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Abstract: We review the current knowledge of higher-derivative terms in string effective
actions, the various approaches that have been used to obtain them and their applications.

1 Higher-derivative string effective actions

Many aspects of low-energy string dynamics can be captured in terms of a Wilsonian
effective gravity field theory for the massless modes. Although it is often sufficient to
consider only the lowest-order supergravity actions, there are qualitative string predictions
for which knowledge about the subleading terms is required. Despite the fact that the
first results about the structure of higher-derivative string effective actions are almost
twenty years old, complete, supersymmetric invariants are still lacking, even at the first
sub-leading order in α′ beyond the supergravity level.

Four main techniques have been employed to derive supersymmetric higher-derivative
string effective actions. One is to simply try to construct the most general supersym-
metric invariant containing higher derivatives. Such an approach was pursued in the
early days [?], but it is extremely cumbersome (even on a computer) due to the enor-
mous number of terms and the problem of dealing with side relations such as Bianchi
and Ricci identities, as well as partial integration. A second method employs the relation
between string background field equations of motion and conformal invariance on the
world-sheet. This method is very useful for the NS-NS sector of string theory, for which
background field couplings are under control in the RNS formulation of the string, but
it becomes much more complicated for R-R background fields. The latter can at present
only be treated in the Berkovits formalism; the state of the art on such calculations can be
found in [?]. Thirdly, the standard supergravity technique of solving superspace Bianchi
identities is being pursued, with the higher-derivative terms arising from relaxed torsion
constraints [?, ?]. While such an approach is potentially very useful for the construc-
tion of existence or uniqueness proofs concerning higher-derivative invariants, obtaining
explicit component-space expressions in this way is very difficult. At present, the only
method which has shown promise to be powerful enough to determine, in practise, the
entire effective action in component form at sub-leading order is the construction directly
from string scattering amplitudes. In the present letter we review the current status of
this approach and comment on some related problems and often-raised questions.
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2 Killing spinors and supersymmetry-preserving solutions

One reason to study higher-derivative corrections to supergravity actions is that a knowl-
edge of them would allow us to study corrections to supergravity solutions, e.g. black
holes or D-branes. Such corrections are important because they influence entropy count-
ing (for an analysis in four dimensions see [?]) or predictions of the string/gauge theory
correspondence (see e.g. [?] for some initial steps in this direction). Many of these solu-
tions contain non-trivial gauge-field configurations. A full analysis is at present seriously
hampered by our incomplete understanding of the higher-derivative bosonic terms in the
effective action.

Interesting solutions are those which preserve at least some fraction of supersymmetry,
i.e. backgrounds in which the variations of the fermions vanish. For the gravitino in
M-theory this takes, at classical level, the form

δεψµ =
(
∂µ + 1

4
ωµν1ν2 Γν1ν2 + Tµ

ν1···ν4Fν1...ν4

)
ε = 0 , (1)

where F = dC and Tµ
ν1···ν4 = (Γµ

ν1···ν4 − 8δµ
ν1Γν2···ν4)/288. This equation gives rise to a

set of integrability conditions [Dµ,Dν ]ε = 0. These equations, together with the equation
of motion and Bianchi identity for the four-form, imply the equation of motion for the
metric. The existence of a Killing spinor satisfying (??) imposes severe restrictions on
the holonomy group associated with the vacuum solution, and restricts it to a subgroup
of the Lorentz group.

Higher-derivative corrections to the action do, however, modify (??), because superin-
variance at higher order means that there are corrections to the supersymmetry transfor-
mation rules: invariance of the action means that(

δ0 +
∑
n

(lP)nδn

)(
S0 +

∑
n

(lP)nSn

)
= 0 . (2)

More explicitly, the Killing spinor equation receives corrections of the form

δψµ =
(
∇µ + Tµ

ν1···ν4Fν1...ν4

)
ε+ (lP)6

(
DR3ε

)
µ

+ (lP)6
(
. . .
)
µ
. (3)

In certain situations, such as compactifications on large eight-manifolds, it is consistent
to ignore all the lP correction terms. This can be seen from a simple scaling argument.
Under a scaling of the eight-manifold g(8) → tg(8) the first two terms scale as t−3/2. The
third term, which is the C ∧R4-induced correction to the supersymmetry transformation
rules [?], instead scales as t−3. Therefore it is perfectly consistent, for large t, to use only
the lowest order Killing spinor equations (??), as was done in e.g. [?]. This is true despite
the fact that the four-form equation of motion does receive a correction from the C∧ t8R4

term in the action,

d∗F4 = 1
2
F4 ∧ F4 + (lP)6 t8R

4 + (lP)6
(
. . .
)
, (4)

where the suppressed terms involve fields other than the graviton (and are at present
completely unknown). Here the terms which are listed explicitly in (??) are all scale
invariant. Any other terms, for instance those arising from an R3F 2 term in the effective
action, scale with some negative power of t and will therefore be suppressed in the large-
volume limit. However, in general applications, these correction terms cannot be scaled
away. Several corrections to the supersymmetry transformation rules have been computed
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by us some time ago [?]. Incorporating the effects of higher-derivative terms and their
influence on the holonomy structure group is still an open problem.

Given that the left-hand side of the equation of motion (??) is closed, it is natural to
write it as

dF7 = 1
2
F4 ∧ F4 + (lP)6 t8R

4 (5)

(now meant to be read as an exact equation), supplemented by the duality relation

F7 = ∗F4 + (lP)6(. . . ) . (6)

This is the point of view taken in [?], where the physically non-trivial deformations of
this duality equation (or rather its superspace version) were analysed. In this form,
an interesting parallel to the type-IIB theory arises [?]. Instead of having two gauge
fields related by a duality condition, one there has a single gauge field with a self-duality
condition. The analogue of the deformation of the duality relation between F7 and F4

now becomes a deformation of the self-duality condition of F5 (or rather the composite
field strength F̃5 = dC4 + 1

2
B2 ∧ F3 − 1

2
H3 ∧ C2 with H3 = dB2 and F3 = dC2),

F̃5 + (α′)3 δS
(3)

δF̃+
5

= ∗
[
F̃5 + (α′)3 δS

(3)

δF̃+
5

]
. (7)

Some of these corrections have recently been computed by two of us [?].

3 Actions from string amplitudes

As stressed before, our approach is to derive effective actions directly from string theory
amplitudes. At genus zero and one, the amplitudes with four external gravitons have
been known for quite some time; these are relatively easy to compute and lead to the
well-known fourth-order action

S =

∫
d10x

√
−gt8t8R4 . (8)

This term is universal for all string theories. Beyond the four-point NS-NS sector, which
also includes the two-form field, the situation quickly becomes much more complicated.

There are several reasons why such amplitudes are hard to compute. One of them is
that the vertex operators for R-R gauge fields involve spin fields, the presence of which
makes the worldsheet fermionic correlators difficult to evaluate. Fortunately, generic
expressions have been derived [?] which completely resolve this problem and which avoid
any explicit operator product expansions.

A second and more serious problem concerns the integration over the odd supermoduli,
or more simply put, the integration over the inequivalent sectors of the world-sheet grav-
itino field. Consider a generic correlator, say at genus one in the odd/odd spin-structure
sector, expanded in powers of the gauge-fixed world-sheet gravitinos χ− and χ̃+:〈

V1(z1) · · ·Vn(zn)
〉

=

∫
DχDχ̄DXDΨ

[
V1(z1) · · ·Vn(zn)

]
exp

(
−S[X,Ψ]

)
× eφ+φ̃

(
1− 1

2πα′

∫
d2z χ̃+Ψ∂X(z)− 1

2πα′

∫
d2z χ−Ψ̃∂̄X(z) +

1

4πα′

∫
d2z χ̃+χ−ΨΨ̃(z)

+
1

(2πα′)2

∫
d2w

∫
d2z χ̃+Ψ∂X(w)χ−Ψ̃∂̄X(z)

)
. (9)
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The Grassmann integrals select the terms with one χ− and one χ̃+. One usually therefore
only considers the last two terms in this expression, which have the structure of so-called
“picture changing operators”. However, this is only a correct procedure if there are no
world-sheet gravitino modes in the vertex operators themselves, which is unfortunately
not true [?] (see also the early work [?]). For e.g. the NS-NS two-form vertex operator,
these additional terms are given by

V
(0,0)
B = V

(0,0)
B

∣∣∣
standard

− 1

6

∫
d2z Hµνρ

(
ΨµΨνΨρχ̃+ − Ψ̃µΨ̃νΨ̃ρχ−

)
eikρX

ρ

. (10)

Simple examples exist in which these gravitino terms really matter [?], and this issue
becomes more complicated for increasing genus.

Once the correlators have been computed, one is still left with integrals over the mod-
ular parameters and vertex operator insertion points. Despite the loop-by-loop finiteness
claim of string theory, these modular integrals are actually divergent for external momenta
in the physical regime. This is a well-known problem, present already for the four-graviton
amplitude at tree level [?] and typically circumvented by performing an analytic continu-
ation in the Mandelstam variables, computing the integral in terms of standard functions,
and then analytically continuing back. Unfortunately, this procedure in general requires
that the integral is cut up in various pieces, which each have to be analytically continued
in a different way [?]. This entire procedure makes it very hard to construct a systematic
expansion in α′ (let alone to do these integrals numerically). The origin of this problem
lies in the Euclidean formulation of string perturbation theory [?].

Having resolved several of these problems in [?, ?], two of us have recently been able
to perform the next step in the completion of the effective action (??) with other bosonic
fields. To give a flavour of the form into which these results can be cast1, we show here
the form of the genus-one contribution to W 2(DF+

(5))
2 terms in the effective action [?]:

S
W 2(DF+

(5)
)2

IIB =

∫
d10x

√
−g
(

(16 + λ)W 2
∣∣∣˜ − 4(16− λ)W 2

∣∣∣˜ + 192W 2
∣∣∣˜

+ 16
15

(16 + λ)W 2
∣∣∣˜

A

+ 32
3
W 2
∣∣∣˜ + 1

21
(16 + λ)W 2

∣∣∣˜
)

(DF+
(5)

∣∣∣˜+)2 . (11)

Here λ corresponds to a one-parameter ambiguity in mapping the string amplitudes to
terms in the effective action.2 This parameter is fixed by linearised supersymmetry to the
value λ = −16, leaving only three non-vanishing contributions in (??).

4 Superspace and superspace constraints

As discussed at length in [?], there is a close connection between supersymmetry transfor-
mation rules and superspace torsion constraints: the algebra satisfied by the supersymme-
try variations is isomorphic to that of the supercovariant derivatives, {Da, Db} = Tab

rDr.
1It should be mentioned that even when the relevant amplitudes have been calculated, the step of converting amplitudes

to effective-action terms may be quite complicated. This is, in particular, true for the R-R bilinear higher-derivative terms
to be discussed below, owing to the need to be able to recognise terms proportional to the lowest-order equations of motion.

2There are always ambiguities when translating on-shell string amplitudes to an effective action. Several terms with n
powers of the fields may lead to vanishing on-shell n-point amplitudes, and in addition there is the freedom of field
redefinition, which can be used to change the higher-order action by any term proportional to the lower-order field equations.
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This link provides a way to obtain string-/M-theory corrections to the superspace geome-
tries of ten- and eleven-dimensional supergravity theories through the construction of the
relevant higher-derivative supersymmetry invariants. Such corrections are, for instance,
of central importance for the study of higher-derivative corrections to kappa-symmetric
world-volume actions of D-branes and M-branes.

A crucial step in this programme to obtain corrections to the torsion constraints from
the component formalism was made in [?]. This involved the use of string input to cast
the d = 10, N = 1 supersymmetric completion (originally derived in [?]) of the term

IX = t8t8R
4 + 1

2
ε10Bt8R

4 (12)

in a compact “t8” form, together with the associated modifications of the supersymmetry
transformations of the basic fields. These were subsequently lifted to eleven dimensions.
It was found, however, that incorporating the IX superinvariant does not lead to any mod-
ifications of the superspace geometry. Using cohomological methods in superspace [?], it
has subsequently been shown [?] that any modification of eleven-dimensional supergrav-
ity that does not involve a non-vanishing lowest-dimensional component of the four-form
superfield, is trivial. Hence, in a component-space approach, we expect that the inclusion
(and supersymmetrisation) of higher-derivative gauge-field terms is necessary in order to
get explicit results for the corrections to the superspace geometry. It is also still possible
that such corrections arise from the supersymmetrisation of the term

IZ = −ε10ε10R
4 + 4ε10Bt8R

4 , (13)

appearing together with IX in the type-II effective actions. In [?] some partial results in
this direction were presented. More specifically, it was shown how a careful treatment
of left/right-mixing zero-mode terms in the bosonic two-point functions on the torus is
necessary to resolve an otherwise puzzling issue regarding the cancellation mechanism for
supersymmetry variations of the anomaly term.

Finally, let us comment briefly on the chiral superfield of the type-IIB theory [?], which
has been used to construct a superinvariant at the linearised level. If this construction
is extended to the non-linear level a chiral measure is required [?] in order to perform
the integration over the odd coordinates. Such a chiral measure is known not to exist as
there exists only one chiral superfield [?]. However, this does not necessarily prevent the
construction of an on-shell non-linear superinvariant, as the modified torsion constraints
relate the variations of the measure (or rather the full higher-derivative part of the action)
to the lowest-order supergravity action. While examples do exist in which a linearised
supergravity action based on chiral superfields requires the introduction of non-chiral
fields at the non-linear level (e.g. N = 3 conformal supergravity), all of these involve only
lowest order actions and none involve mixing through modified torsion constraints. In any
case, the scalar superfield is somewhat of a curiosity in the larger scheme of things, and
the only rigorous way to obtain information about non-linear terms in the effective action
at the component level is, at present, by computing them directly from string theory.
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