonian with a “renormalized” hop-

the relative error of the DCA prediction op The dotted line is a  ping termt—t+y and a self-consistent condition on
guide for the eye.
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L.. We will discuss an explicit example of this behavior be- X L% (BB K (t+x) w2

low.

Because CDMFT breaks the translation invariance insiddvherex is the chemical potentiaf(8E,) is the Fermi func-
the cluster it is important to extract properly the value oftion, andg is the inverse temperatute.
local observables. These are well represented in the center of DCA and CDMFT result in self-consistent equations for
the cluster(see Fig. 1, and will have more deviations near Xx=1/NS,<f] f,,; >14Because of the translation invari-
the boundary. The role of the cavity field is to try to reduceance of DCA they,“" are independent ofinside the cluster.
these deviations, but in approximate treatments there wilPnce self-consistency is achieved one can use the cluster
always be errors of order 1 near the boundary. Aryangur guantity to obtain the DCA lattice predictiogi;" as ex-
al.* concluded the 11/, convergence by estimating the value plained in Ref. 4. This quantity converges to the exaeatith
of a local observable of interest by doing a flat averégfe  corrections of O(1/L2).45 Contrary to DCA, the self-
the value of the local observablever the cluster. Since the consistent COMFT equations break the translation invariance
error is of the order 1 on the boundary, one obtains an errdnside the cluster.
that dies out as the ratio surface over volume of the cluster, In Fig. 1 we plot the relative error of the CDMFT predic-
i.e., 1/L.. Onthe other hand, if we extract this value from thetion on y, xx—x. as a function ok, wherey, is the COMFT
center of the cluster, which is the natural prescription dic-solution for 8, the inverse temperature, equal tot#u=1,
tated by the approximate CDMFT cavity construction, weandL.=38. For comparison we also we also plodntinuous

obtain exponential convergence as we show below. line) the relative error of the DCA prediction op obtained
We now turn to the simple one-dimensional Bl chain by solving the the DCA self-consistent equations presented
studied in Ref. 1 whose Hamiltonian is in Ref. 4.
Figure 1 clearly shows the behavior discussed previously,
H==t2 (f fioro+ flofio) namely translation invariance inside the cluster is broken:
o ' Y errors are smaller in the bulk while they remain of the order

3 1 at the boundary. Aryanpout al# concluded, by carrying
*oN D (il st o ofir e o fio), out a flat averagi,x/ (L.~ 1) over the cluster, that the error
ioo' within CDMFT is expected to be of the order L1/ (more
(1) generically is surface over volume, hencel 1 &lso in di-
mension larger than)1As discussed above, it is better to
where f are fermion operators=1,... L ando=1,... N, extract the CDMFT estimators weighting bulk values more
and we take the large andN limits. This model is a gener- than boundary values. The easiest thing to do is to just take
alization introduced by Affleck and Marstbnof the the value ofy, at the center of the cluster. In Fig. 2 we
Hubbard-Heisenberg model where the (8Uspins are re- compare the error obtained doing the flat avereggiare,
placed by SWUN) spins, the on-site repulsion is scaled asdotted ling to the one obtained focusing on the bulk values
1/N, and the largeN limit is taken. (circle, solid ling. This figure conveys two important pieces
One can apply CDMFT and DCA to this model. Note, Of information: First, theAxyu=|xL 2~ x| is much smaller
however, that because the interaction is nonlocal, there ait®an the flat average onkys,=|Zxy/(L.—1) - x| for large
different possible extensions of usual cluster methods to thigalues ofL.. Second, as shown in the inset, the etha,,
case. We extended DCA in a way based on the real-spagaultiplied by Lg is still decreasing fast as a function bf,
perspectivé, Aryanpouret al. introduced a different gener- i.e., Ay, decreases much faster tharLi/Instead, the er-
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002 ' ' corresponds to solving a finite system of slzewith peri-

odic boundary conditions and a coupling
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where J is the original spin-spin coupling. So, DCA and
CDMFT differ in the different boundary conditions balso

_ in the fact that for DCA the internal spin-spin coupling is
modified from its original value whereas for CDMFT is not.
This leads to very different convergence properties. Let us
focus for example on the prediction for the spin-spin corre-
40 lation C=(SS.,). The CDMFT and DCA results read

0.005 —

Ccpwmrr=tanhpd,

FIG. 2. Axpuk (Circles, solid ling andA x¢, (squares, dotted line
as a function oL. Inset: AypL2 (circles, solid ling and Ay¢,L2 _ tanhBJpcat (tanhB Jpca) <
(squares, dotted lineas a function ol.. DCA™ 1+ (tanhBIpca) e

ror corresponding to the flat average leads to a straight liné this case the CDMFT prediction is exact because tracing
corresponding to the 1f behavior discussed above and in Out the spins outside the cluster indeed leads to a zero mag-
Ref. 4. Note that in this plot the DCA prediction would lead netic field on the boundary but this is of course a peculiarity
to a function approaching a constant when- . Finally, in of this simple case. Instead, there are two types of correc-
Fig. 3 we plotA .« in a logarithmic scale as a function of tions to DCA[note thatdpca=J+O(1/L:2)]. There are cor-

L.. The exponential convergence is manif@se straight line ~ rections which die out exponentially fast agtanhpgJ)‘.

is a guide for the eyeand in complete agreement with our These are the same types of corrections that one obtains us-
general discussion above. For comparison we also plot thig periodic boundary conditions or other types of boundary
DCA counterpart. It is clear that the convergence of DCA isconditions for a free system. However, there is a much larger
much slower than the CDMFT or@ndeed it goebas 112  correction coming from the first term in the numerator of
compared to the exponential convergence of CDMAh-  Cpca Which leads to

other simple example that sheds light on the convergence BRI
properties of CDMFT and DCA is the Falikov-Kimball Cpca=tanhpd - 5 2+O(Lg4).
model in the largeJ limit. In this limit the system becomes 3(coshBI)*(2L,)

a classical Ising model and the quantum cluster schemes mag, ;s applying DCA to this problem one obtains a conver-
on classical cluster scheméf the following we will focus gence as 1,_[51 which is much worse than the exponential

on the easy one-dimensional case in the paramagnetic phagge corresponding to solving the free model with periodic
In this case, since the Weiss field is zero, doing COMFT oy ndary conditions. The origin of this behavior can be

a cluster of sizd. corresponds only to solving a finite Sys- yaced to the fact that as DCA forces translation invariance
tem of sizeL. with free boundary conditions. Instead DCA jside the cluster the couplings are changed everywhere in
| . . , : the system by an amount of the orderL{/So, even if the
correlation length is finite this error dominates the conver-
gence.
@ 3 While we stress the obvious advantages of CDMFT, it is
q also worthwhile to point out the aspects of the CDMFT
method (and cluster methods in generahat still require
development. The lack of translation invariance of CDMFT,
which in the toy model manifests itself in the site depen-
dence of the bond expectation valyg is certainly one of
them. For example, CDMFT predicts a finite temperature
3 phase transition for the one dimensional Falikov-Kimball
. model in the semiclassical limit! This is due to the fact that
the value of the Weiss field on the boundary is strongly
0 ‘ 10 : 20 : 30 ' 20 coupled to the value of the propagator on the other boundary
L and, unfortunately, as discussed previously, the error is much
larger at the boundary than in the bulk. This may not be a
FIG. 3. Axpuk as a function of_ in a logarithmic scalécircley ~ serious problem for phases with broken symmetry, but cer-
compared to its DCA counterpaigquares tainly is in translationally invariant phases. One possible so-
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lution of this problem would be to modify the self-consistentlength is finite, and not as 1/ as claimed by Aryanpoust
equations that express the Weiss field as a function of thel.* (note that it has been proved recently that the correlation
propagator so as to use more heavily bulk values of th¢unction of any two fermionic operators decays exponen-
propagator, which have a reduced error relative to the boundially with a correlation length which is in the worst case of
ary. Clearly, further investigations are needed to optimizehe order of the inverse temperatdyay exploiting the free-
CDMFT in light of this point. A related issue, stressed in dom in the choice of basis, which is inherent to the original
Refs. 1 and 2, is that the lattice self-energy in CDMFT is acMDFT formulation, one can improve convergence of ob-
derived quantity, obtained from the cluster self-energy entersenaples which become local when the approximation is
ing the CDMFT equations. The lattice self-energy is obtainedormylated in a different basis set. The problem of conver-
using a matrixw, via the formula(10) in Ref. 1. If w is ence as a function of cluster size at zero temperature or at a
positive definite, then the lattice self-energy is causal, buguantum critical point, or for quantities that are dominated
one can sometimes obtain better estimates by using othgf, massless excitations, remains an open question. However,

matrices. For the toy model, the matnx is not restricted  nese problems could be better addressed by techniques other
since the self-energy is real. The positive definitiveness of 4 quantum cluster methods.

is a sufficient, but not necessary condition to maintain cau- Finally, most studies can only be done for small clusters
sality. A general constructive way to find the best estimatoryn jt is important to understand whether the results obtained
of the lattice self-energypreserving causalijyfor an arbi- iy small clusters are representative of the thermodynamical
trary model Hamiltonian is lacking. However, an important |t Recent CDMFT studies of the Hubbard model, in one
crltgrlon to follow is trying to extract the prediction on the dimension, show that while even-odd effects are important,
lattice self-energy from the bulk values of the cluster self-g\en clusters of small size can give very accurate résadts
energy in order to minimize the error as discussed previgompared with exact Bethe ansatz results in the thermody-

ously. _ _ namical limit.
None of these issues, however, affect the basic fact that
expectation values of physical observables whichlacal We thank O. Parcollet for interesting discussions. G.B.
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