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We reply to the Comment by Aryanpour, Maier, and Jarrell[Phys. Rev. B71, 037101(2005)] on our paper
[Phys. Rev. B65, 155112(2002)]. We demonstrate, using general arguments and explicit examples, that
whenever the correlation length is finite, local observables converge exponentially fast in the cluster sizeLc

within cellular dynamical mean field theory. This is a faster rate of convergence than the 1/Lc
2 behavior of the

dynamical cluster approximation, thus refuting the central assertion of their Comment.
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The development of cluster extensions of dynamical mean
field theory is an active area of research. Cluster dynamical
mean field theories construct approximations to the solution
of model Hamiltonians on the lattice in terms of the solution
of a cluster impurity model. Different cluster schemes should
be viewed as different truncations of the full quantum many-
body problem. As the size of the cluster tends to infinite, all
cluster schemes approach the exact solution of the lattice
model. A relevant question is, for a given computational
power (which only allows the investigation of small cluster
sizes), which truncation is closer to the result in the thermo-
dynamic limit.

Our previous publication1 investigated and extended two
cluster schemes, the cellular dynamical mean field theory2

(CDMFT) and the dynamical cluster approximation3 (DCA),
by applying them to an exact solvable model and concluded
that CDMFT converges faster than DCA to the exact solution
of that model. In their Comment,4 Aryanpouret al. introduce
a generalization of the original DCA equations that take into
account better the nonlocal interaction, and they argue that
their method converges faster than CDMFT to the exact so-
lution of the model as the size of the cluster increases. They
also comment that our findings of rapid convergence of CM-
DFT are surprising, in light of an earlier publication5 in
which they concluded that CDMFT converges to the infinite
cluster size limit with corrections of orderOs1/Lcd, whereLc

is the size of the cluster while DCA converges faster, with
corrections of orderOs1/Lc

2d.
In this Reply to their Comment we point out thatlocal

observablesin CDMFT generally converge exponentially at
finite temperatures, as long as the relevant correlation length
is finite (a situation that excludes a critical point). This state-
ment persists at zero temperature in systems which have an
energy gap.

We demonstrate the exponential convergence of CDMFT
in three steps. First, we present general arguments in favor of
exponential convergence of local observables in CDMFT
whenever the relevant correlation length is finite. This is a
direct consequence of the cavity construction underlying the
method. In the process we explain why the convergence
criterion introduced in Ref. 5 and used to conclude that
CDMFT converges as 1/Lc is not an appropriate measure of
convergence of local observables in CDMFT, which instead

converge much faster than a power law inLc. Then, we
present the numerical results for the SUsNd spin chain stud-
ied in Ref. 1 that agree completely with our general argu-
ments and we display explicitly an example of the exponen-
tial convergence in this model. Finally, we discuss another
simple case, the semiclassical limit of the Falikov-Kimball
model in one dimension. Previous work established7 that in
this limit quantum cluster approximations reduced to classi-
cal cluster approximations. This allows us to compare DCA
and CDMFT in detail using simple analytical considerations.
In particular, we unveil, in an explicit example, that the DCA
predictions for local observables converge as 1/Lc

2 even
when the same quantities obtained solving a finite system of
sizeLc (with for example periodic boundary condition) con-
verge exponentially fast(in Lc) to their thermodynamic limit
value.

Let us start with some general considerations. If one was
able to trace out exactly all the degrees of freedom outside
the cluster to get an exact effective action for the degrees of
freedom inside the cluster, then the translation invariance of
the effective action would be broken(degrees of freedom
near the boundary of the cluster are affected by the enviro-
ment more than the bulk degrees of freedom) but observables
within the cluster would still be translationally invariant. So,
on very general grounds we expect that the Weiss field(or
hybridization functionD), which describes the effects of the
degrees of freedom integrated out, is large near the boundary
and small (in fact exponentially small if the correlation
length is finite) inside the cluster.

CDMFT is an approximate way to realize this cavity con-
struction. It produces a Weiss field which is large at the
boundary and small in the bulk, but because of its approxi-
mate character it produces nontranslation invariant observ-
ables. However, whenever the correlation length is finite:(1)
bulk quantities for a free system of sizeL with, for example,
free boundary conditions converge exponentially fast inL to
their thermodynamic limit and(2) the CDMFT approxima-
tion should improve the convergence of bulk quantities,
which as a consequence should be at least as fast as the one
of the system with free boundary conditions. Note that this is
not the case of DCA that still converges as 1/Lc

2 worse than
the results for a finite system with, for example, free bound-
ary conditions which would converge exponentially fast in
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Lc. We will discuss an explicit example of this behavior be-
low.

Because CDMFT breaks the translation invariance inside
the cluster it is important to extract properly the value of
local observables. These are well represented in the center of
the cluster(see Fig. 1), and will have more deviations near
the boundary. The role of the cavity field is to try to reduce
these deviations, but in approximate treatments there will
always be errors of order 1 near the boundary. Aryanpouret
al.4 concluded the 1/Lc convergence by estimating the value
of a local observable of interest by doing a flat average(of
the value of the local observable) over the cluster. Since the
error is of the order 1 on the boundary, one obtains an error
that dies out as the ratio surface over volume of the cluster,
i.e., 1 /Lc. On the other hand, if we extract this value from the
center of the cluster, which is the natural prescription dic-
tated by the approximate CDMFT cavity construction, we
obtain exponential convergence as we show below.

We now turn to the simple one-dimensional SUsNd chain
studied in Ref. 1 whose Hamiltonian is

H = − to
i,s

sf i,s
† f i+1,s + f i+1,s

† f i,sd

+
J

2N
o

i,s,s8

sf i,s
† f i,s8f i+1,s8

† f i+1,s + f i+1,s
† f i+1,s8f i,s8

† f i,sd,

s1d

where f are fermion operators,i =1, . . . ,L and s=1, . . . ,N,
and we take the largeL andN limits. This model is a gener-
alization introduced by Affleck and Marston6 of the
Hubbard-Heisenberg model where the SU(2) spins are re-
placed by SUsNd spins, the on-site repulsion is scaled as
1/N, and the largeN limit is taken.

One can apply CDMFT and DCA to this model. Note,
however, that because the interaction is nonlocal, there are
different possible extensions of usual cluster methods to this
case. We extended DCA in a way based on the real-space
perspective,1 Aryanpouret al. introduced a different gener-

alization of DCA which takes into account better the nonlo-
cal interactions. Our procedure is therefore not an incorrect
application of DCA, as claimed by Aryanpouret al., but only
a different generalization of DCA to the case of nonlocal
interaction. The results of the two different generalizations
are discussed in Refs. 1 and 4, and in the following we shall
focus on the generalization of Aryanpouret al., which has
been shown to converge to the thermodynamic limit with an
error of the order of 1/Lc

2 whereLc is the size of the cluster.
This rate of convergence is a general property of DCA,5 at
least far from critical points.

In the following we will useJ as the unit of temperature
and therefore we putJ=1 and we rescale the hopping term
t→ t /J. The thermodynamics of this model can be solved
exactly since in the largeN limit the quantity x
=1/Nosf i,s

† stdf i+1,sstd does not fluctuate. Indeed(1) reduces
to a free-fermions Hamiltonian with a “renormalized” hop-
ping termt→ t+x and a self-consistent condition onx,

x =
1

L
o
k

fsbEkdcosk, Ek = − 2st + xdcosk + m, s2d

wherem is the chemical potential,fsbEkd is the Fermi func-
tion, andb is the inverse temperature.1

DCA and CDMFT result in self-consistent equations for
xx=1/Nos, fx,s

† fx+1,s..1,4 Because of the translation invari-
ance of DCA thexx

DCA are independent ofx inside the cluster.
Once self-consistency is achieved one can use the cluster
quantity to obtain the DCA lattice predictionxlatt

DCA as ex-
plained in Ref. 4. This quantity converges to the exactx with
corrections of Os1/Lc

2d.4,5 Contrary to DCA, the self-
consistent CDMFT equations break the translation invariance
inside the cluster.

In Fig. 1 we plot the relative error of the CDMFT predic-
tion onx, xx−x, as a function ofx, wherexx is the CDMFT
solution for b, the inverse temperature, equal to 4,t=m=1,
andLc=38. For comparison we also we also plot(continuous
line) the relative error of the DCA prediction onx obtained
by solving the the DCA self-consistent equations presented
in Ref. 4.

Figure 1 clearly shows the behavior discussed previously,
namely translation invariance inside the cluster is broken:
errors are smaller in the bulk while they remain of the order
1 at the boundary. Aryanpouret al.4 concluded, by carrying
out a flat averageoxxx/ sLc−1d over the cluster, that the error
within CDMFT is expected to be of the order 1/Lc (more
generically is surface over volume, hence, 1/Lc also in di-
mension larger than 1). As discussed above, it is better to
extract the CDMFT estimators weighting bulk values more
than boundary values. The easiest thing to do is to just take
the value ofxx at the center of the cluster. In Fig. 2 we
compare the error obtained doing the flat average(square,
dotted line) to the one obtained focusing on the bulk values
(circle, solid line). This figure conveys two important pieces
of information: First, theDxbulk= uxLc/2

−xu is much smaller
than the flat average oneDx fa= uSxxx/ sLc−1d−xu for large
values ofLc. Second, as shown in the inset, the errorDxbulk
multiplied by Lc

2 is still decreasing fast as a function ofLc,
i.e., Dxbulk decreases much faster than 1/Lc

2. Instead, the er-

FIG. 1. Dx=sxx−xd /x as a function ofx, for b, the inverse
temperature, equal to 4,Lc=38, andt=m=1. The continuous line is
the relative error of the DCA prediction onx. The dotted line is a
guide for the eye.
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ror corresponding to the flat average leads to a straight line
corresponding to the 1/Lc behavior discussed above and in
Ref. 4. Note that in this plot the DCA prediction would lead
to a function approaching a constant whenLc→`. Finally, in
Fig. 3 we plotDxbulk in a logarithmic scale as a function of
Lc. The exponential convergence is manifest(the straight line
is a guide for the eye) and in complete agreement with our
general discussion above. For comparison we also plot the
DCA counterpart. It is clear that the convergence of DCA is
much slower than the CDMFT one(indeed it goes4 as 1/Lc

2

compared to the exponential convergence of CDMFT). An-
other simple example that sheds light on the convergence
properties of CDMFT and DCA is the Falikov-Kimball
model in the largeU limit. In this limit the system becomes
a classical Ising model and the quantum cluster schemes map
on classical cluster schemes.7 In the following we will focus
on the easy one-dimensional case in the paramagnetic phase.
In this case, since the Weiss field is zero, doing CDMFT on
a cluster of sizeLc corresponds only to solving a finite sys-
tem of sizeLc with free boundary conditions. Instead DCA

corresponds to solving a finite system of sizeLc with peri-
odic boundary conditions and a coupling7

JDCA = J1 sin
p

2Lc

p

2Lc

2
2

,

where J is the original spin-spin coupling. So, DCA and
CDMFT differ in the different boundary conditions butalso
in the fact that for DCA the internal spin-spin coupling is
modified from its original value whereas for CDMFT is not.
This leads to very different convergence properties. Let us
focus for example on the prediction for the spin-spin corre-
lation C=kSiSi+1l. The CDMFT and DCA results read

CCDMFT = tanhbJ,

CDCA =
tanhbJDCA + stanhb JDCAdLc−1

1 + stanhbJDCAdLc
.

In this case the CDMFT prediction is exact because tracing
out the spins outside the cluster indeed leads to a zero mag-
netic field on the boundary but this is of course a peculiarity
of this simple case. Instead, there are two types of correc-
tions to DCA [note thatJDCA=J+Os1/Lc2d]. There are cor-
rections which die out exponentially fast as~stanhbJdLc.
These are the same types of corrections that one obtains us-
ing periodic boundary conditions or other types of boundary
conditions for a free system. However, there is a much larger
correction coming from the first term in the numerator of
CDCA which leads to

CDCA = tanhbJ −
bJp2

3scoshbJd2s2Lcd2 + OsLc
−4d.

Thus applying DCA to this problem one obtains a conver-
gence as 1/Lc

2, which is much worse than the exponential
one corresponding to solving the free model with periodic
boundary conditions. The origin of this behavior can be
traced to the fact that as DCA forces translation invariance
inside the cluster the couplings are changed everywhere in
the system by an amount of the order 1/Lc

2. So, even if the
correlation length is finite this error dominates the conver-
gence.

While we stress the obvious advantages of CDMFT, it is
also worthwhile to point out the aspects of the CDMFT
method (and cluster methods in general) that still require
development. The lack of translation invariance of CDMFT,
which in the toy model manifests itself in the site depen-
dence of the bond expectation valuexx, is certainly one of
them. For example, CDMFT predicts a finite temperature
phase transition for the one dimensional Falikov-Kimball
model in the semiclassical limit.5,7 This is due to the fact that
the value of the Weiss field on the boundary is strongly
coupled to the value of the propagator on the other boundary
and, unfortunately, as discussed previously, the error is much
larger at the boundary than in the bulk. This may not be a
serious problem for phases with broken symmetry, but cer-
tainly is in translationally invariant phases. One possible so-

FIG. 2. Dxbulk (circles, solid line) andDx fa (squares, dotted line)
as a function ofLc. Inset:DxbulkLc

2 (circles, solid line) andDx faLc
2

(squares, dotted line) as a function ofLc.

FIG. 3. Dxbulk as a function ofLc in a logarithmic scale(circles)
compared to its DCA counterpart(squares).
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lution of this problem would be to modify the self-consistent
equations that express the Weiss field as a function of the
propagator so as to use more heavily bulk values of the
propagator, which have a reduced error relative to the bound-
ary. Clearly, further investigations are needed to optimize
CDMFT in light of this point. A related issue, stressed in
Refs. 1 and 2, is that the lattice self-energy in CDMFT is a
derived quantity, obtained from the cluster self-energy enter-
ing the CDMFT equations. The lattice self-energy is obtained
using a matrixw, via the formula(10) in Ref. 1. If w is
positive definite, then the lattice self-energy is causal, but
one can sometimes obtain better estimates by using other
matrices. For the toy model, the matrixw is not restricted
since the self-energy is real. The positive definitiveness ofw
is a sufficient, but not necessary condition to maintain cau-
sality. A general constructive way to find the best estimator
of the lattice self-energy(preserving causality) for an arbi-
trary model Hamiltonian is lacking. However, an important
criterion to follow is trying to extract the prediction on the
lattice self-energy from the bulk values of the cluster self-
energy in order to minimize the error as discussed previ-
ously.

None of these issues, however, affect the basic fact that
expectation values of physical observables which arelocal
(namely defined on a restricted neighborhood in physical
space) converge as 1/Lc

2 for DCA as shown in Ref. 4, while
for CMDFT they converge exponentially in situations like
the one outlined for the toy model, when the correlation

length is finite, and not as 1/Lc as claimed by Aryanpouret
al.4 (note that it has been proved recently that the correlation
function of any two fermionic operators decays exponen-
tially with a correlation length which is in the worst case of
the order of the inverse temperature.8) By exploiting the free-
dom in the choice of basis, which is inherent to the original
CMDFT formulation, one can improve convergence of ob-
servables which become local when the approximation is
formulated in a different basis set. The problem of conver-
gence as a function of cluster size at zero temperature or at a
quantum critical point, or for quantities that are dominated
by massless excitations, remains an open question. However,
these problems could be better addressed by techniques other
than quantum cluster methods.

Finally, most studies can only be done for small clusters,
and it is important to understand whether the results obtained
in small clusters are representative of the thermodynamical
limit. Recent CDMFT studies of the Hubbard model, in one
dimension, show that while even-odd effects are important,
even clusters of small size can give very accurate results9 as
compared with exact Bethe ansatz results in the thermody-
namical limit.
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