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Abstract

The differential systems satisfied by orthogonal polynomials with arbitrary semiclassical measures sup-
ported on contours in the complex plane are derived, as well as the compatible systems of deformation
equations obtained from varying such measures. These are shown to preserve the generalized monodromy
of the associated rank-2 rational covariant derivative operators. The corresponding matrix models, con-
sisting of unitarily diagonalizable matrices with spectra supported on these contours are analyzed, and it
is shown that all coefficients of the associated spectral curves are given by logarithmic derivatives of the
partition function or, more generally, the gap probablities. The associated isomonodromic tau functions
are shown to coincide, within an explicitly computed factor, with these partition functions.
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1 Introduction

The partition function for Hermitian random matrix models with measures that are exponentials of a
polynomial potential was shown in [4] to be equal, within a multiplicative factor independent of the
deformation parameters, to the Jimbo-Miwa–Ueno isomonodromic tau function [11] for the rank 2 linear
differential system satisfied by the corresponding set of orthogonal polynomials. The results of [4] were
in fact more general, in that polynomials orthogonal with respect to complex measures supported along
certain contours in the complex plane were considered. These may be viewed as corresponding to unitarily
diagonalizable matrix models in which the spectrum is constrained to lie on these contours.

The purpose of the present work is to extend these considerations to the more general setting of com-
plex measures whose logarithmic derivatives are arbitrary rational functions, the associated semiclassical
orthogonal polynomials and generalized matrix models. By also including contours with endpoints, the
latter viewed as further deformation parameters, the gap probability densities are included as special
cases of partition functions.

To place the results in context, we first briefly recall the main points of [4], restricting to the more
standard case of Hermitian matrices and real measures. Consider orthogonal polynomials πn(x) ∈
L2(R, e−~

−1V (x)dx) supported on the real line, with the measure defined by exponentiating a real poly-
nomial potential

V (x) =

d∑

J=1

tJ
J
xJ . (1-1)

(Here we assume V (x) is of even degree and with positive leading coefficient, although these restrictions
are unnecessary in the more general setting of [4].) The small parameter ~ is usually taken as O(N−1)
when considering the limit N → ∞.

Any two consecutive polynomials satisfy a first order system of ODE’s

~
d

dx

(
πn−1(x)
πn(x)

)
= Dn(x)

(
πn−1(x)
πn(x)

)
, (1-2)

where Dn(x) is a 2 × 2 matrix with polynomial coefficients of degree at most d − 1 = deg(V ′(x)).
The infinitesimal deformations corresponding to changes in the coefficients {tJ} result in a sequence of
Frobenius compatible, overdetermined systems of PDE’s

~
∂

∂tJ

(
πn−1(x)
πn(x)

)
= Tn,J (x)

(
πn−1(x)
πn(x)

)
J = 1, . . . , d, (1-3)
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where the matrices Tn,J (x) are polynomials in x of degree J which satisfy the compatibility conditions

[
~
∂

∂tJ
− Tn,J (x), ~

d

dx
− Dn(x)

]
= 0 . (1-4)

It follows that the generalized monodromy data of the sequence of rational covariant derivative operators
~

d
dx

−Dn(x) are invariant under these deformations, and independent of the integer n.
This is a particular case of the general problem of rational isomonodromic deformation systems [11].

An important rôle is played in this theory by the isomonodromic tau function τ IM
n associated with any

solution of an isomonodromic deformation system. This function on the space of deformation parameters
is obtained by integrating a closed differential whose coefficients are given by residues involving the
fundamental solutions of the system. The main results of [4] were the following. First, the coefficients of
the associated spectral curve, given by the characteristic equation of the matrix Dn(x), can be obtained
by applying certain first order differential operators with respect to the deformation parameters (Virasoro
generators) to ln(Zn(V )), where the partition function Zn(V ) of the associated n× n matrix model is

Zn(V ) :=

∫

Hn

dM exp

(
−1

~
TrV (M )

)
. (1-5)

Second, this partition function is equal to the isomonodromic tau function up to a multiplicative factor
that does not depend on the deformation parameters

τ IM
n = Zn(V )Fn. (1-6)

The present work generalizes these results to the case of measures whose logarithmic derivatives are
arbitrary rational functions, including those supported on curve segments in which the endpoints may
play the rôle of further deformation parameters. The latter are of importance in the calculation of
gap probabilities in matrix models [17] since these may, in this way, using measures supported on such
segments be put on the same footing as partition functions [6]. A Frobenius compatible system of first
order differential and deformation equations satisfied by the corresponding orthogonal polynomials is
derived (Propositions 3.2, 3.4) and the coefficients of the associated spectral curve are again shown to
be obtained by applying suitable Virasoro generators to ln(ZN (V )) (Theorems 4.1–4.2). A formula that
generalizes (1-6) is also derived (Theorem 5.1 ):

τ IM
n = Zn(V )Fn(V ) , (1-7)

where the factor Fn(V ) is an explicitly computed function of the deformation parameters determining
V , which can in fact be eliminated by a making a suitable scalar gauge transformation.

The results of Theorems 4.1, 4.2 give a precise meaning, for finite n, to formulæ that are usually
derived in the asymptotic limit n→ ∞ (~n ∼ O(1)) through saddle point computations, relating the free
energy to the asymptotic spectral curve. It is well known [9] that the free energy in the large n limit is
given by solving a minimization problem (in the Hermitian matrix model)

F0 := − lim
n→∞

~
2 lnZn = min

ρ(x)≥0

[∫
V (x)ρ(x)dx−

∫ ∫
ρ(x)ρ(x′) ln |x− x′|

]
, (1-8)

giving the equilibrium density ρeq for the eigenvalue distribution. If, for instance, the potential is a real
polynomial bounded from below, it is known [8] that the support of the equilibrium density is a union of
finite segments I ⊂ R. The density ρeq is obtained from the variational equation

2P
∫
ρeq(x)dx

x− x′
= V ′(x) (1-9)
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(within I), and is related to the resolvent by

ω(z) := ~ lim
n→∞

〈
Tr

1

M − z

〉
=

∫

I

dx
ρeq(x)

x− z
, z ∈ C \ I . (1-10)

In terms of this, the spectral density may be recovered as the jump-discontinuity of ω(z) across I, and
all its moments are given by

∂tJ
F0 =

1

J
lim

n→∞
~
〈
TrMJ

〉
=

∫

I

dx
xJ

J
ρeq(x) = − res

z=∞

zJ

J
ω(z)dz . (1-11)

The function y = −ω(x) satisfies an algebraic relation given by

y2 = yV ′(x) +R(x) , (1-12)

where R(x) is a polynomial of degree less than V ′(x) that is uniquely determined by the consistency of
(1-9) and (1-12).

The point to be stressed here is that this asymptotic spectral curve should be compared with the
spectral curve of Theorem 4.1, given by the characteristic equation (4-29), which also contains all the
relevant information about the finite n case. In the n → ∞ limit, logarithmic derivatives of the partition
function are expressed in (1-11) as residues of the meromorphic differentials zkydz on the curve. The
same formulae are shown in Theorem 4.2 to hold as exact relations for the finite n case if we replace
the “asymptotic” spectral curve by the spectral curve given by the characteristic equation of the matrix
Dn(x).

The paper is organized as follows. In section 2 the problem is defined in terms of polynomials or-
thogonal with respect to an arbitrary semiclassical measure supported on complex contours, and the
corresponding generalized matrix model partition functions. In section 2.2 the recursion relations, differ-
ential systems and deformation equations which these satisfy are expressed in terms of the semi-infinite
“wave vector” formed from the orthogonal polynomials. In section 3 the notion of “folding” is introduced
and used (Propositions 3.2–3.4) to express the preceding equations as an infinite sequence of compatible
overdetermined 2 × 2 systems of linear differential equations and recursion relations satisfied by pairs of
consecutive orthogonal polynomials. In section 4 the results of folding are used to express the spectral
curve in terms of logarithmic derivatives of the partition function and it is shown that the n → ∞ relation
between the free energy and the spectral curve is also valid as an exact result for finite n. In section 5
the definition of the isomonodromic tau function [11] is recalled and it is computed by relating it to the
spectral invariants of the rational matrix generalizing Dn(x) in (1-2). These invariants are shown to give
the logarithmic derivatives of the tau functions in terms of residues of meromorphic differentials on the
spectral curves through formaulae that are nearly identical to those for the partition function, This leads
to the main result, Theorem 5.1, which gives the explicit relation between Zn and τ IM

n .

2 Generalized orthogonal polynomials and partition functions

2.1 Orthogonality measures and integration contours

Given a measure on the real line, the associated orthogonal polynomials are those that diagonalize
the quadratic form associated to the corresponding (complex) moment functional; i.e., the linear form
obtained by integration with respect to the measure.

L : C[x] → C .
p(x) 7→ L(p(x)) =

∫
R
p(x)dµ(x) .

(2-1)
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A natural generalization consists of including moment functionals that are expressed by integration along
more general contours in the complex x plan, with respect to a complex measure defined by locally
analytic weight functions that may have isolated essential singular points and complex power-like branch
points.

We thus consider linear forms on polynomials given by integrals of the form

L(p(x)) =

∫

κ

p(x)µ(x)dx

µ(x) = e−
1
~

V (x)

V (x) :=

K∑

r=0

Tr(x) , (2-2)

where

T0(x) := t0,0 +

d0∑

J=1

t0,J

J
xJ

Tr(x) :=

dr∑

J=1

tr,J
J(x− cr)J

− tr,0 ln(x− cr)

− ~∂x lnµ(x) = V ′(x) =

d0−1∑

J=1

t0,Jx
J−1 −

K∑

r=1

dr+1∑

J=1

tr,J−1

(x− cr)J
, (2-3)

and the symbol
∫

κ
denotes integration over linear combinations of contours on which the integrals are

convergent, as explained below. This class of linear functionals is sometimes referred to as semiclassical
moment functionals [3, 14, 15]. We consider the corresponding monic generalized orthogonal polynomials
pn(x), which satisfy ∫

κ

pn(x)pm(x)µ(x)dx = hnδnm . (2-4)

If all the contours are contained in the real axis and the weight is real and positive, we reduce to the
usual notion of semiclassical orthogonal polynomials. The small parameter ~ introduced in (2-2) is not of
essential importance here; it is only retained in the formulæ below to recall that, when taking the large
n limit, it plays the rôle of small parameter for which ~n remains finite as n→ ∞.

To describe the contours of integration, we first define sectors S
(j)
r , r = 0, . . .K, k = 1, . . .dr. around

the points cr for which dr > 1 (c0 := ∞) in such a way that

< (V (x)) −→
x → cr ,

x ∈ S(j)
r

+∞ . (2-5)

The number of sectors for each pole in V is equal to the degree of that pole; that is, d0 for the pole at
infinity and dr for the pole at cr. Explicitly

S
(0)
k :=

{
x ∈ C;

2kπ − arg(t0,d0) − π
2

d0
< arg(x) <

2kπ − arg(t0,d0 ) + π
2

d0

}
, (2-6)

k = 0 . . .d0 − 1 ;

S
(r)
k :=

{
x ∈ C;

2kπ + arg(tr,dr
) − π

2

dr

< arg(x− cr) <
2kπ + arg(tr,dr

) + π
2

dr

}
, (2-7)

k = 0, . . . , dr − 1, r = 1, . . . ,K .

These sectors are defined in such a way that approaching any of the essential singularities of µ(x) (i.e. a
cr such that dr > 0) within them, the function µ(x) tends to zero faster than any power.
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2.1.1 Definition of the boundary-free contours

The definition of the contours follows [16] (see fig. 1).

1. For any cr for which there is no essential singularity in the measure (i.e. dr = 0), there are two
subcases:

(a) For the cr’s that are branch points or poles in µ (i.e., tr,0 /∈ N), we take a loop starting at

infinity in some fixed sector S
(0)
k encircling the singularity and going back to infinity in the

same sector. (Note that if cr is just a pole; i.e., tr,0 ∈ −N+, the contour could equivalently be
taken as a circle around cr.)

(b) For the cr’s that are regular points (tr,0 ∈ N ), we take a line joining cr to infinity, approaching

∞ in a sector S
(0)
k as before.

2. For any cr for which there is an essential singularity in µ (i.e. , dr > 0) we define dr contours

starting from cr in the sector S
(r)
k and returning to it in the next sector S

(r)
k+1. Also, if tr,0 /∈ Z, we

join the singularity cr to ∞ by a path approaching ∞ within one fixed sector S
(0)
k .

3. For c0 := ∞, we take d0 − 1 contours starting at c0 in the sector S
(0)
k and returning at c0 in the

next sector S
(0)
k+1.

Note that, with these definitions, the integrals involved are convergent and we can perform integration
by parts. Moreover, any contour in the complex plane for which the integral of µ(x)p(x)dx is convergent
for all polynomials p(x) is equivalent to a linear combination of the contours defined above, no two of
which are, in this sense, equivalent.

2.1.2 Definition of the hard-edge contours

We also include some additional contpours in the complex plane {m)j}j=1,...,L, starting at some points

aj, j = 1 . . .L and going to ∞ within one of the sectors S
(0)
k . These could be viewed as corresponding to

additional points in 1(b) for which both dr = 0 and tr,0 = 0, but we prefer to deal with them separately
since integration by parts on these contours does give a contribution.

In total there are S := d0 +
∑K

r=1(dr + 1) boundary-free contours σ`, , ` = 1, . . . , S and L hard-edge
contours mh, h = 1, . . . , L. The moment functional is an arbitrary linear combination of integrals taken
along these contours

∫

κ

:=
L∑

j=1

κj

∫

mj

+
S∑

j=1

κL+j

∫

σj

. (2-8)

Note that, by taking appropriate linear combinations of the contours, we could alternatively have had
contours consisting of finite segments joining the points aj .
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Figure 1: The types of contours considered in the x Riemann sphere P1. Here
we have c1 with d1 = 3 and c2 with d2 = 0, t2,0 /∈ Z (logarithmic singularity
in the potential), c3 with d3 = 0, t3,0 ∈ N and the degree of the potential at
infinity c0 = ∞ is d0 = 5. The essential singularity in µ at c1 is of the form
exp (x− c1)

−3 and there is also a cut extending from c1 to ∞ if t1,0 /∈ Z. The
point c2 is a branch point of µ(x) since t2,0 /∈ Z, and the cut extends to infinity
“inside” the contour (as shown here). If it were a pole (t2,0 ∈ −N+), the contour
would be replaced by a circle around it. The point c3 is a regular point with
t3,0 ∈ N×, and the contour extending from it to infinity is no different from the
ones starting at the regular points a1, a2, a3. The latter are the “hard-edge”

segments joining the points a1, a2 and a3 to ∞ within one of the sectors S
(0)
k .

2.2 Recursion relations, derivatives and deformations equations

2.2.1 Existence of orthogonal polynomials and relation to random matrices

Recall [7] that orthogonal polynomials satisfying (2-4) exist provided all the Hankel determinants formed
from the moments are nonzero:

∆n(κ) := det

[∫

κ

xi+jµ(x)dx

]

0≤i,j≤n−1

6= 0 , ∀n ∈ N. (2-9)

Since the ∆n(κ)’s are homogeneous polynomials in the coefficients κj , the zero locus excluded by (2-9)
is of zero measure (in the space of κj’s), and hence “generically” the conditions (2-9) are fulfilled. The
development to follow will in fact only involve orthogonal polynomials up to some arbitrarily large fixed
degree, say N , and hence the conditions ∆n(κ) = 0 , n ≤ N − 1 determine a Zariski closed set in {κj},
(and a closed set of measure zero in the space of coefficients of V ).

The orthogonal polynomials considered here are related to models of unitarily diagonalizable random
matrices M ∈ gl(n,C) with spectra supported on the contours defined above. More specifically we have
the partition function

Zn := Cn

∫

spec(M)∈κ

dMe−
1
~
TrV (M)
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=

∫

κ

dx1 · · ·
∫

κ

dxn ∆(x)2e−
1
~

�
n
j=1 V (xj)

= n!∆n(κ, V ) = n!

n−1∏

j=0

hj , (2-10)

where

CN :=
1(∫

U(n)
dU
) (2-11)

is the inverse of the U (n) group volume, and

∆(x) :=
∏

i<j

(xi − xj) (2-12)

is the usual Vandermonde determinant. The notation spec(M ) ∈ κ in the first integral just means

M = U DU † , D := diag(x1, . . .xn) , U ∈ U (n) , (2-13)

where the eigenvalues {x1, . . .xn} of M are constrained to lie on the contours entering in
∫

κ
.

In particular, as in the standard case, the orthogonal polynomials may be shown to be equal to the
expectation values of the characteristic polynomials in such models

pn(x) = 〈det(xI−M )〉

=
1

Zn

∫

κ

dx1 · · ·
∫

κΓ

dxn

n∏

i=1

(x− xi)∆(x)2e−
1
~

� n
j=1 V (xj) , (2-14)

and all correlation functions between the eigenvalues may be expressed as determinants in terms of the
standard Christoffel-Darboux kernel formed from them

Kn(x, y) :=

n−1∑

j=0

1

hj

pj(x)pj(y)e
− 1

2~
(V (x)+V (y)) . (2-15)

More precisely, this is valid when there are no “hard-edge” contours present. Inclusion of the latter
however allows one to interpret these determinants as certain conditional correlators, known as “Janossy
distribution” correlators [6], giving the probability densities for a certain number of eigenvalues to lie at
given locations within the complementary part of the support, while the remaining ones lie within it.
The partition function Zn in this case can be reinterpreted as the corresponding gap probability [6, 17].

2.2.2 Wave vector equations

We now define the normalized orthogonal polynomials

πn(x) :=
1√
hn

pn(x) (2-16)

and what will be referred to as the “ orthonormal quasi-polynomials”

ψn(x) := πn(x)e−
1
2~

V (x), (2-17)

satisfying ∫

κ

ψn(x)ψm(x)dx = δmn. (2-18)
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From the former, we form the semi-infinite “wave vectors”

Π(x) := [π0(x), π1(x), . . . , πn(x), . . .]t . (2-19)

As in the theory of ordinary orthogonal polynomials, we have

xΠ(x) = QΠ(x) , (2-20)

where Q is a symmetric tridiagonal semi-infinite matrix with components

Qij = γjδi,j−1 + βiδij + γiδi,j+1, i, j ∈ N , (2-21)

defining a three term recursion relation of the form

xπj(x) = γj+1πj+1(x) + βjπj(x) + γjπj−1(x) . (2-22)

Now introduce semi-infinite matrices P,Ai, Cr, Tr,J such that

~∂xΠ(x) = PΠ(x) (2-23)

~∂ai
Π(x) = AiΠ(x) , i = 1, . . . , L (2-24)

~∂cr
Π(x) = CrΠ(x) , r = 1, . . . ,K (2-25)

~∂tr,J
Π(x) = Tr,JΠ(x) , r = 0, . . . ,K, J = 0, . . . , dr. (2-26)

Their matrix elements are determined simply by integration

Xnm =

∫

κ

(~∂πn(x))πm(x)µ(x)dx , (2-27)

where ∂ denotes any of the derivatives ∂x, ∂ai
, ∂cr

, ∂tr,J
above for which X becomes the corresponding

matrices P , Ai, Cr or Tr,J on the RHS of (2-23) - (2-26).

Remark 2.1 Such wave vectors and associated deformation equations have been studied in many previous
works relating orthogonal polynomials, matrix models and integrable systems (see, e.g. [2], [18]). However,
considerations of the deformation theory have mainly been within the formal setting, with the potential V (x)
replaced by some initial value, V0(x), plus a perturbation consisting of an infinite power series with arbitrary
coefficients, without regard to domains of convergence. Results obtained in this formal setting cannot be directly
applied to the study of isomonodromic deformations, where the local analytic structure in the neighborhood of a
number of isolated singular points is of primary interest.

For any such semi-infinite square matrix X, let X0, X+, X− denote the diagonal, upper and lower
triangular parts, respectively, and let

X−0 :=
1

2
X0 +X− . (2-28)

Proposition 2.1 The matrices P , Ai, Cr and Tr,J are all lower semi-triangular (with P strictly lower
triangular) , and are given by

P = V ′(Q)−0 −
L∑

i=1

Ai = V ′(Q)− −
L∑

i=1

(Ai)− (2-29)

Ai = ~κi(Π(ai)Π
t(ai))−0 (2-30)

Cr = −
dr∑

J=0

tr,J (Q− cr)
−J−1
−0 , r = 1, . . . ,K (2-31)
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T0,0 =
1

2
1 (2-32)

T0,J =
1

J
QJ

−0 , J = 1, . . . , d0 (2-33)

Tr,J =
1

J
(Q− cr)

−J
−0 , r = 1, . . . ,K, J = 1, . . . , dr (2-34)

Tr,0 = − ln(Q− cr)−0, r = 1, . . . ,K . (2-35)

where (Q− cr)
−J and ln(Q− cr) are defined by the formulæ

(Q− cr)
−J
nm :=

∫

κ

πn(z)πm(z)

(z − cr)J
µ(z)dz (2-36)

ln(Q− cr)nm :=

∫

κ

ln(z − cr)πn(x)πm(z)µ(z)dz . (2-37)

The diagonal matrix elements for each of the above is given by the formula

Xjj = −~

2
∂(lnhj) , (2-38)

where ∂ = ∂x, ∂ai
, ∂cr

and ∂tr,J
, respectively, for X = P , Ai, Cr and Tr,J . In particular, they vanish for

P , which is strictly lower triangular, and hence

V ′(Q)jj = ~

L∑

i=1

κiψj(ai)
2 . (2-39)

Proof. We make use of the orthogonality relations

∫

κ

Π(x)Πt(x)µ(x)dx = 1 . (2-40)

Eqs. (2-31) - (2-35) are obtained as follows. Consider a deformation ∂ with respect to any of the above
cr’s or tr,J ’s and denote by X the corresponding matrix; then

~∂πn(x) = ~∂
pn(x)√
hn

= −1

2
(~∂ ln(hn))πn(x) +

1√
hn

~∂pn(x) (2-41)

= −1

2
(~∂ ln(hn))πn(x) + lower degree polynomials , (2-42)

since the polynomials πn are monic. It follows that the deformation matrix X is lower semi-triangular.
On the other hand, differentiating eq. (2-40) gives

0 =

∫

κ

(
~∂Π Πt + Π ~∂Πt

)
µ(x)dx+

∫

κ

Π Πt
~∂µ(x)dx = X +Xt +

∫

κ

Π Πt
~∂µ(x)dx (2-43)

Applying the operators for each case to µ as defined in (2-2) and using eq. (2-20) then gives the result.
Now consider the deformations of the endpoints ai of the “hard-edge” contours. Differentiating (2-40)

gives

0 = ~∂ai

∫

κ

ΠΠtµ(x)dx = −κi~Π(ai)Π
t(ai)µ(ai) +

∫

κ

[
(~∂ai

Π)Πt + Π~∂ai
Πt
]
µ(x)dx

= −~κiΠ(ai)Π
t(ai)µ(ai) + Ai +At

i, (2-44)
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where

Ai := ~

∫

κ

∂ai
ΠΠ

tµ(x)dx , (2-45)

It follows that
Ai = ~κi(ΠΠ

t)−0

∣∣
x=ai

, (2-46)

proving eq. (2-30), and also that

(Ai)nn = −~

2
∂ai

ln(hn) =
~

2
κiψ

2
n(ai) . (2-47)

To determine the matrix P , note that it is strictly lower triangular and

~ΠΠt

∣∣∣∣
∂κ

= −~

L∑

i=1

(
Ai +At

i

)
= ~

∫

κ

(
Π′ Πt + Π Π′t + ΠΠt∂x lnµ(x)

)
µ(x)dx

=

∫

κ

(
~Π′ Πt + ~Π Π′t − V ′(x)Π Πt

)
µ(x)dx = P + P t − V ′(Q). (2-48)

This implies that

P = V ′(Q)−0 −
L∑

i=1

Ai = V ′(Q)− −
L∑

i=1

(Ai)− . (2-49)

This last equality follows from (2-39), which, in turn, follows from integration by parts in the definition of
V ′(Q)nn. It may be seen as a consequence of the invariance of the partition function under an infinitesimal
change in the integration variables xj → xj + ε in (2-10); i.e., translational invariance.

From (2-38) and (2-10) follows a relation between the diagonal elements of the deformation matrices
and the logarithmic derivatives of the partition function that will be very important in what follows.
Define the truncated trace of a semi-infinite matrix X to be

TrnX :=

n−1∑

j=0

Xjj . (2-50)

Corollary 2.1 For ∂ = ∂aj
, ∂cr

, and ∂tr,J
,

~∂ lnZn = −2TrnX , (2-51)

with X = Aj , Cr and Tr,J , respectively. For the cases ∂cr
and ∂tr,J

,

~∂ lnZn = Trn∂V (Q) , (2-52)

while for the ∂ai
’s we have

L∑

i=1

κi∂ai
lnZn = −~V ′(Q)nn (2-53)

Proof. The first of these relations follows from (2-38) and (2-10) directly, the second from the explicit
expressions for the deformation matrices (2-31)–(2-35) and of the potential V (x), and the third is a
restatement of the (2-39) (translational invariance).

Corollary 2.2 The compatibilty conditions

[G,H] = 0 , (2-54)

are satisfied, where G, H are any of the following operators

~∂ai
−Ai, ~∂tr,J

− Tr,J , ~∂cr
− Cr, ~∂x − P, x−Q (2-55)

and r = 0, . . .K, J = 0, . . .dr.
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Proof. This follows immediately from the fact that the orthogonal polynomials entering in eqs. (2-23)-
(2-26) are linearly independent.

Remark 2.2 Note that
[ � ∂x − P,x − Q] = 0 (2-56)

is just the string equation, while the other compatibility conditions involving x − Q imply the Lax equations:

� ∂aiQ = [Ai,Q], � ∂tr,J
Q = [Tr,J ,Q], � ∂cr Q = [Cr ,Q] , (2-57)

showing that the spectrum of the matrix Q is invariant under these deformations.

2.2.3 Wave vector of the second kind

We now consider solutions of the second kind,

φn(x) := e
1
~

V (x)

∫

κ

e−
1
~

V (z)π(z)

x− z
dz. , (2-58)

which may be combined to form the components of a wave vector of the second kind

Φ(x) := [φ0(x), φ1(x), . . . , φn(x), . . .]t . (2-59)

Denote by

∇QV
′(x) :=

V ′(x) − V ′(Q)

x−Q
(2-60)

the semi-infinite square matrix with elements
(
V ′(x) − V ′(Q)

x− Q

)

nm

=

∫

κ

dze−
1
~

V (z)πn(z)πm(z)
V ′(x) − V ′(z)

x− z
, (2-61)

and define U (x) to be the semi-infinite column vector (with only its zeroth component nonvanishing)
given by

(U (x))n :=
√
h0e

1
~

V (x)δn,0. (2-62)

The following lemma gives the effect of multiplication of Π(x) by x and of application of ~∂x to it.
It may be deduced immediately from eqns. (2-20) and (2-23), applied inside the integral, together with
integration by parts.

Lemma 2.1

xΦ(x) = QΦ(x) + U (x) (2-63)

~∂xΦ(x) = PΦ(x) + ∇QV
′(x)U (x) + ~

L∑

i=1

κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai) , (2-64)

The next proposition, which is similarly verified, gives the effects of the above deformations on the
wave vector of the second kind.

Proposition 2.2

~∂ai
Φ(x) = AiΦ(x) − ~κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai), i = 1, . . . , L, (2-65)

~∂cr
Φ(x) = CrΦ(x) +

dr∑

J=0

tr,J
(Q− cr)

−j−1 − (x− cr)
−j−1

Q− x
U (x), r = 1, . . . ,K, (2-66)
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~∂t0,J
Φ(x) = T0,JΦ(x) +

QJ − xJ

Q− x
U (x), quadJ = 1, . . . , d0, (2-67)

~∂tr,J
Φ(x) = Tr,JΦ(x) +

(Q − cr)
−J − (x − cr)

−J

Q− x
U (x) , J = 1, . . . , dr, r = 1, . . . ,K, (2-68)

~∂tr,0Φ(x) = Tr,0Φ(x) +
ln(Q − cr) − ln(x− cr)

Q− x
U (x), r = 1, . . . ,K. (2-69)

The content of eqs. (2-25)–(2-26) and (2-66)–(2-69) may be summarized uniformly as follows. Let
v(x) be any function that is analytic at each point of the contours except, possibly, the points cr, and
for which the following integrals are convergent:

v(Q)nm :=

∫

κ

v(z)πn(z)πm(z)e−
1
~

V (z)dz =

∫

κ

v(z)ψn(z)ψm(z)dz

(∇Qv(x))nm :=

(
v(x) − v(Q)

x−Q

)

nm

:=

∫

κ

v(x) − v(z)

x− z
ψn(z)ψm(z)dz. (2-70)

Define the deformation matrix under the infinitesimal variation of the potential V (x) 7→ V (x) + v(x) to
be

Xv := v(Q)−0 . (2-71)

Then the two infinite systems

δvΠ(x) := XvΠ(x) (2-72)

δvΦ(x) := XvΦ(x) + ∇Qv(x)U (x) (2-73)

describe the infinitesimal deformation of the orthogonal polynomials and the second-kind solutions under
such infinitesimal variations of the potential.

Equivalently, define the 2 ×∞ matrix

Γ(x) := [Π(x),Φ(x)] . (2-74)

In terms of Γ(x), all the recursion, differential and deformation equations (2-20), (2-23)–(2-26) and (2-
63)–(2-69) may be expressed simultaneously as

xΓ = QΓ + (0,U) (2-75)

~∂xΓ = PΓ +

(
0,∇QV

′
U + ~

K∑

i=1

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)
(2-76)

δvΓ = XvΓ + (0,∇QvU ) (2-77)

~∂ai
Γ = AiΓ−

(
0, ~κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)
, (2-78)

where v signifies any of the infinitesilmal deformations of the potential ~∂ci
, ~∂tr,J

V (i = 1, . . .L, r =
0, . . .K, J = 1, . . . , dr).

3 Folding

3.1 n-windows and Christoffel-Darboux formula

Let in be the ∞× 2 matrix that represents the injection of the 2-dimensional subspace spanned by the
(n − 1, n) basis elements into the (semi-)infinite space corresponding to the components of Ψ or Φ. Its
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matrix elements are thus:

(in)jk = δk,1δj,n−1 + δk,2δj,n, j = 0, 1, 2, . . . , k = 1, 2. (3-1)

Let iTn denote its transpose, which is the corresponding projection operator. The n-th 2 × 2 block (or
“window”) of Γ is then given by:

Γn(x) := iTnΓ =

[
πn−1(x) φn−1(x)
πn(x) φn(x)

]
. (3-2)

By “folding” the infinite recursion and differential-deformation equations (2-20), (2-23)–(2-26), (2-
63)–(2-69), (2-75)–(2-78), we mean the corresponding sequence of recursion relations, ODEs and PDEs
satisfied by the Γn(x)’s. To derive these, a form of the Christoffel–Darboux identity for orthogonal poly-
nomials will repeatedly be used. Let Π0

n denote the semi-infinite square matrix whose only nonvanishing
entries are 1’s on the diagonal in positions 0 to n (i.e. the projection onto the first n+1 components)

(Π0
n)ij :=

{
δij if 0 ≤ i, j ≤ n
0 otherwise .quad

(3-3)

Let

σ :=

(
0 −1
1 0

)
(3-4)

be the standard 2 × 2 symplectic matrix, and let

Σn := inσi
T
n (3-5)

denote its projection onto the 2 × 2 subspace in position (n− 1, n).

Proposition 3.1 The following extended Christoffel-Darboux formulæ are satisfied:

(x− x′)ΓT (x)Π0
n−1Γ(x′) (3-6)

= γnΓT
n (x)σΓn(x′) +

(
0 −e 1

~
V (x′)

e
1
~

V (x) e
1
~
(V (x)+V (x′))

∫
κ
e−

1
2 V (z)

(
1

x−z
− 1

x′−z

)
dz

)
(3-7)

= γnΓT (x)ΣnΓ(x′) +

(
0 −e 1

~
V (x′)

e
1
~

V (x) e
1
~
(V (x)+V (x′))

∫
κ
e−

1
2 V (z)

(
1

x−z
− 1

x′−z

)
dz

)
. (3-8)

Equivalently, in components,

(x− x′)

n−1∑

j=0

πj(x)πj(x
′) = γn [πn(x)πn−1(x

′) − πn−1(x)πn(x′)] (3-9)

(x− x′)

n−1∑

j=0

πj(x)φj(x
′) = γn [πn(x)φn−1(x

′) − πn−1(x)φn(x′)] − e
1
~

V (x′) (3-10)

(x− x′)

n−1∑

j=0

φj(x)φj(x
′) = γn [φn(x)φn−1(x

′) − φn−1(x)φn(x′)]

+ e
1
~
(V (x)+V (x′))

∫

κ

e−
1
2 V (z)

(
1

x− z
− 1

x′ − z

)
dz, (3-11)

and evaluating at x = x′ gives

detΓn(x) = πn−1(x)φn(x) − φn−1(x)πn(x) = − 1

γn

e
1
~

V (x) . (3-12)
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Proof. Eq. (3-9) is the standard Christoffel-Darboux relation for orthogonal polynomials. The extended
system may be derived as follows. Multiplying the expression Γ(x)Π0

n−1Γ(x′) by (x− x′), and applying
the relation (2-75) with respect to both x and x′ gives

(x− x′)ΓT (x)Π0
n−1Γ(x′) = ΓT (x)

(
QΠ0

n−1 − π0
n−1Q

)
Γ(x′) (3-13)

+

(
0 −e 1

~
V (x′)

e
1
~

V (x) e
1
~
(V (x)+V (x′))

∫
κ
e−

1
2 V (z)

(
1

x−z
− 1

x′−z

)
dz

)
. (3-14)

The result (3-8) is obtained by substituting the following identity, which holds for any tridiagonal sym-
metric matrix of the form Q

QΠ0
n−1 − Π0

n−1Q = γninσi
T
n . (3-15)

3.2 Folded version of the deformation equations for changes in the potential

Under infinitesimal changes of the parameters in the potential V and the end-points of the “hard-edge”
contours, the wave vectors Π(x) and Φ(x) and the combined system Γ(x) undergo changes determined by
equations (2-24)-(2-26), (2-65)-(2-69)) and (2-78)-(2-77). Besides the deformations induced by infinitesi-
mal changes of the endpoints {aj}, all these deformations have the same general form, depending only on
the function v(x) = δV (x) that gives the infinitesimal deformation of the potential. We deal with them
all on the same footing in the following proposition, which expresses the explicit form they take on the
window Γn(x).

Proposition 3.2 The deformation equations (2-72), (2-73) (2-77) are equivalent to the infinite sequence
of 2 × 2 equations

δvΓn(x) = Vn(x)Γn(x), (3-16)

where the folded matrix of the deformation is defined by

Vn(x) =

[
v(x)− 1

2v(Q)n−1,n−1 0
0 1

2v(Q)nn

]
+ γn

[
∇Qv(x)n−1,n−1 ∇Qv(x)n−1,n

∇Qv(x)n,n−1 ∇Qv(x)nn

]
σ . (3-17)

For the deformations in (2-23)–(2-26) and (2-65)–(2-69), this gives the following equations corresponding
to changes in the potential.

~∂cr
Γn(x) = Cr;n(x)Γn(x) (3-18)

~∂tr,J
Γn(x) = Tr,J ;n(x)Γn(x), (3-19)

where the sequence of 2 × 2 matrices Cr;n and Tr,J ;n(x) are rational in x, with poles at the points {cr},
obtained by making the following substitutions in eq. ((3-17).

Cr : v(x) → −
dr∑

J=0

tr,J (x− cr)
−J−1

Tr,J : v(x) → 1

J
(x− cr)

−J

T0,J : v(x) → 1

J
xJ

Tr,0 : v(x) → − ln(x− cr) . (3-20)

Proof. Using the definition (2-70) of ∇Qv(x) and the extended Christoffel-Darboux relation (3-8), we
have

γn∇Qv(x)ΣnΓ = γn

∫

κ

dye−
1
~

V (y) (v(y) − v(x))Π(y)
Π

T (y)ΣT
nΓ(x)

y − x
(3-21)
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=

∫

κ

dye−
1
~

V (y) (v(y) − v(x)))Π(y)ΠT (y)Π0
n−1Γ(x) (3-22)

+

(
0, −e 1

~
V (x)

∫

κ

dye−
1
~

V (y)

(
v(y) − v(x)

y − x

)
Π(y)

)
(3-23)

= v(Q)Π0
n−1Γ(x) − v(x)Π0

n−1Γ(x) − (0,∇Qv(x)U (x)) . (3-24)

Applying the projector iTn and noting that

iTn v(Q)Π0
n−1Γ = iTnv(Q)−0Γ +

1

2

(
v(Q)n−1,n−1 0

0 −v(Q)n,n

)
Γn, (3-25)

we obtain

~δvΓn(x) = iTn ~δvΓ(x) = iTn (XvΓ(x) + (0,∇QvU (x)) (3-26)

= iTn v(Q)−0Γ(x) + (0, iTn∇Qv(x)U (x)) (3-27)

= iTn v(Q)Π0
n−1Γ(x) +

(
−1

2v(Q)n−1,n−1 0
0 1

2v(Q)n,n

)
Γn + (0, iTn∇Qv(x)U (x)) (3-28)

= γni
T
n∇Qv(x)i

T
nσΓn(x) +

(
v(x) − 1

2v(Q)n−1,n−1 0
0 1

2v(Q)n,n

)
Γn(x), (3-29)

proving the relation (3-17).

Remark 3.1 Note that formula (3-17) for the deformation of the measure in Proposition 3.2, as well as those
below, (3-36), (3-37), which are obtained through folding of the � ∂x operator, could also be derived for arbitrary
locally analytic potentials V (x), provided all the integrals involved are convergent [13]. However applicability
of the subsequent isomonodromic analysis would be lost if the derivatives were not rational, since the resulting
deformation equations would then have essential singularities.

3.3 Folding of the endpoint deformations

The case (2-24) and (2-65) involving deformations of the locations of the “hard edge” end–points must
be considered separately.

Proposition 3.3 The following gives a closed system for the n-th window of eqs. (2-24) and (2-65)

~∂ai
Γn(x) = Ai,n(x)Γn(x) (3-30)

where

Ai,n :=
~κiγn

ai − x

[
ψn−1(ai)ψn(ai) −ψ2

n−1(ai)
ψ2

n(ai) −ψn−1(ai)ψn(ai)

]
+

~κi

2

[
−ψ2

n−1(ai) 0
0 ψ2

n(ai)

]

=
~κiγn

ai − x

[
ψ2

n−1(ai) ψn−1(ai)ψn(ai)
ψn−1(ai)ψn(ai) ψ2

n(ai)

]
σ +

~κi

2

[
−ψ2

n−1(ai) 0
0 ψ2

n(ai)

]
(3-31)

Proof. This is very similar to the proof of Prop. 3.2. Using the definition (2-30) of the matrices Ai

and the extended Christoffel–Darboux relation (3-8) we have

~∂ai
Γn(x) = ~iTn∂ai

Γ(x) = iTn

[
(
~κiΨ(ai)Ψ

T (ai)
)
−0

Γ(x) −
(

0, ~κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)]

= iTn

[
(
~κiΨ(ai)Ψ

T (ai)
)
Π

0
n−1Γ(x) −

(
0, ~κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)]
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+
~κi

2

[
−ψ2

n−1(ai) 0
0 ψ2

n(ai)

]
Γn(x)

= iTn
γn~κi

ai − x
Ψ(ai)Ψ

T (ai)ΣnΓ(x) +
~κi

2

[
−ψ2

n−1(ai) 0
0 ψ2

n(ai)

]
Γn(x) . (3-32)

Recalling the definition (3-5) of Σn and computing the matrix product yields the result in the statement.
Q.E.D.

3.4 Folded version of the recursion relations and ~∂x relations

We now consider the recursion relations (2-20), (2-63) and (2-75) and the action of the ~∂x operator in
(2-23), (2-64) and (2-76) which, in their folded form are given by the following.

Proposition 3.4 The folded forms of the relations (2-75) and (2-76) are

Γn+1(x) = Rn(x)Γn(x) , n ≥ 1, (3-33)

∂xΓn(x) = Dn(x)Γn(x) (3-34)

where

Rn :=

[
0 1

− γn

γn+1

x−βn

γn+1

]
. (3-35)

and

Dn(x) = D(0)
n (x) +

L∑

i=1

~κiγn

x− ai

[
ψn−1(ai)ψn(ai) −ψ2

n−1(ai)
ψ2

n(ai) −ψn−1(ai)ψn(ai)

]
(3-36)

with

D(0)
n (x)=

[
V ′(x) 0

0 0

]
+

[
(∇QV

′(x))
n−1,n−1 (∇QV

′(x))
n−1,n

(∇QV
′(x))

n,n−1 (∇QV
′(x))

nn

] [
0 −γn

γn 0

]

=

[
V ′(x) 0

0 0

]
+ γn

[
(∇QV

′(x))
n−1,n

− (∇QV
′(x))

n−1,n−1

(∇QV
′(x))

nn
− (∇QV

′(x))
n,n−1

]
(3-37)

Remark 3.2 Note that formula (3-36) implies that

Tr(Dn(x)) = V
′(x) . (3-38)

Proof: The folded form (3-33) of the recursion relations follows directly from eqs. (2-20) and (2-63))

xπn(x) = γn+1πn+1(x) + βnπn(x) + γnπn−1(x) (3-39)

xφn(x) = γn+1φn+1(x) + βnφn(x) + γnφn−1(x) + δn0

√
h0e

1
~

V (x) . (3-40)

To prove (3-34), note that the folding relations (3-16) may be expressed

iTnδvΓn = VnΓn (3-41)

for any infinitesimal variation v = δV in the potential. Choosing

δ := −
K∑

r=1

∂cr
+

d0∑

J=1

jt0,J+1∂t0,J
+ t0,1∂t0,0 , (3-42)

we have
V ′(x) ≡ δV. (3-43)
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Using (2-29) and (2-64), we have

~∂xΓn = iTn

[
PΓ +

(
0 , ∇QV

′(x)U − ~

L∑

i=1

κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)]
(3-44)

= iTn

[
(V ′(Q)−0 −

L∑

i=1

Ai)Γ +

(
0 , ∇Q(δV )(x)U − ~

L∑

i=1

κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)]
(3-45)

= iTn

[
((δV )(Q)−0 −

L∑

i=1

Ai)Γ +

(
0 , ∇Q(δV )(x)U − ~

L∑

i=1

κi

e
1
~
(V (x)−V (ai))

x− ai

Π(ai)

)]
(3-46)

= iTn

[
δ −

L∑

i=1

∂ai

]
Γ, (3-47)

where we have used the deformation equations (2-24)–(2-26), (2-65)–(2-69). Applying the folded relations
(3-16), (3-17) and (3-30), this gives

~∂xΓn =

[
Vn −

K∑

i=1

Âi,n −
K∑

i=1

Āi,n

]
Γn, (3-48)

where

Âi,n :=
~κiγn

ai − x

[
ψn−1(ai)ψn(ai) −ψ2

n−1(ai)
ψ2

n(ai) −ψn−1(ai)ψn(ai)

]
(3-49)

Āi,n := +
~κi

2

[
−ψ2

n−1(ai) 0
0 ψ2

n(ai)

]
, (3-50)

and

Vn(x) =

[
V ′(x)− 1

2V
′(Q)n−1,n−1 0

0 1
2V

′(Q)nn

]

+

[
∇QV

′(x)n−1,n−1 ∇QV
′(x)n−1,n

∇QV
′(x)n,n−1 ∇QV

′(x)nn

] [
0 −γn

γn 0

]
. (3-51)

It follows from (2-39) that the diagonal V ′(Q) terms in Vn(x) are cancelled by the sum in the last term
of (3-48), giving the stated result (3-36), (3-37).

Combining the differential, recursion and deformations relations (3-34), (3-33), (3-18), (3-19) and (3-
30), the fact that the invertible matrices Γn are simultaneous fundamental systems for all these equation
implies the compatibility of the cross-derivatives; i.e., the corresponding set of zero-curvature equations.

Corollary 3.1 For n ≥ 0 the set of PDE’s and recursion equations

~∂xΓn(x) = Dn(x)Γn(x), ~∂ai
Γn(x) = Ai;n(x)Γn(x)

~∂cr
Γn(x) = Cr;n(x)Γn(x), ~∂tr,J

Γn(x) = Tr,J ;n(x)Γn(x)
Γn+1(x) = Rn(x)Γn(x) (3-52)

are simultaneously satisfied by the invertible matrices Γn(x), and hence the zero-curvature equations

[~∂x − Dn, ~∂ai
−Ai;n] = 0, [~∂x −Dn, ~∂ai

− Cr;n] = 0,
[~∂x − Dn, ~∂ai

− Tr,J ;n] = 0 , [~∂ai
= Ai;n, ~∂ai

− Cr;n] = 0,
[~∂ai

−Ai;n, ~∂ai
− Tr,J ;n] = 0 , [~∂ai

− Cr;n, ~∂ai
− Tr,J ;n] = 0,

~∂ai
Rn = Ai;n+1Rn − RnAi;n,
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~∂cr
Rn = Cr;n+1Rn − RnCr;n,

~∂tr,J
Rn = Tr,J ;n+1Rn − RnTr,J ;n (3-53)

are satisfied.

Remark 3.3 (The Riemann–Hilbert method.)
The Riemann-Hilbert method for characterizing orthogonal polynomials [10, 8] provides an alternative ap-

proach to deriving the results of this section. This is a well-established approach, and will not be developed
in detail here, except to indicate briefly how it could be applied to deducing the differential and deformation
equations satisfied by the f undamental systems.

The fundamental system Γn(x) has, by construction, a jump-discontinuity across any of the contours defining
the orthogonality measure. denoting the limiting values when approaching any of these contours from the left or
the right byΓ)n,± we have the jump disconinuity conditions

Ψ+(x) = Ψ−(x)

�
1 2iπ � j

0 1 � , x ∈ γj (3-54)

Furthermore, the local asymptotic behavior near the singularities at ∞ are specified as in section 5.2. To be more
precise the function Γn(x) has local formal asymptotic form, within any of the Stokes sectors,

Ψ(x) ∼

���������� ���������
Cr � 1 + O(x − cr) � e−

1
2~

Tr(x)σ3 x → cr

Aj � 1 + O(x − aj) � e− 	 j ln(x−aj )σ+ x → aj

C0 
 1 + O 
 1

x ��� e−
1
2~

T0(x)σ3+(n−  r t0,r)σ3 ln(x)
x → ∞

(3-55)

It follows from the usual argument based on Liouville’s theorem that any two fundamental solutions two
(with the same Stokes matrices, given in fact by the same matrices (3-54) ) satisfying the above Riemann–Hilbert
conditions are equal, within a constant scaler multiple. Also, from Liouville’s theorem it follows that the first
column of Ψ(x) consists of polynomials (the orthogonal polynomials). Using similar arguments one can show that
the following matrix is rational with poles, of the correct order, at the singular points cr, aj ,∞:

Dn(x) := ∂xΨ(x)Ψ(x)−1 +
1

2
V

′(x)1. (3-56)

By comparing the local singular behavior of the logarithmic (matrix) derivatives of any two solutions and applying
Liouville’s theorem, it again that these globally combine to define rational matrix functions which give the
deformation matrices with respect to the various parameters at the poles.

4 Spectral curve and spectral invariants

The aim of this section is to express the spectral curve of the ODE (3-34) (i.e., the characteristic equation
of Dn(x)) in terms of the partition function. In fact we will prove an exact finite n analog (Thm. 4.2)
of the formulæ that are obtained by variational methods in the n→ ∞ limit [9]. We start by expressing
the explicit relation between the partition function and the spectral curve of the isomonodromic system.

4.1 Virasoro generators and the spectral curve

To express the result in a compact form, introduce the following local Virasoro generators

V
(r)
−J :=

dr−J∑

M=1

Mtr,M+J

∂

∂tr,M
, J = 0, . . . , dr − 1 (4-1)

V
(0)
−J :=

d0−J∑

J=1

Mt0,M+J

∂

∂t0,M

, J = 0, . . . , d0 − 1, (4-2)
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in terms of which we define the following differential operator with coefficients that are rational functions
of x

D(x) :=

L∑

i=1

1

x− ai

∂

∂ai

−
d0−3∑

J=0

xJ
V

(0)
−J−2 −

K∑

r=1

dr+1∑

J=2

1

(x− cr)J
V

(r)
2−J −

K∑

r=1

1

x− cr

∂

∂cr
. (4-3)

Theorem 4.1 The characteristic polynomial of the matrix Dn(x) in the differential system (3-34) is
given by

det
(
y −Dn(x)

)
= y2 − yV ′(x) + ~

〈
Tr
V ′(M ) − V ′(x)

M − x

〉
−

L∑

i=1

~
2

x− ai

∂ai
ln(Zn) (4-4)

= y2 − yV ′(x) + ~Trn

(
V ′(Q) − V ′(x)

Q− x

)
−

L∑

i=1

~2

x− ai

∂ai
ln(Zn) (4-5)

= y2 − yV ′‘(x) + n

d0−1∑

J=1

t0,J+1x
J−1 − ~

2
D(x) lnZn, (4-6)

and the quadratic trace invariant is

TrDn(x)2 = V ′(x)2 − 2n

d0−1∑

J=1

t0,J+1x
J−1 + 2~

2
D(x) lnZn. (4-7)

Proof: The equivalence of (4-4) and (4-5) follows from the well–known relation

〈Tr(f(M ))〉 = Trn(f(Q)) (4-8)

for any scalar function f(x) for which the 〈Tr(f(M ))〉 is a convergent integral. The equivalence of (4-6)
and (4-7) follows from (3-38).

To prove (4-5) we use the recursion relation (3-33) and the explicit expression of Dn, we obtain

Dn+1 = RnDnRn
−1 + ~R′

nRn
−1 (4-9)

R′
nRn

−1 =

[
0 0
1

γn+1
0

]
, Rn

−1R′
n =

[
0 − 1

γn

0 0

]
. (4-10)

Therefore,

Tr
(
Dn+1(x)

2
)

= Tr
(
Dn(x)2

)
+ 2~Tr

(
Dn(x)Rn

−1R′
n

)
+ ~

2Tr
((
R′

nR
−1
n

)2)
(4-11)

= Tr
(
Dn(x)2

)
− 2~

(
V ′(Q) − V ′(x)

Q− x

)

nn

− 2~
2

L∑

i=1

κiψ
2
n(ai)

x− ai

(4-12)

= Tr
(
Dn(x)2

)
− 2~

(
V ′(Q) − V ′(x)

Q− x

)

nn

+ 2~
2

L∑

i=1

1

x− ai

∂ai
ln(hn), (4-13)

where we have used eqs. (3-36), (3-37) in (4-12) and (2-47) in (4-13). These equations imply that

Tr(Dn(x)2) = Tr(D1(x)
2) − 2~

n−1∑

j=1

(
V ′(Q) − V ′(x)

Q− x

)

jj

+ 2~
2

n−1∑

j=1

L∑

i=1

1

x− ai

∂ai
ln(hj). (4-14)

20



From the definition of D1, we have

D1 = ~

[
π′

0 φ′
0

π′
1 φ′

1

] [
π0 φ0

π1 φ1

]−1

. (4-15)

Using (3-12), this gives

det(D1(x)) = ~
2γ1e

− 1
~

V (x)φ′
0π

′
1 (4-16)

= ~
2

√
h1

h0
e−

1
~

V (x)

√
1

h0h1

[
e+

1
~

V (x)

∫

κ

e−
1
~

V (z)

x− z
dz

]′
(4-17)

=
~2

h0

[
1

~
V ′(x)

∫

κ

e−
1
~

V (z)

x− z
dz −

∫

κ

e−
1
~

V (z)

(x− z)2
dz

]
(4-18)

=
~2

h0

[
1

~
V ′(x)

∫

κ

e−
1
~

V (z)

x− z
dz −

∫

κ

e−
1
~

V (z) ∂

∂z

(
1

x− z

)
dz

]
(4-19)

=

[
~

∫

κ

(V ′(x) − V ′(z))ψ2
0(z)

x− z
dz + ~

2
K∑

i=1

κiψ
2
0(ai)

x− ai

]
, (4-20)

and hence

Tr(D2
1(x)) = −2 det(D1(x)) + Tr(D1(x))

2 (4-21)

= ((V ′(x))2 − 2~

∫

κ

(V ′(x) − V ′(z))ψ2
0(z)

x− z
dz − 2~

2
K∑

i=1

κiψ
2
0(ai)

x− ai

(4-22)

= (V ′(x))2 − 2~

(
V ′(x) − V ′(Q)

x−Q

)

00

+ 2~
2

L∑

i=1

,
1

x− ai

∂ai
ln(h0). (4-23)

Combining this with (4-14) gives

Tr(Dn(x)2) = (V ′(x))2 − 2~

n∑

j=1

(
V ′(Q) − V ′(x)

Q− x

)

jj

+ 2~
2

n∑

j=1

L∑

i=1

1

x− ai

∂ai
ln(hj), (4-24)

which, taking the expression (2-10) for the partition function into account, completes the proof of eq. (4-5).
We now proceed to the proof of eq. (4-6). By expanding the third term on the right of (4-5), we

obtain

V ′(x) − V ′(Q)

x−Q
=

d0−1∑

J=1

t0,J+1

J−1∑

M=0

xMQJ−M−1 +

K∑

r=1

dr+1∑

J=1

tr,J−1

J−1∑

M=0

1

(x− cr)J−M
(Q− cr)

−M−1

=

d0−1∑

J=1

t0,J+1x
J−11 +

d0−1∑

J=2

J−2∑

M=0

xM t0,J+1Q
J−M−1 +

K∑

r=1

dr+1∑

J=1

tr,J−1

J−1∑

M=0

1

(x− cr)J−M
(Q− cr)

−M−1

=

d0−1∑

J=1

t0,J+1x
J−11 +

d0−3∑

M=0

xM

dr∑

J=M+2

t0,JQ
J−M−1 +

K∑

r=1

dr+1∑

M=1

1

(x− cr)M

dr+1∑

J=M

tr,J−1(Q− cr)
M−J−1

(4-25)

Now recall that for any deformation matrix X corresponding to an infinitesimal variation ∂ we have

n−1∑

j=0

Xjj = −~

2
∂ ln(Zn). (4-26)
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Summing the diagonal terms of (4-25) up to n− 1 and substituting into (4-5) we therefore obtain

Tr(Dn(x)2) = (V ′(x))2 − 2n~

d0−1∑

J=1

t0,J+1x
J−1

− 2~
2

d0−2∑

M=1

xM

d0∑

J=M+1

(J −M − 1)t0,J+1
∂ ln(Zn)

∂t0,J−M−1

− 2~
2

K∑

r=1

dr+1∑

M=2

1

(x− cr)M

dr+1∑

J=M

(J −M + 1)tr,J−1
∂ ln(Zn)

∂tr,J−M+1

− 2~
2

K∑

r=1

1

x− cr

∂ ln(Zn)

∂cr
+ 2~

2
n−1∑

j=0

L∑

i=1

1

x− ai

∂ ln(Zn)

∂ai

(4-27)

Using eq. (4-26) we finally get

det
(
y −Dn(x)

)
= y2 − yV ′(x) + n~

d0−1∑

J=1

t0,J+1x
J−1 + ~

2
d0−3∑

M=0

xM

d0−1∑

J=M+2

(J −M − 1)t0,J+1
∂ ln(Zn)

∂t0,J−M−1

+ ~
2

K∑

r=1

dr+1∑

M=2

1

(x− cr)M

dr+1∑

J=M

(J −M + 1)tr,J−1
∂ ln(Zn)

∂tr,J−M+1

+ ~
2

K∑

r=1

1

x− cr

∂ ln(Zn)

∂cr
− ~

2
L∑

i=1

1

x− ai

∂ ln(Zn)

∂ai

, (4-28)

which completes the proof of eq. (4-6).

4.2 Spectral residue formulæ

Theorem 4.1, which determines all the coefficients of the spectral curve as logarithmic derivatives of the
partition function, may be expressed in another form, in which the individual deformation parameters, as
well as the logarithmic derivatives with respect to them, may be directly expressed as spectral invariants.
The characteristic equation of Dn(x)

det (y(x)I −Dn(x)) = 0, (4-29)

defines a hyperelliptic curve Cn as a 2–sheeted branched cover of the Riemann sphere, on which y is a
meromorphic function. It follows from (3-36) and Theorem 4.1 that y, viewed as a double valued function
of x, has the same pole structure and degree as Dn(x) at the points {c0 = ∞, cr, ai}, but that the points
{ai} are branch points.

Let Y±(x) denoted the two values of y(x). Defining

W (x) := ~Trn

V ′(x) − V ′(Q)

x−Q
−

L∑

j=1

~2∂aj
lnZn

x− aj

, (4-30)

it follows from the explicit expression (4-5) for the spectral curve that, near any of the poles c0 =
∞, c1, . . . , cK , the two branches have the asymptotic form

Y±(x) =
1

2
V ′(x) ±

√
1

4
(V ′(x))2 −W

∼
{

1

0

}
V ′(x) ∓ 1

V ′(x)

(
W +

W 2

(V (x)′)2
+ . . .

)
+

{
O(x−2d0−1) x→ ∞
O((x − cr)

2dr+5) x→ cr
(4-31)
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Theorem 4.2 The following residue formulæ express the deformation parameters and the logarithmic
derivatives of Zn as spectral invariants of the matrix Dn(x).

t0,J =
1

2iπ

∮

∞

Y+(x)

xJ
dx, J = 1 . . .d0 (4-32)

tr,J =
1

2iπ

∮

cr

(x− cr)
JY+(x)dx, r = 1, . . . ,K, J = 1, . . . , dr (4-33)

~
2∂t0,0 lnZn = − 1

2iπ

∮

∞
Y−(x)dx = −n~, (4-34)

~
2∂t0,J

lnZn = − 1

2iJπ

∮

∞
Y−(x)xJdx, J = 1, . . . , d0 (4-35)

~
2∂tr,J

lnZn = − 1

2iJπ

∮

cr

Y−(x)
1

(x− cr)J
dx, r = 1, . . . ,K, J = 1, . . . , dr (4-36)

~
2∂cr

lnZn = − 1

2iπ

∮

cr

Y−(x)T ′
r(x)dx, r = 1, . . . ,K, (4-37)

~
2∂aj

lnZn =
1

4πi

∮

aj

Tr(D2
n(x))dx . (4-38)

Proof. The second equality in eq. (4-34) follows from the fact that t0,0 appears in the integral (2-10)

defining Zn only in the overall normalization factor e−
t0,0

~ . The proof of the other relations is based on
formula (4-27), which was proved in the demonstration of Theorem 4.1. From this formula it follows
that, for all deformations except the ones with respect to t0,d0 , t0,d0−1, aj,

~
2∂ lnZn =

1

2
res

∂V (x)

V ′(x)
Tr(D2

n(x)), (4-39)

where ∂V (x) denotes the deformation ∂ of the potential V , and the residues are taken at the corresponding
singularity cr. Considering the various deformations associated to the poles and end-points we have:
At infinity

~
2∂t0,J

lnZn =
1

2
res

x=∞

xJ/J

V ′(x)
Tr(D2

n(x))

=
1

2
res

x=∞

xJ/J

V ′(x)

(
(V ′(x))2 − 2~Trn

V ′(x) − V ′(Q)

x−Q
+ 2

∑ ~2

x− aj

∂aj
lnZn

)

= −~ res
x=∞

xJ/J

V ′(x)
Trn

V ′(x) − V ′(Q)

x− Q
=

~

J
TrnQ

J , J = 1, . . .d0 − 2. (4-40)

Note that this computation does not provide the derivatives with respect to the two highest coefficients
t0,d0 and t0,d0−1, which will be computed below. Moreover we should remark that the last equality follows
from the following interchange of order of integrals

res
x=∞

xJ/J

V ′(x)
Trn

V ′(x) − V ′(Q)

x− Q
=

n−1∑

j=0

res
x=∞

xJ/J

V ′(x)

∫

κ

V ′(x) − V ′(z)

x− z
πj

2(z)e−
1
~

V (z)dz =

=

n−1∑

j=0

∫

κ

res
x=∞

xJ/J

V ′(x)

V ′(x) − V ′(z)

x− z
πj

2(z)e−
1
~

V (z)dz =

n−1∑

j=0

∫

κ

res
x=∞

zJ

J
πj

2(z)e−
1
~

V (z)dz =
1

J
TrnQ

J .(4-41)

The exchange is justified by the usual arguments observing that the expression V ′(x)−V ′(z)
x−z

has no singu-
larities at coinciding points x = z (away from the singularities of V ′).
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At the poles cr

~
2∂tr,J

lnZn =
1

2
res

x=cr

(x− cr)
−J/J

V ′(x)
Tr(D2

n(x))

= − res
x=cr

(x− cr)
−J/J

V ′(x)
~Trn

V ′(x) − V ′(Q)

x−Q
=

~

J
Trn(Q− cr)

−J , J = 1, . . . , dr;

~
2∂cr

lnZn =
1

2
res

x=cr

T ′
r(x)

V ′(x)
Tr(D2

n(x))

= −~ res
x=cr

T ′
r(x)

V ′(x)
Trn

V ′(x) − V ′(Q)

x−Q
=

~

J
TrnT

′
r(Q) . (4-42)

The last equalities in (4-42) are obtained by a similar argument used for the deformations at c0 = ∞
here above.

At the endpoints aj

~
2∂aj

lnZn =
1

2
res

x=aj

Tr(D2
n(x))

=
1

2
res

x=aj



(V ′(x))2 − 2~Trn

V ′(x) − V ′(Q)

x−Q
+ 2

L∑

j=1

~2

x− aj

∂aj
lnZn





= ~
2∂aj

lnZn . (4-43)

The relations (4-33) now follow immediately from (4-31). The determination Y− has the asymptotic
behavior

Y−(x) ∼ 1

V ′(x)


~Trn

V ′(x) − V ′(Q)

x− Q
−

L∑

j=1

~2

x− aj

∂aj
lnZn − n2~2

x2


 +

{
O(x−2d0−1) x→ ∞
O((x − cr)

2dr+5) x→ cr

(4-44)
Identities (4-34), (4-36) and (4-37) follow immediately from the expressions in (4-40), (4-42) and the

asymptotic forms (4-44), as do the identities (4-35) for J ≤ d0 − 2. For the remaining two values of J
(d0 − 1, d0), we compute

− res
x=∞

T ′
0(x)Y−(x)dx = − res

x=∞
(V ′(x) + O(1/x))

1

V ′(x)

(
W − n2

~
2

x2
+ O

(
x−3)

))
dx

= −
K∑

r=1

~TrnT
′
r(Q) +

L∑

j=1

~
2∂aj

lnZn=~TrnT
′
0(Q), (4-45)

where the last equality follows from eq. 2-39 (translational invariance). This identity, together with
eqs. (4-35) for j ≤ d0 − 2 implies

− res
x=∞

xd0−1Y−(x)dx = ~
2 ∂

∂t0,d0−1
lnZn , (4-46)

which is the case J = d0 − 1 of (4-35). Similarly

− res
x=∞

xT ′
0(x)Y−(x)dx = − res

x=∞
(xV ′(x) +

K∑

r=1

tr,0 + O(1/x))
1

V ′(x)

(
W − n2~2

x2
+ O

(
x−3)

))
dx

= n2
~
2 − n~

K∑

r=1

tr,0 −
K∑

r=1

~TrnQT
′
r(Q) +

L∑

j=1

~
2aj∂aj

lnZn
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= ~TrnQT
′
0(Q) (4-47)

where the last equality holds because of dilation invariance. This, together with the above proves (4-35)
for J = d0.

The last formula (4-38) follows from equating the residues at the poles x = aj in eq. (4-7).

Remark 4.1 In the formulæ (4-34), (4-35), (4-37), (4-38) we may replace Y− by −(Y+−V ′(x)); this corresponds
to the fact that, in the large n limit, the behavior of Y (x) on the physical sheet (i.e. Y+) is related to the resolvent
of the model by

Y+ = V
′(x) + ��� Tr(x − M)−1 �

. (4-48)

5 Isomonodromic Tau function

5.1 Isomonodromic deformations and residue formula

In this section we briefly recall the definition of the isomonodromic tau-function given in [11] and compute
its logarithmic derivatives in the present case in order to compare it with the partition function. This
will lead to the main result of this section, Theorem 5.1, which explicitly gives this relation.

Consider a rational covariant derivative operator on a rank p vector bundle over CP 1

Dx = ∂x − A(x) , (5-1)

where the connection component A(x) is a p× p matrix, rational in x. Deformations of such an operator
that preserve its (generalized) monodromy (i.e. including the Stokes’ data) are determined infinitesimally
by requiring compatibility of the equations

∂xΨ(x) = AΨ(x) (5-2)

∂ui
Ψ(x) = Ui(x)Ψ(x) , i = 1, . . . . (5-3)

where in the second set of equations Ui(x) are also p×p matrices, rational in x, viewed as components of
a connection over the extended space consisting to the product of CP 1 with the space of deformation pa-
rameters {u1, . . .}. The invariance of the generalized monodromy of Dx follows [11] from the compatibility
of this overdetermined system, which is equivalent to the zero-curvature equations

[∂x −A(x), ∂ui
− Ui(x)] = 0 , [∂ui

− Ui(x), ∂uj
− Uj(x)] = 0 (5-4)

Near a pole x = cν of A(x) a fundamental solution can be found that has the formal asymptotic behavior,
in a suitable sector:

Ψ(x) ∼ CνYν(x)eTν(x) (5-5)

where Cν is a constant matrix,
Yν(x) = 1 + O(x− c) (5-6)

is a formal power series in the local parameter (x − cν) (or 1/x for the pole at infinity) and Tν(x)
is a Laurent-polynomial matrix in the local parameter, plus a possible logarithmic term t0 ln(x − c).
In the generic case Tν(x) is a diagonal matrix, and, more generally, may be an element of a maximal
Abelian subalgebra containing an element with no multiple eigenvalues. The locations of the pols cν

and the coefficients of the nonlogarithmic part of Tν(x) are the independent deformation parameters.
The deformation of the connection matrix A(x) is determined by the requirement that the (generalized)
monodromy data be independent of all these isomondromic deformation parameters.
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Given a solution of such an isomonodromic deformation problem, one is led to consider the associated
isomonodromic τ -function [11], determined by integrating the following closed differential on the space
of deformation parameters

ω :=
∑

ν

res
x=cν

Tr
(
Y −1

ν Y ′
ν · dTν(x)

)
= d ln τ IM , (5-7)

where the sum is over all poles of A(x) (including possibly one at x = ∞), and the differential is over
all the independent isomonodromic deformation parameters , In the present situation A(x) is our 2 × 2
matrix Dn(x) and the (generalized) monodromy of the operator ∂x − Dn(x) is invariant under changes
in the parameters cr, tr,J , aj and n.

5.2 Traceless gauge

For convenience in the computations we perform a scalar gauge transformation of the ODE by choosing
quasipolynomials rather than polynomials. Explicitly we set

Ψn(x) := e−
1
2~

V (x)Γn(x) =

[
ψn−1(x) ψ̃n−1(x)

ψn(x) ψ̃n(x)

]

~Ψ′
n(x) = An(x)Ψn(x)

An(x) = Dn(x) − 1

2
V ′(x)1, (5-8)

where
ψ̃n := e−

1
2~

V (x)ψn (5-9)

In this gauge the matrix of the ODE is traceless and the infinitesimal deformation matrices are trans-
formed correspondingly by addition of the identity element multiplied by the derivatives of − 1

2~
V (x)

with respect to the parameters {cr, trJ , aj}. This choice gives a consistent reduction of the general
gl(p,C) isomonodromic deformation problem to sl(p,C). (To be precise, this would require a further,

x–independent diagonal gauge transformation of the form diag(h
−1
2

n−1, h
1
2
n ) to render the infinitesimal de-

formation matrices also traceless.)
At each of the poles c0 := ∞, c1, . . . we then have the following asymptotic expansions. (To simplfy

notation, the index n is omitted in labelling the fundamental system Ψ and its local asymptotic form .)

Ψ(x) ∼ CrYr(x) exp







− 1

2~
Tr(x) + δr0



n+
1

2~

∑

r≥1

tr,0



 ln(x)



σ3



 . (5-10)

Here we have set

Y0(x) := 1 +

∞∑

k=1

Y0;k

xk
, C0 =

[
0

√
hn−1

1√
hn

0

]

Yr(x) := 1 +

∞∑

k=1

Yr;k(x− cr)
k ; Cr =

[
πn−1(cr)e

− V̌r(cr )
2~ (cr − Q)−1

n−1,0

√
h0e

V̌r(cr )
2~ ,

πn(cr)e
− V̌r(cr)

2~ (cr −Q)−1
n,0

√
h0e

V̌r(cr )
2~

]
, (5-11)

where V̌r(x) = V (x) − Tr(x) is the holomorphic part of the potential at cr. The asymptotic forms given
by (5-10)–(5-11) follow from the fact that, in any Stokes’ sector near cr, the second-kind solutions behave
like

ψ̃n(x) ∼
x→∞

e
1
2~

V (x)
∞∑

k=n+1

x−k

∫

κ

πn(z)e−
1
~

V zk−1 = e
1
2~

V (x)x−n−1
√
hn

(
1 + O

(
1

x

))
(5-12)

ψ̃n(x) ∼
x→cr

e
1
2~

V (x)

∫

κ

dz
e−

1
~

V (z)πn(z)

cr − z
(1 + O(x− cr))
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= e
1
~

V (x)(cr −Q)−1
n,0

√
h0(1 + O(x− cr)) (5-13)

Near the endpoints aj we have

Ψ(x) ∼ Aj · Yj(x) · exp [−κj ln(x− aj)σ+] , σ+ :=

(
0 1
0 0

)

Aj =



 πn−1(aj)e
− V (aj )

2~ e
V (aj )

2~

∫
κ
dz

e−
1
~

V (z)(πn−1(z)−πn−1 (aj))
aj−z

πn(aj)e
−V (aj )

2~ e
V (aj)

2~

∫
κ
dz

e−
1
~

V (z)(πn(z)−πn(aj ))
aj−z

,



 (5-14)

since the matrix

Ψ(x) · exp

(
−σ+

∫

κ

dz
e−

1
~

V (z)

x− z

)
=



 πn−1(x)e
−V (x)

2~ e
V (x)
2~

∫
κ
dz e−

1
~

V (z)(πn−1(z)−πn−1 (x))
x−z

πn(x)e−
V (x)
2~ e

V (x)
2~

∫
κ
dz e−

1
~

V (z)(πn(z)−πn(x))
x−z



 (5-15)

is analytic in a neighborhood of aj and has the limiting value indicated in (5-14). The function −
∫

κ
dz e

−
1
~

V (z)

x−z

in the exponential of the second matrix in this formula has the same singularity as κj ln(x − aj). (The
signs in (5-14 follows from the orientation of the contour originating at aj).)

The differential (5-7) can now be written

~d ln τ IM
n = −1

2

∑

r=0

res
x=cr

dTr(x)Tr
(
Y −1

r Y ′
rσ3

)
+
∑

j

res
x=aj

κjdaj

x− aj

Tr
(
Y −1

j Y ′
jσ+

)
(5-16)

where the differential involves the isomonodromic parameters only

d :=
∑

r=0

(
dr∑

J=1

dtr,J
∂

∂tr,J
+ dcr

∂

∂cr

)
+
∑

j

daj

∂

∂aj

=

K∑

r=0

d(r) +
∑

j

daj

∂

∂aj

(5-17)

We now derive residue formulæ for the deformation parameters and the logarithmic derivatives of the
tau function for our rational 2×2 isomonodromic deformation problem. These essentially are the same as
the formulæ of Thm. 4.2 giving the latter quantities in terms of logarithmic derivatives of the partition
function of the matrix model5.

Consider the quadratic spectral invariant near any of the singularities: by virtue of the asymptotics
(5-10, 5-14) we have, near cr and aj respectively (setting S := 2n~ +

∑K

r=1 tr,0)

Tr(A2(x)) = ~
2Tr((Ψ′Ψ−1)2) = ~

2Tr
((
Y −1

r Y ′
r

)2)
+ 2~Tr

(
Y −1

r Y ′
rσ3

(
T ′

r −
δr0S

x

))

+
1

2

(
T ′

r −
δr0S

x

)2

(5-18)

Tr(A2(x)) = ~
2Tr((Ψ′Ψ−1)2) = ~

2Tr
((
Y −1

j Y ′
j

)2)
+

2~κj

x− aj

Tr
(
Y −1

j Y ′
jσ+

)
. (5-19)

Taking the principal part at each singularity and using Liouville’s theorem (since TrA2 is a priori a
rational function) we find

Tr(A2(x)) =

K∑

r=0

[
1

2

(
T ′

r −
δr0S

x

)2

+
2

~

((
T ′

r −
δr0S

x

)
Tr(Y −1

r Y ′
rσ3)

)]

r,+
5The case of an arbitrary rank rational, nonresonant isomonodromic deformation problem will be developed elsewhere

[5], together with further properties that allows us to view these as nonautonomous Hamiltonian systems, in which the
logarithmic derivatives of the τ -function computed below, are interpreted as the Hamiltonians generating the deformation
dynamics.
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+
2

~

L∑

j=1

[
κjTr(Y ′

j (aj)σ+)

x− aj

]
(5-20)

where the subscripts r,+ mean the singular part at the pole x = cr (including the constant for x = c0 = ∞).
Consider now the spectral curve of the connection ~∂x − A(x)

w2 =
1

2
TrA2(x) , (5-21)

one immediately finds

w±(x) = ±

√√√√1

4

∑

r

(
T ′

r −
δr0S

x

)2

r,+

+
1

2~

((
T ′

r −
δr0S

x

)
Tr(Y −1

r Y ′
rσ3)

)

r,+

+
1

~

∑

j

[
κjTr(Y ′

j (aj)σ+)

x− aj

]

(5-22)
Near any of the poles one has the asymptotic behavior

±w± =





1

2
T ′

r −
δr0S

2x
+

1

2~T ′
r(x)

(
T ′

rTr(Y −1
r Y ′

rσ3)

)

r,+

+





O((x − cr)
dr+1) near x = cr

O(x−d0−2) near x = ∞
√

κjTr(Y ′
j (aj)σ+)

~(x − aj)
(1 + O(x − aj)) near x = aj

(5-23)

This immediately implies the following identities

n~ +
1

2

∑

r

tr,0 = ∓ res
x=∞

w±dx

1

2
t0,J = ∓ res

x=∞

1

xJ
w±dx , J ≥ 1

1

2
tr,J = ∓ res

x=cr

(x− cr)
Jw±dx (5-24)

and

~
2 ∂

∂tr,J
ln τ IM

n = ± res
x=cr

(x− cr)
−jw±dx (5-25)

~
2 ∂

∂cr
ln τ IM

n = ± res
x=cr

T ′
r(x)w±dx (5-26)

~
2 ∂

∂aj

ln τ IM
n = res

x=aj

(w±)2dx . (5-27)

In order to compare with the formulæ given in Thm. (4.2) we note that the eigenvalues w of A(x) and
Y of Dn(x) are related as follows due to the change of gauge (5-8)

Y± =
1

2
V ′(x) + w± . (5-28)

Comparing eqs. (4-35)–(4-38) with equations (5-25)–(5-27) we obtain

~
2∂t0,J

ln
Zn

τ IM
n

= − 1

2J
res

x=∞
xJV ′
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~
2∂tr,J

ln
Zn

τ IM
n

= − 1

2J
res

x=cr

1

(x− cr)j
V ′(x)dx, r = 1, . . . ,K, J = 1, . . . , dr

~
2∂cr

ln
Zn

τ IM
n

= −1

2
res

x=cr

T ′
r(x)V

′(x)dx, r = 1, . . . ,K,

~
2∂aj

lnZn = ~
2∂aj

ln τ IM
n . (5-29)

These relations define a closed differential

d ln

( Zn

τ IM
n

)
=: d ln(Fn) , (5-30)

where the quantity Fn is determined up to a multiplicative factor independent of the isomonodromic
deformation parameters {cr , tarJ , aj}J≥1, but which may depend on n. This may be explicitly integrated
to give

ln

(Fn

n!

)
=

1

2~2

∑

0≤q<r≤K

res
x=cr

T ′
r(x)Tq(x) , (5-31)

where we have chosen to include the integration constant lnn! for reasons that will be explained in the
remarks below. Note that Fn does not depend on the end-points parameters {aj}, only those entering
in the potential V . Since the definition of the isomonodromic tau function τ IM

n allows normalizations
depending arbitrarily on the monodromy data we obtain the following result.

Theorem 5.1 Up to multiplicative terms that are independent of the isomonodoromic deformation pa-
rameters {tr,J , cr, aj}, the partition function Zn = Zn({tr,J , cr, aj}|[κ]) of the generalized random matrix
model and the isomonodromic tau function τ IM

n for the associated ODE are related by

Zn = τ IM
n Fn, (5-32)

where Fn is given in (5-31).

We conclude with two remarks regarding the multiplicative factor Fn relating Zn and τ IM
n .

Remark 5.1 (Change of gauge)
The factor Fn can be eliminated by another choice of gauge. The original gauge is such that near any

singularity cr

Ψ(x) = CrYr(x)e−
1
2 Tr(x)σ3 . (5-33)

(The point x = ∞ would require slight modifications in the argument which do not, however, change the result.)
The original tau function satisfies

� 2
d(r) ln τ

IM
n = −

1

2
res
cr

Tr(Y −1
r Y

′
r σ3dTr) . (5-34)

We make a scalar gauge transformation, depending on an arbitrary parameter c, of the form

�
Ψ := Ψe−

c
2

V (x) = Cr

�
Yre

−( 1
2

σ3+ c
2
1)Tr (5-35)

where �
Yr := Yr(x)e−

c
2

fr(x) (5-36)

and fr(x) is the regular part of V (x) at the point cr

fr(x) :=
�

q 6=r

Tq(x) . (5-37)
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The tau function for the gauge transformed system satisfies

d(r) ln
�
τ

IM
n = res

cr

Tr � �
Y

−1
r

�
Y

′
r � σ3 −

c

2
1 � dTr � (5-38)

= res
cr

Tr � � Y −1
r Y

′
r −

c

2
f
′
r ��� σ3 −

c

2
1 � dTr � (5-39)

=
c2

2
res
cr

f
′
rdTr +

d(r) ln τIM
n� ��� 	

res
cr

Tr(Y −1
r Y

′
r σ3dTr)−

c

2
res
cr

=f ′

r� ��� 	
Tr(Y −1

r Y
′
r ) dTr (5-40)

=
c2

2
res
cr

f
′
rdTr + d(r) ln τ

IM
n , (5-41)

where we have used that fact that
TrY −1

r Y
′

r = 0 . (5-42)

Recall that

d(r) ln τ
IM
n = d(r) lnZn −

1

2
d(r) lnFn = d(r) lnZn +

1

2
res
cr

f
′
rdTr (5-43)

so that

d(r) ln
�
τ

IM
n =

c2 + 1

2
d(r)Fn + d(r) lnZn . (5-44)

It follows that if c is chosen so that c2 + 1 = 0 (i.e. c = ±i) we have

�
τ

IM
n = Zn,

up to a multiplicative factor independent of the isomonodromic deformation parameters.

Remark 5.2 (Schlesinger transformations) The shift n → n + 1 given by the ladder matrix Rn(x) corresponds
to an elementary Schlesinger transformation at infinity. (For more details on Schlesinger transformation see [12].)

In general a Schlesinger transformation corresponds to a shift by integers in the spectrum of the logarithmic
terms of the matrix T (x) entering the formal asymptotics. We see from formula (5-10) that the shift n → n + 1
amounts to increasing the first diagonal entry of the logarithmic term by 1 and decreasing the second entry by 1.
As shown in [12] the two corresponding tau functions are related by

τIM
n+1

τIM
n

= (Y0;1)12 (5-45)

where the right hand side is the (1,2) matrix entry of the matrix Y0;1 in eq. (5-11). A simple computation (using
eq. (5-12)) shows that

(Yn,0;1)12 = hn, (5-46)

in agreement with Thm. 5.1, since (by eq. (2-10))

Zn+1

Zn

= hn(n + 1) . (5-47)

This explains why the integration constant ln n! has been included in eq. (5-31); it assures that the dependence on
the discrete parameter n in the relation between Zn and τIM

n is consistent with that implied by the Schlesinger
transformations.
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