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Abstract. We find an explicit expression for genus 1 correction in Hermitian two-matrix model
in terms of holomorphic objects associated to spectral curve arising in large N limit. Our result
generalizes known expression for F 1 in hermitian one-matrix model. We discuss the relationship
between F 1, isomonodromic tau-function, Bergmann tau-functiopn on Hurwitz spaces, G-function of
Frobenius manifolds and determinant of Laplacian over spectral curve.

In this letter we derive an explicit formula for the 1/N2 correction to free energy F of hemitian
two-matrix model:

e−N
2F :=

∫
dM1dM2e

−Ntr{V1(M1)+V2(M2)−M1M2} (1)

when the eigenvalues of M1 and M2 are concentrated over finite sets of intervals (cuts).
It is hard to overestimate the interest to random matrix models in modern prhysics and mathe-

matics; we just mention their appearance in statistical physics condensed matter 2d quantum gravity
and number theory (see e.g. books [1, 2] and reviews [3, 4]) . The expansion F =

∑∞
G=0N

−2GFG (N
is the matrix size) in hermitian matrix models is one of the cornerstones of the theory, due to its clear
physical interpretation as topological expansion of the functional integral, which appears in N → ∞
limit; in statistical physics the term FG plays the role of free energy fo statistical physics model on
genus G Riemann surface.

From the whole zoo if the random matrices one of the simplest is the hermitian one-matrix model
with partition function e−N

2F =
∫
dMe−NtrV (M) (V is a polynomial), which can be used as testing

ground for the methods applied in more general situations of two- and multi- matrix models. In
particular, the one-matrix model seems to be the only case for which existence of 1/N2 expansion was
proved rigorously [5] using the method of Riemann-Hilbert problem proposed in [6]. In two-matrix
models, although the existence of this expansion is suggested by many physical reasons, the rigorous
proof is still lacking, thus we consider it as an assumption.

The most rigorous way to compute the 1/N2 expansion for both one-matrix and two-matrix models
is based on the loop equations. The loop equations follow from the reparametrization invariance of
matrix integrals; for one-matrix case the loop equations were derived in [7]; in [8] the loop equations
were used to compute F 1 for one-cut case of 1-matrix model; in [9] F 1 was computed for the two-cut
case. Recently an expression for F 1 of one-matrix model in two-cut case was also derived in [10]; the
formula for multi-cut case was derived in [11] following Kostov’s ideas [12]. Recently it was confirmed
in [13] in loop equations approach.

In [14] the loop equations were written down for the case of two-matrix model, and F 1 was found
for the case when the spectral curve has genus zero; in [15] the answer for genus 1 spectral curve was
found. For arbitrary genus of spectral curve of two-matrix model only the leading term F 0 is known;
it was recently computed in [16].

Let us write down polynomials V1 and V2 in the form V1(x) =
∑d1+1

k=1
uk
k x

k and V2(y) =
∑d2+1

k=1
vk
k y

k.
It is sometimes convenient to think of V1 and V2 as infinite power series: V1(x) =

∑∞
k=1

uk
k x

k, V2(y) =

1



∑∞
k=1

vk
k y

k, where coefficients uk vanish for k ≥ d1 + 2, and vk vanish for k ≥ d2 + 2. According to
this point of view the operators of differentiation with respect to coefficients of V1 and V2 have the
following meaning:

δ

δV1(x)

∣∣∣
x

:=

{ ∞∑
k=1

x−k−1k∂uk

}∣∣∣
uk=0 ,k≥d1+2

,
δ

δV2(y)

∣∣∣
y

:=

{ ∞∑
k=1

y−k−1k∂vk

}∣∣∣
vk=0 ,k≥d1+2

.

(2)
As it was discussed in detail in [17], to think of V1 and V2 as about infinite power series is not really
necessary: one can build the whole formalizm without appealing to infinite series; however, here we
use the notations (2), since this significantly shortens the presentation. In particular, according to
these notations,

δV1(x)
δV1(x̃)

=
1

x̃− x
,

δV1
′(x)

δV1(x̃)
=

1
(x̃− x)2

(3)

Consider the resolvents

W(x) =
1
N

〈
tr

1
x−M1

〉
and W̃(y) =

1
N

〈
tr

1
y −M2

〉
(4)

As a corollary of (3), the free energy of two-matrix model (1) satisfies the following equations with
respect to coefficients of polynomials V1 and V2:

δF

δV1(x)
=W(x) ,

δF

δV2(y)
= W̃(y) . (5)

Assuming existence of 1/N2 expansion, the equations (5) were solved in [16] in the zeroth order
assuming the finite-gap structure of distribution of eigenvalues of M1 (and, a posteriori, also of M2)
as N →∞.

Here we find the next coefficient F 1, using the loop equations and a natural additional assump-
tion. The spectral curve L is defined by the following equation, which arises in the zeroth order
approximation:

E0(x, y) := (V1
′(x)− y)(V2

′(y)− x)− P0(x, y) + 1 = 0 (6)

where the polynomial of two variables P0(x, y) is the zeroth order term in 1/N2 expansion of the
polynomial

P(x, y) :=
1
N

〈
tr
V1
′(x)− V1

′(M1)
x−M1

V2
′(y)− V2

′(M2)
y −M2

〉
; (7)

the point P ∈ L of the curve is the pair of complex numbers (x, y) satisfying (6).
The spectral curve (6) comes together with two mermorphic functions f(P ) = x and g(P ) = y,

which project it down to x and y-planes, respectively. These functions have poles only at two points
of L, called ∞f and ∞g: at ∞f function f(P ) has simple pole, and function g(P ) - pole of order
d1 with singular part equal to V1

′(f(P )). At ∞g the function g(P ) has simple pole, and function
f(P ) - pole of order d2 with singular part equal to V2

′(g(P )). Therefore, one gets the moduli space
M of triples (L, f, g), where functions f and g have this pole structure. The natural coordinates on
this moduli space are coefficients of polynomials V1 and V2 and g numbers, called “filling fractions”
εα = 1

2πi

∮
aα
gdf , where (aα, bα) is some basis of canonical cycles on L. The additional constraints

which should be imposed a posteriori to make the “filling fractions” dependent on coefficients of
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polynomials V1 and V2 are (according to one-matrix model experience, these conditions correspond to
non-tunneling between different intervals of eigenvalues support):∮

ba

gdf = 0 .

Denote the zeros of differential df by P1, . . . , Pm1 (m1 = d2 + 2g+ 1) (these points play the role of
ramification points if we realize L as branched covering by function f(P )); their projections on x-plane
are the branch points, which we denote we denote by λj := f(Pj) . The zeros of the differential dg (the
ramification points if we consider L as covering defined by function g(P )) we denote by Q1, . . . , Qm2

(m2 = d1 + 2g + 1); there projections on y-plane (the branch points) we denote by µj := g(Qj). We
shall assume hat our potentials V1 and V2 are generic i.e. all zeros of differentials df and dg are simple.

If is well-known [16] how to express all standard algebro-geometrical objects on L in terms of the
previous data. In particular, the Bergmann bidifferential B(P,Q) = dPdQ lnE(P,Q) (E(P,Q) is the
prime-form) can be represented as follows:

B(P,Q) =
δg(P )

δV1(f(Q))

∣∣∣
f(Q)

df(P )df(Q) (8)

The Bergmann bidifferential has the following behaviour near diagonal P → Q: B(P,Q) =
{

1
(z(P )−z(Q))2 + 1

6SB(P ) + o(1)
}
dz(P )dz(Q),

where z(P ) is some local coordinate; SB(P ) is the Bergmann projective connection . Consider also
the four-differential D(P,Q) = dPd

3
Q lnE(P,Q), which has on the diagonal the pole of 4th degree:

D(P,Q) = {6(z(P )−z(Q))−4+O(1)}dz(P )(dz(Q))3. From B(P,Q) and D(P,Q) it is easy to construct
meromorphic normalized (all a-periods vanish) 1-forms on L with single pole; in particular, if the pole
coincides with ramification point Pk, the natural local parameter near Pk is xk(P ) =

√
f(P )− λk;

then B(P, Pk) := B(P,Q)
dxk(Q)

∣∣∣
Q=Pk

and D(P, Pk) := D(P,Q)
(dxk(Q))3

∣∣∣
Q=Pk

are meromorphic normalized 1-forms

on L with single pole at Pk and the following singular parts:

B(P, Pk) =
{

1
[xk(P )]2

+
1
6
SB(Pk) + o(1)

}
dxk(P ) ; D(P, Pk) =

{
6

[xk(P )]4
+O(1)

}
dxk(P ) (9)

as P → Pk, where SB(Pk) is the Bergmann projective connection computed at the branch point Pk
with respect to the local parameter xk(P ).

Equations (5) in order 1/N2 look as follows (we write only equations with respect to V1):

δF 1

δV1(f(P ))
= −Y 1(P ) (10)

where the Y 1 is the (taken with minus sign) 1/N2 contribution to the resolvent W. The function Y 1

can be computed using the loop equations [14] and an additional assumption that∮
aα

Y 1(P )df(P ) = 0 (11)

over all basic a-cycles (which means that the “filling fractions” do not have the 1/N2 correction; the
arguments in favor of this assumption come from comparison of the answer with known expression of
F 1 in one-matrix model and symmetry of the final answer with respect to change of x and y).
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To write down the loop equation we introduce also the polynomial

E(x, y) := (V1(x)− y)(V2(y)− x)− P(x, y) + 1 , (12)

the function U(x, y), which is a polynomial in y and rational function in x:

U(x, y) :=
1
N

〈
tr

1
x−M1

V2
′(y)− V2

′(M2)
y −M2

〉
, (13)

and rational function U(x, y, z):

U(x, y, z) :=
δU(x, y)
δV1(z)

=
〈

tr
1

x−M1

V2
′(y)− V2

′(M2)
y −M2

tr
1

z −M1

〉
−N2U(x, y)W(z) . (14)

Then the loop equation looks as follows:

U(x, y) = x− V2
′(y) +

E(x, y)
y − Y (x)

− 1
N2

U(x, y, x)
y − Y (x)

; (15)

it arises as a corollary of reparametrization invariance of the matrix integral (1) [14]. The residue at
y = Y (x) of (15) leads to “master” loop equation for function Y (x) := V1

′(x)−W(x):

E(x, Y (x)) =
1
N2
U(x, Y (x), x) . (16)

To use the loop equations effectively we need to consider the 1/N2 expansion of all of their ingredients.
In this way we get the following expression for Y 1:

Y 1(P )df(P ) =
P1(f(P ), g(P ))df(P )
E0
y (f(P ), g(P ))

+
∑

Q6=P : f(Q)=f(P )

B(P,Q)
df(Q)

1
g(P )− g(Q)

; (17)

all ingredients of this expression arise already in the leading term, except P1. However, from (7) we
see that P(x, y) is a polynomial of degree d1 − 1 with respect to x and d2 − 1 with respect to y;
moreover, the coefficient in front of xd1−1yd2−1 does not have 1/N2 correction. Thus we can conclude
that the one-form Y 1(P )df(P ) is non-singular on the spectral curve outside of the branch points Pm
(where it has poles of order 4); moreover, the first term in (17) is non-singular on L (the first order
zeros of E0

y at the branch points are cancelled by first order zeros of df(P ) at these points). The form
of singular parts at Pm allows to determine Y 1(P )df(P ) completely in terms of differentials B(P, Pk)
and D(P, Pk) if we make the assumption of vanishing of all a-periods of the 1-form Y 1(P )df(P ) (11).
This assumption is justified a posteriori by comparison of final answer for F 1 with known expression
for F 1 in the partial case of 1-matrix model, and by the symmetry of final answer with respect to the
change of projection x↔ y.

Taking into account (11), we can write down the meromorphic 1-form Y 1(P )df(P ) in terms of
differentials B(P, Pk) and D(P, Pk):

Y (1)(P )df(P ) =
m1∑
k=1

{
− 1

96g′(Pk)
D(P, Pk) +

[
g′′′(Pk)

96g′2(Pk)
− SB(Pk)

24g′(Pk)

]
B(P, Pk)

}
(18)
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Then solution of (10), (18), which is symmetric with respect to the projection change (and, therefore,
satisfies also equations (5) with respect to V2), looks as follows:

F 1 =
1
24

ln

{
τ12
f (vd2+1)1− 1

d2

m1∏
k=1

dg(Pk)

}
+
d2 + 3

24
ln d2 (19)

where τf is the so-called Bergmann tau-function on Hurwitz space [21], which satisfies the following
system of equations with respect to the branch points λk:

∂

∂λk
ln τf = − 1

12
SB(Pk) ; (20)

In derivation of (18) we have used the following variational formulas, which can be easily proved in
analogy to rauch variational formulas [21]:

− δλk
δV1(f(P ))

g′(Pk)df(P ) = B(P, Pk) , (21)

δ{g′(Pk)}
δV1(f(P ))

∣∣∣
f(P )

df(P ) =
1
4

{
D(P, Pk)−

g′′′(Pk)
g′(Pk)

B(P, Pk)
}

(22)

The Bergmann tau-function (20) appears in many important problems: it coincides with isomon-
odromic tau-function of Hurwitz Frobenius manifolds [18], and gives the main contribution to G-
function (solution of Getzler equation) of these Frobenius manifolds; it gives the most non-trivial term
in isomonodromic tau-function of Riemann-Hilbert problem with quasi-permutation monodromies. Fi-
nally, its modulus square essentially coincides with determinants of Laplace operator in metrics with
conical singularities over Riemann surfaces [19]. The solution of the system (20) looks as follows [20].
Define the divisor (df) = −2∞f − (d2 + 1)∞g +

∑m2
k=1 Pk :=

∑m2+2
k=1 rkDk. Choose some initial point

P ∈ L̂ and introduce corresponding vector of Riemann constants KP and Abel map Aα(Q) =
∫ Q
P wα

(wα form the basis of normalized holomorphic 1-froms on L). Since some points of divisor (df) have
multiplicity 1, we can always choose the fundamental cell L̂ of the universal covering of L in such a
way that A((df)) = −2KP (for an arbitrary choice of fundamental domain these two vectors coincide
only up to an integer combination of periods of holomorphic differentials), where the Abel map is
computed along the path which does not intersect the boundary of L̂.

The main ingredient of the Bergmann tau-function is the following holomorphic maltivalued (1−
g)g/2-differential C(P ) on L:

C(P ) :=
1

W (P )

g∑
α1,...,αg=1

∂gΘ(KP )
∂zα1 . . . ∂zαg

wα1(P ) . . . wαg(P ) . (23)

where
W (P ) := det1≤α,β≤g||w

(α−1)
β (P )|| (24)

denotes the Wronskian determinant of holomorphic differentials at point P ; KP is the vector of
Riemann constants with basepoint P . Introduce the quantity Q defined by

Q = [df(P )]
g−1

2 C(P )
m+N∏
k=1

[E(P,Dk)]
(1−g)rk

2 ; (25)
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which is independent of the point P ∈ L. Then the Bergmann tau-fuction (20) of Hurwitz space is
given by the following expression [20]:

τf = Q2/3
m+n∏

k,l=1 k<l

[E(Dk, Dl)]
rkrl

6 ; (26)

together with (19) this gives the answer for 1/N2 correction in two-matrix model under the assumptions
discussed above.

If τf and τg are Bergmann tau-functions (20) corresponding to divisors (df) and (dg), respectively,
then (

τf
τg

)12

= C
(ud1+1)1− 1

d1

(vd2+1)1− 1
d2

∏
k df(Qk)∏
k dg(Pk)

(27)

where C = dd1+3
1 /dd2+3

2 is a constant independent of moduli parameters. Using the transformation (27)
of the Bergmann tau-function under projection change, we find that the solution expression (19) for
F 1 satisfies also the necessary equations with respect to V2. This could be considered as a verification
of consistency of our computation, which indirectly justifies our main assumption of non-singularity
of resolvents outside of the branch points.

Derivatives of function F 1 (19) with respect to the filling fractions look as follows:

∂F 1

∂εα
= −

∮
bα

Y 1(P )df(P ) ; (28)

these equations are 1/N2 counterparts of Seiberg-Witten type equations for F 0 found in [22, 16].
If potential V2 is quadratic, integration with respect to M2 in (1) can be taken explicitly, and the

free energy (19) gives rise to the free energy of one-matrix model. The spectral curve L in this case
becomes hyperelliptic, and the formula (19) gives, using the expression for τf obtained in [23]:

F 1 =
1
24

ln

{
∆3 (detA)12

2g+2∏
k=1

g′(λk)

}
(29)

where λk, k = 1, . . . , 2g+2 are branch points of L; ∆ is their Wronskian determinant; A is the matrix
of a-periods of non-normalized holomorphic differentials on L. Comparing this answer with previous
results, we see that in genus 1 it agrees with formulas of [10] (there is a slight deviation with formulas
of Akemann [9] due to a different choice of normalization). In higher genus formula (29) coincides with
formula (4.5) of [11] (whose derivation, based on the use of so-called star operator, follows unpublished
notes by I.Kostov); in the framework of loop equations expression (29) was verified in [13].

In strictly physical situation potentials V1 and V2 should be such that, considering L as a covering
defined by function f , one can single out the “physical” sheet (which includes point ∞f ) such that all
a-cycles lie on this sheet and each a-cycle encircles exactly one branch cut (all corresponding branch
points must be real if potentials V1 and V2 are real). Similar requirement comes from g-projection of
L.

F 1, isomonodromic tau-function and G-function of Frobenius manifolds. The genus
1 correction to free energy in topological field theories is given by so-called G-function (solution of
Getzler equation of associated Frobenius manifolds. In [24] it was found the following formula for
G-function of an arbitrary m-dimensional Frobenius manifold:

G = ln
τI∏m

k=1 η
1/48
kk

(30)

6



where τI is the Jimbo-Miwa tau-function of Riemann-Hilbert problem associated to a given Frobe-
nius manifold [18]; ηkk are metric elements of Egoroff-Darboux (i.e. flat diagonal potential) metric
corresponding to the Frobenius manifold, written in canonical coordinates.

One of the well-studied classes of Frobenius manifolds (corresponding to topological field theories
of type B) arises from Hurwitz spaces [18]. For these Frobenius manifolds the isomonodromic tau-
function τI [18] is related to Bergmann tau-function τf (26) as follows [25]: τI = τ

−1/2
f , where f

stands for meromorphic function on Riemann surface L. Threfore, the tau-function terms, which are
the main ingredients of the formulas (19) for F 1 and (30) for the G-function coincide (up to a sign,
which is related to the choice of the sign in the exponent in the definition (1) of the free energy).
The monodromy group of Fuchsian system corresponding to tau-function τI is not known explicitly
[18]; presumably, this monodromy group is generated by matrices of reflection. However, the same
function τI , being multiplied with certain theta-functional factor, gives tau-function of an arbitrary
Riemann-Hilbert problem with quasi-permutation monodromy matrices [26].

The metric coefficients of Darboux-Egoroff metric corresponding to Hurwitz Frobenius manifold
are defined in terms of an “admissible” 1-form ϕ, defining the Frobenius manifold:

ηkk = res|Pk
ϕ2

df
. (31)

If, trying to build an analogy with our formula (19) for F 1, we formally choose ϕ(P ) = dg(P ), we
get ηkk = g′2(Pk)/2 and the formula (30) coincides with (19) up to small details like sign, additive
constant, and the highest coefficient of polynomial V2 arising from requirement of symmetry f ↔ g.

Therefore, we got complete formal analogy between our expression (19) for F 1 and Dubrovin-
Zhang formula (30) for G-function. Unfortunately, for the moment this analogy remains only formal,
since, from the point of view of Dubrovin’s theory [18], the differential dg is not admissible; therefore,
the metric ηkk = g′2(Pk)/2 built from this differential is not flat, and, strictly speaking, it does
not correspond to any Frobenius manifold. Therefore, the true origin of the analogy between the
G-function of Frobenius manifolds and F 1 still has to be explored.

F 1 and determinant of Laplace operator
Existence of close relationship between F 1 and determinant of certain Laplace operator was sug-

gested by several authors (see e.g. [27] for hermitial one-matrix model, [15] for hermitian two-matrix
model and, finally, [28] for normal two-matrix model with simply-connected support of eigenvalues,
where F 1 is claimed to coincide with determinant of Laplace operator in the domain with Dirichlet
boundary conditions).

Howevere, even if we assume that the conjectures of existence of 1/N2 expansion of F and the
conjecture (11) are correct (which leads to our final formula (19),(26)) in the context of hermitial
two-matrix model (as well as in the case of hermitian one matrix model [27]) this statement is not
completely correct.

First, if we don’t impose any reality conditions on coefficients of polynomials V1 and V2, function
F 1 is holomorphic function of our moduli parameters (i.e. coefficients of V1, V2 and filling fractions),
while det∆ is always a real function. The Laplace operator ∆f which should be playing a role here
corresponds to the singular metric |df |2.

This problem disappears if we start from more physical situation, when all these moduli parameters
are real, as well as the branch points of the Riemann surface L with respect to both projections. In
this case F 1 is also real. However, there is another problem: namely, little is known about rigorous
definition (and, moreover, explicit expression) for determinants of such Laplace operators, although
such objects were actively used by string theorists without rigorous mahematical justification [29, 30]
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(rigorous results concerning Laplace determinants for metrics of this type in genus 0 were obtained
recently in [31], but the explicit formulas, and even rigorous definition of this object on Riemann
surfaces of higher genus is still missing).

The natural conjecture [19] is that, after an appropriate regularization of the type [31], the deter-
minant of Laplace operator ∆f is given by the formula

det∆f

Adet=B
= C|τf |2 (32)

where A is a reqularized area of L, ∆f is Laplace operator defined in singular metric |df(P )|2, B is
the matrix of b-periods of L, C is a constant. In the “physical” case of real moduli parameters the
conjectured expression (32) for ln{det∆f} coincides with our formula (19) up to a simple power and
explicit multipliers.

The relationship between hermitial and normal two-matrix models [28] on the level of F 1 seems
to be not as straigtforward as on the level of functions F 0 (F 0 for hermitian two-matrix mode can be
obtained from F 1 for normal two-matrix model by a simple analytical continuation [16, 17, 32]).

From the point of view of determinants of Laplace opertors the formula 27 which tells how the
Bergmann tau-function depends on the projection choice is nothing but a version of Polyakov-Alvarez
formula [33] for singular metrics.
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