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1. Introduction

The multimatrix model, or chain of matrices is defined by the probability weight for N'+ 1

hermitean matrices of size N x N:

du(Mo, ..., My) = %Mmy“dMN€¥“ﬁﬁ5W@hFZﬁthﬂm (1.1)
—l(./\/'—i-l)NQ
Z = <2ﬁ> i eJTL;F
T
= /dMO o dM e T 0IAD0 Vi(Mi) =030, My My ] (1.2)

where M, (k = 0,...,N) are N x N hermitean matrices, and dM}, is the product of
Lebesgue measures of all real components of My. Z is the partition function, F is the free
energy. 1 is the temperature, it can be chosen equal to 1 in most of the paper, except

when one is interested in derivatives with respect to T'.



The potentials Vj, are polynomials of degree dy, + 1:

dk-i-l g
kg 4
Vi(z) = g0+ Z TJxJ . (1.3)
=1

In order for Z to exist, we have to assume that all V;’s are bounded from below on the
real axis. However, that constraint can be relaxed by studying ”normal matrices” instead
of hermitean matrices,! or by considering Z as a formal power series in the coefficients of
the potentials. For simplicity, we assume here that the V}’s are real.?

Each M lies in the potential well Vi and is linearly coupled to its neighboors M 4
and My.q1. My and My have only one neighboor, and thus the chain is open. So far, the
problem of the closed chain has remained unsolved.

The multimatrix model is a generalization of the 2-matrix model. It was often consid-
ered in the context of 2-dimensional quantum gravity and string theory. Its critical points
are known to represent the minimal conformal field theories, characterized by a pair of
integers (p, q). It is known that one can get a (p, q) critical point with a multimatrix model
where N/ = ¢ — 2. The necessity of studying multimatrix models can be understood from
the fact that the one matrix models contains only the critical models with ¢ < 2.

Recent progress have been made in the understanding of the two-matrix model [B]
[, B, [0, [§ [9, and it has been often noticed that the chain of matrices presents many
similarities with the 2-matrix model [E]

The loop equations of the 2-matrix model have been known for a long time [E,
and have been concisely written in [[[0] including the O(1/N?2) terms. The loop equations
for the chain of matrices have been written in an appendix of [[[3] and in a draft of [[[5]
without the O(1/N?) terms, and without any proof, and also with misprints. The present
paper is mainly a translation from french to english of the draft [L5], with proofs, and
additional results. It thus fills a gap in the appendix of [[3]. In particular, the 1/N? terms
are included, opening the way to finding next to leading order corrections as in [[0]. The
leading order solution is also presented in an an updated algebraic geometry language.

The paper is organized as follows:

1. introduction;
2. definitions of the loop functions;

3. the main result and its derivation: the master loop equation. Readers less interested
in technical details can skip the derivation;

4. to leading order, the master loop equation is an algebraic equation. We discuss its
solution;

5. computation of the free energy in the large N limit, along the lines drawn by [f];

T.e. the eigenvalues are located on complex paths instead of the real axis. For a potential of degree
di + 1, there are dj homologicaly non equivalent complex paths on which V} is bounded from below [E]

2Most of the results presented here remain valid for complex V}s. The asumption of real potential merely
allows to have a more concise derivation of loop equations.



6. computation of other resolvents and correlators in the large-IN limit;
7. next to leading order, along the lines drawn by [[q, [[];
8. examples (2 and 3-matrix models, gaussian case, one-cut case).

The most important results of this paper are the master loop equation eq. (, the
free energy eq. (f.2), the two-loop function eq. (B.H), the mixed correlators eq. (f.§),
eq. (F28) and cq. (BI5).

2. Definitions

2.1 Moments

We define the moments:
1 1
Tngmi,ema = 537 (tr MEO M. M) + N (tr MN ... M M©) (2.1)

where () means averaging with the probability measure of eq. ([[.1]). If all the potentials
Vi’s are bounded from below, it is clear that the moments are well defined convergent
integrals. If on the contrary the Vj’s are not all bounded from below, then the moments
are only formaly defined through their expansions in the coupling constants.

2.2 The complete one loop-function

We define the complete one loop-function as follows:

o0
Tno,nh---,n/\f
W20, san)i= Y, ot (2.2)
n0,...,nA =0 0 1 C AN
which can also be written
1 1 1 1
Wizo,..., = —(t
(ZO ZN) 2N<rZQ—M02’1—M1 ZN—MN>+

1 1 1
——=(t .
+2N<rZN—MN Zl—Mlzo—MQ

(2.3)

Notice that it is only a formal definition (even when all the potentials are bounded from
below), it makes sense only through its power expansion in the vicinity of all z;, — co. That
function is merely a convenient concise notation for dealing with all the moments at once.

2.3 Uncomplete one loop-functions

We also define “uncomplete” loop-functions. For any integer k& between zero and N + 1,
and for any ordered subset of [0, N] I = {i1,...,ix} (0 < i1 < iy < ... < i < N), we

define:
1 1 1 1
W; i (ZigseenyZi) i= ——= (1t -
21,...,zk(Z21, 7zlk) ON < T - Mi1 i — Mig 2 — M. >‘|‘

K




n 1 <t 1 1 1 >
2N rzik—Mi .”Zig_Migzil_Mi
= (~1)NV*1"* Res H dzj W(zo,...,2n)
J¢I
= Pol Wi(z,...,2n) H 2j (2.4)
zj, J¢1 iél

where Pol means the polynomial part in the vicinity of co.

2.4 The resolvents

As a special case of eq. (P-4), the resolvent of the k' matrix of the chain is defined by:

1 1
W, = —(tr———— 2.5
o) =y (o =5 ) (25)
In particular, the resolvent of the first matrix of the chain will play a prominent role:
1 1
W = —(tr—— ). 2.6
0(20) N<rzo—Mo> (2.6)

The master loop equation derived in section is an equation for Wy(zg) as a function of
20, and in section [|, we determine the large-N limit of Wo(zp). In section b.1, we derive
the large-N limits of the other resolvents Wy.

Instead of Wy(2p), it appears more convenient to consider the following function:

Zl(Zo) = VOI(ZQ) — TW()(Z()) (2.7)
and more generaly we define:

Z_1(z0) == TWo(20)
Zo(20) = 20 (2.8)
Zlc—i—l(ZO) = Vé(Zk(ZQ)) — Zk_l(Z(]) 1 § k’ S N

For short, we write:
Zy = Zx(20) - (2.9)

Notice that all Z;’s are polynomials in both zg and Wy(zp), and therefore, any polynomial
of the Z;’s is a polynomial in zy and Wy(z).
2.5 Polynomial loop functions P and U
We define the functions fj (2, ..., 21):

ka =0 ifl<k-1

Jreg—1:=1

Jer(2r) == Vi(z)
Sear1(Zes - z101) = Vi () fea (e - 21) — 2z feg—1(2h, - 211) -

(2.10)



Then we define for k < {:

Pri(20,...,27) = Pol fea(zrs oo, 2)W (20,5 210) (2.11)

Rhyeees

where Pol means the polynomial part in the vicinity of co. Pj; depends on N +1 variables,
and is polynomial in the variables zg, ..., z;.

By definition of f; we have:

Pk,l(ZO7 e ,ZN) = P}fl)l W,(Zl)Pk,lfl(Z()y e ,ZN) — Pol Zl—1 %] Pk,l72(207 e ,ZN) . (212)

Z1521-1

In particular, we define:
P(zo,...,2x) == Pon(20,- -, 27) (2.13)
which is polynomial in all the variables, and
U(zo,...,2n) == Pia (20, ., 20) (2.14)

which is polynomial in all the variables but zg.

We also define:

E(z0,...,27) == (V§(20) — 21) (Vir(zn) — 2nv—1) = TP (20, - - -, 25) (2.15)

which is also a polynomial in all variables. These polynomials will play an important role
in the master loop equation.

2.6 2-loop functions

We define the loop insertion operator as in [

0 19 X k 0
D

Sk+1 gk

= —— — 2.16
aVi(z) 20910 (2.16)

k=1

where Vj(2) = g10 + Zkzl ng”“zk, and the derivatives are taken at g;, = 0 for k > d; + 1.
It is a formal definition, which makes sense only order by order in its large z expansion.
It is such that (for |z| > |2/]):
V(') 1 V() 1

Vi(z) ORI Wi(z) _5kvlm- (2.17)

When applied to eq. ([.2), it produces a resolvent, i.e. the expectation of a trace:

OF _ qwiy=-L <tr ! > (2.18)

and more generaly, the action of 9/9V;(z) on an expectation value inserts a new trace.



In particular, we define the following two loop functions (i.e. two-traces):

]
oVi(2)

Wilzo,... 2n52) =T W(z0,...,2x)

1 ¢ 1 1 1 ; 1 n
= = T T
2 Zo—M()Zl—Ml Z/\/’—MN Z—Ml

+1 ¢ 1 ; 1 1 1
- T T —
2 Z—Ml ZN—MN Zl—Mle—MO

~N2Wy(2)W (20, - - -, 27) (2.19)
0
ml,...,ik;l(Zil, cee s 2 Z) = TWWily---vik (Zil, . ’Zik)
= (=DM "k Res H dzi Wy(zo, ..., 275 2) (2.20)
j¢l
Pk,l;j(ZO7 ce s RN Z) = szOlzl fk,l(zk, e ,Zl)VV;j(ZQ, ey BN Z) (221)
Pj(20, .-, 2n52) = Ponj(20,- -, 203 2) (2.22)
Uj(20,--- 273 2) == Piaj(20,- -5 205 2) - (2.23)

In particular, the following two-loop functions will play an important role:

OW(2) 0’F oW (z)
W . I; — T = — — T — W ; /
1 R Y e R A
1
=(t t 2.24
<rZ—erZ/—Mk c ( )
where the subscript ¢ means connected part < AB >.:=< AB>— < A>< B >.
3. Loop equations
3.1 Main result: the master loop equation
We prove below that the master loop equation (named after [22]) can be written:
T2
E(ZQ, Zl, . ,ZN) = WU;Q(ZQ, Zl, e ,ZN; ZQ)
(3.1)

where the functions Zj(z0) have been defined in eq. (R.§). Examples for N' = 1 (the
2-matrix model) and V' = 2 (the 3-matrix model) are explicited in section .

As an intermediate step in proving eq. (B.J]), we need to prove the following formula
foralll1 <k <N:

(2 = Z)Wok,.. N(205 Zks - -, 2N) = Wo k1, N (20, 2kt 1, - -5 ZN)
—Po k1020, 21, o, L1, 2k - -, ZN)
T

_mpl,k—l;O(ZO, Z1yeoiy 1,y 2y -+ 2N 20)

(3.2)



3.2 Derivation of the master loop equation
e Proof of eq. (B.9) for k = 1:

The invariance of the matrix integral under the infinitesimal change of variable
(see [I4, B, 0], and pay attention to the non-commutativity of matrices, and to
the hermiticity of the change of variables):

T 1 1 1 1
oMy = — .
221—M122—M2 ZN—MNZO—MO
T 1 1 1
= (3.3)
QZo—MQZN—MN ZQ-MQZl—Ml
implies
T
TWo(20)W (20,21, --527) + mVV;O(ZOaZla e ENG20) =
= ‘/OI(ZO)W(ZO, Zlye-- ,ZN) — PO,O(ZO72'17 e ,ZN)—
—2iWoi, N(20, 21, -, 2n) + Woa  n (20,22, .., 28) (3.4)

The Lh.s. comes from the jacobian of the change of variable, and the r.h.s. comes from
the variation of the action. The first two terms of the r.h.s. come from § tr V(M) =
tr Vg (Mo)dMp, and use of eq. (A.F). The last two terms of the r.h.s. come from
§tr MoM; = tr M15Mp, and use of eq. (A.).

Using Z; = Vjj(z0) — TWy(20), this can be rewritten:

(z1 = Z0)Wou,. . .N(20, 215 2n) = Woo, N (20,225 -5 28)—
—Py (20,21, -5 2N)—

—mmo(ZO,Zl,...,ZN;Zo). (3.5)

Therefore we have derived eq. (B.d) in the case k = 1.

e Proof of eq. (B.9) for k = 2:
Notice that eq. (B.§) implies:

— Res dz1 W (20, 21, 22, - -, 20) Vi (21) = VI (Z1)Wo 2, n (20, 22, -+, 200) —
—Po1(20, 21,22,y 2N)—
_WQ,...,N(Z25 s 7ZN)_
T
_mpl,l;()(z(% Zl, 22y y EN Zo) . (36)
The change of variable:

1 1 1 1 1 1 1 1

oM, = — —
! 22’2—M2 ZN—MNZO—MQ+220—M02N—MN ZQ—MQ

(3.7)

gives (since M is independant of M there is no jacobian, the Lh.s. is zero, and the
r.h.s. is the variation of tr V{(My) — MoM; — My My):

0 = —Res dz1 W (20, 21, 22, - - ., 2n) V] (21) —



—20Wo,. . N(20, 22, ... 2N ) + Wa  n(22,.. ., 28)—

—Z2WO72,.“7/\/’(ZO, TR ,ZN) + W()’g,m”/\/’(Z(], 23y ,Z/\/’) (38)

Le., using eq. (B.6) and V{(Z1) = 2o + Zo:

(Z2 - ZQ)WO,Q,...,N(ZO, 22y aZN) = W0,3,...,N(Z05 23y .- aZN)_
—Po1(20, 21,225+ -y 2N) —

—WPLI;O(ZO,ZMZ%---7ZN§ZO)- (3.9)

Therefore we have derived eq. (B.9) in the case k = 2.

Proof of eq. (B.2) by recursion on k:

We have already proved eq. (B.2) for £ =1 and k = 2. Now assume that eq. (B.9)
holds for £ — 1 and k, we are going to prove it for k + 1.

Note that eq. (B.J) for £ — 1 implies (multiply by z,_; and take the residue at
2p—1 — 00 and z — 00):

Res dz—1 Res dz 25— 1Wo -1k, N (20, Zk—15 Zhs Zh 15 - - - 2N) =
= Zi—aWo k41, N (20, 2kt 15 - -1 2N) —
T Pol P
— m Zk_?zk ZkZk—1 17]6_2;0(20, cee 9y RN ZO)|Zo=Zo7m72k=Zk (310)

and eq. (B.2) for k implies (multiply by V}/(z)) and take the residue at zj, — oo):

—Res dzg, Vii(2) Woket1,... 8 (205 Zhs Zht1s - - -5 2N) =
= Vi(Z)Wo kst N (205 Zht1s - - ZN)—
- onkl Vk:(zk)PO,k—l(ZO’ s 72./\/){

20=20s-,2k =2k

T
— ﬁ chk)l Vkl(zk)Pl,k—l;O(ZO, ey BN ZO)‘ZO:ZO7~~~7zk:Zk . (3.11)
Then consider the change of variable:
1 1 1 1 1 1 1 1
2241 — Mpt1 anv—Myzo— Mo 220 — Mozy — My zkp1 — Mg
(3.12)
it gives
0 = —Res dzi, Vi (2k) Wo ke k1, N (205 Zhs 2kt 15 - - 2N) —

—Res dzp_1 Res dzp, 21,1 Wo k-1, N (20, Zk—15 - -, 2N) —
— 2k tWokt1,. N (205 2kt 15 - -5 2N) + Wo kg2, N (205 Zkg2, -, 28)  (3.13)

using eq. (B.10) and eq. (B.11), as well as V}/(Zx) = Zx—1 + Zg41, we get eq. (B-2)
for k + 1.



e cq. (B.2) for k =N:

In particular, the previous recurrence derivation shows that eq. (B.2)) for k = N
reads:

(2n = Zn)Won (20, 2x) = Wol20) — Ponv—1(20, Z1; -+ s ZN—1,27) —

N2P1N 10(’20521""7Z/\/’*1’Z/\/’;Z0)' (314)

e Proof of eq. (B.1)):
In particular, from eq. (B-J) for K = N — 1 we derive:

Res dzpy—1 Res day a1 Wo 201 20 (205 20 =1, 20) =

- ZN*lWO(ZO) T NPCI)} 2N ZN*lZNPOvN*Q(ZO’ cee 7ZN)|z0:Z0,...,ZN:ZN
T
-3z zNP?,l AN-1ZNPLN—10(205 -5 205 20) | om 70 o=z (3.15)

and from eq. (B.14), we derive:

—Res dzn Vir(zn) Won (20, 213v) =
= Vi (Zn)Wo(z0)—

— Pol Vi (en)Pov—1(20s - 28| e ™

T
N2 POl VN(Z/\/’)Pl/\/’ 10(20, s RN ZO)‘ZO:ZO,...7ZN:ZN . (316)
Then, the change of variables
SMy = — (3.17)
N = Mo '
gives
0 = —Res dzn Vir(zn) Won (20, 207) —
—Res dzy—1 Res den 2nv—1Wo sy 20 (20, 20—1, 2N) (3.18)
i.e., using eq. (B.19) and eq. (B.16):
0= (Vx(Zn) — Zn-1)Wolz0) — Pon(Zo, - .. Zn)—
T
—zhiwvio(Zos - Zns z0)- (3.19)
Recalling that Z; = V{j(z0) — TWy(20), we get:
(Vo (Zo) - Zl)(V/(/(ZN) —ZNn—1) = TP (Zo, 2, .. Zn) =
PlNO(ZO7Z17"'7ZN;ZO) (320)

N2
which ends the proof of eq. (B.]).

,10,



4. Large N leading order, algebraic equation

Throughough this section and sections 5 and 6, we abusively denote with the same name,
the loop functions and their large-IN limits.
To leading order, the master loop equation reduces to an algebraic equation for Wy as
a function of zy:
E(Zo,Zl,...,ZN):O (41)

where Z1 = V{j(20) — TWy(20) and Zyy1 = V(Zy) — Zi—1.

FE is a polynomial of given degrees in each variable, and with known leading coeffi-
cients. The problem is that most of the subleading coefficients of F(zq, 21, ..., 2z ) are not
determined by the loop equations. They are determined by additional hypothesis, which
will be explained in section [.§. Prior to that, we need to study the geometry of that
algebraic equation.

The complex curve Wy (equivalently Z7) as a function of zy is a one-dimensional
submanifold of CN*1, which is the intersection of A" dimension A algebraic submanifolds.
The curve Wy as a function of zq is thus a Riemann surface £.

Instead of viewing the Z’s as (mutivalued) functions of zg, it is more appropriate to
view the Zj’s as (monovalued) complex functions over &:

p— zr(p) (4.2)

such that for all p € &:
Zi(20(p)) = 2(p) - (4.3)
Since the function zg(p) is not injective, i.e. the point p such that zo(p) = zp is not

unique, the Z’s are multivalued functions of zg. Similarly, one could consider any z; as a
multivalued function of any z;.

Instead of dealing with multivalued functions, we slice £ into domains called sheets,
such that in each domain the functions we are considering are bijections. The zg-sheets
are thus domains in which the function zy(p) is injective. More generaly, the zj-sheets are
domains in which the function z(p) is injective.

Let us study the zg-sheets first. For that purpose, we define:

r_1 = -1
To = 1
Tk ::dodl...dkfl, ]C:L...,N—i‘l (44)
Sa+1 = —1
sy =1
s i=dpyr--dy_1dy, k=-1,... N —1.
4.1 zp-sheets
The equation
E(Zo,Zl,...,ZN):O (45)

— 11 —



has degree 1 + dids...dy in Wy and degree dody ...dy in zg. Therefore, Wy(zg) (or
equivalently Z7) is a multivalued function of zg which takes 1+ dids ... dy values: in other
words, there are 1 4 didy...dy 2zp-sheets. We identify these sheets by looking at the
asymptotics of Zn when zg — oo.

e The physical sheet

From eq. (B6), there must exist at least one solution of the algebraic equation such
that:

Wol(zo) ~ l+o<i> (4.6)

20— 2o 2’8

which implies that:
2 = O(2") (4.7)

and in particular
N = O(zgodl"'del) . (4.8)

The zg-sheet in which these asymptotics hold is called the zg-physical sheet.

e Other sheets

Notice that the equation for Was(zpr) as a function of zar is the same algebraic
equation. In other words, there is a solution of the algebraic equation which is such
that:
2 = O(23), S =dpy1...dy_1dy (4.9)
i.e.
N = O(zé/dl"'dN_ldN) ) 2 = O(zé/dl"'d’“) ) (4.10)

Since the number of sgh roots of unity is exactly sg = dj ...dy_1dn, we have all the
solutions.

We thus have ro+sg = 14d; ... dy—1dy sheets. In one of them we have zy ~ O(z,V),
and in the dy ...dy_1dy others we have zg ~ O(z}}).

4.2 Algebraic geometry

We now consider the algebraic curve £ in a more geometric language. An abstract point
p € £ can be represented as a couple (zg,z1) such that z; = Zi(2), or by any other
parametrization. For instance it can be described as a point of CV, at the intersection of
N codimension 1 manifolds.

Algebraic geometry is an active and important part of mathematics, and lots of tools
have been invented to describe the geometry of algebraic Riemann surfaces. We refer the
reader to [[L6, [7] for an introduction.

A Riemann surface is locally homomorphic to the complex plane C, that means that
small domains of £ can be maped on small domains of C. The map, which is one-to-one
and holomorphic in that domain is called a local parameter, let us call it:

peé& —up)eC. (4.11)

- 12 —



Any complex valued analytic function on £ can be localy represented by an analytic function
of x(p).

For instance, zp = zg(p) is often a good local parameter on £, except when zg ap-
proaches a singularity. Therefore all functions on £ can be localy written as functions of
zg. They can also be locally written as functions of any z.

Notice that the function zg(p) is not injective, it takes the same value zo for different
points p, namely the same value of zg corresponds to 1+ sg points p. Therefore the function
z1(p) which is a well defined monovalued function on £ is a multivalued function of zy. The
zp-sheets are domains of €& where the function z((p) is injective. In particular in each sheet,
there is only one point p,, where zyg — oo.

Let poot be the point in the physical sheet, such that zg(psot) = co. In the vicinity of
Poot, we have eq. (£7):

2(p) ~  2*(p) (4.12)

P—Poc+
i.e. Zp(zp) is analytical, which indicates that zg is a good local parameter near poo ..
Now, let poo— be the point at oo in the za~-physical sheet, i.e. where zpy(poo—) = o0
and with behavior eq. ([£9):

ak(p)  _~ 2 (p) (4.13)

i.e. Zi(znr) is analytical, which indicates that zys is a good local parameter near po—. In
the vicinity of poo—, the function zo(p) takes the same value zg, sg times, therefore there
are sg sheets which meet at p,_. It is clear that zg is not a local parameter near po,_, but
ZN is.

It is also clear that there can be no other point p such that zg(p) = co. The algebraic
curve £ has only two points at co.

Notice that the intermediate z;’s with 0 < & < A are not appropriate local coordinates
near poo4+ neither near po,— (unless many of the dy’s are equal to 1).

Let us summarize as follows:

- The function zx(p) has a pole of degree ry = dod; ... dg_1 near psot. 20(p) is a local
parameter near poo.;

- The function z(p) has a pole of degree s = diy1...dy—1dp near poo—. zp7(p) is a
local parameter near pyo_;

- The function zx(p) has no other pole.
Remark. From eq. ([L.6), it is easy to prove by recursion that:

Res zp_1dz, = —T = — Res zp41dzg Res zgy1dzp = =T = —Res zp_1dz . (4.14)
Poo+ Poo+ Poo— Poo—

4.2.1 Genus and cycles
Let g be the genus of €. It can be proved (using the Riemann-Roch theorem, or the method

of [[9)) that

N
G < Gmax 1= H dp —1. (4.15)
k=0
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Notice that the polynomial P has 1 + gmax coefficients, and its leading coeflicient is fixed,
i.e. gmax is the number of coefficients of P not fixed by the loop equations.
Let A;,Bi(i =1,...,g) be a canonical basis of non-trivial cycles on &:

Ai(B; =63 (4.16)

the choice of non-trivial cycles is not unique, and we will see below one possible convenient
choice.

4.2.2 Endpoints

If z; is considered as a function of z; (k # 1), it has singularities (branch points) everytime
that:
dzi(p) =0. (4.17)

Indeed at such a point we have: z/(z) = dz;/dz, — oc.
The zeroes of dzy(p) are called the endpoints, and are noted:

eri, (i=1,...,1+s,+2g). (4.18)

Generically, the zeroes of dz; are simple zeroes and they are all distinct, which means
that z; behaves as a quadratic function of a local parameter x, while z; behaves linearly in
x. Therefore, z;(2;) has a square root branch point near zj(ey ;).

4.2.3 Critical points

It may happen that some endpoints coincide. This is called a critical point. It is not
a generic situation, it happens only if the potentials V}’s are fine tuned to some critical
potentials. The critical points are relevant for finding the representations of (p, ¢) minimal
conformal models. A (p,q) critical point, is such that there exist k # [, and a point e € £
such that: dzp has a zero of degree p — 1 at e and dz; has a zero of degree ¢ — 1 at e. Near
e, z as a function of z; behaves with a p/q exponent.

From now on, we assume that the potentials V} are not critical, i.e. the endpoints are
all simple and distinct.

4.2.4 Cuts

The cuts in £ are the contours which border the sheets. Viewed in the zg-plane they are
lines in C joining two endpoints.

That choice of lines (i.e. the choice of sheets) is largely arbitrary, provided that they
indeed go through the endpoints.

There is a canonical choice, which comes from [[[3], given by the contours where the
asymptotics of the biorthogonal polynomials and their Fourier and Hilbert transforms, have
discontinuities, i.e. some Stokes lines. That canonical choice is defined as follows: the set
of zx-cuts (contours on &) is the set of points p € £ such that there exists p’ # p with

2x(p') = z1(p) and
R </,, Zk+1dzk) =0 (4.19)
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remark that for all p and p’ such that zj(p) = z(p") we have:

/

P P P
/ Zp+1dz = / (Vi (zk) — 2p—1)d2), = —/ Zp—1dzy (4.20)
P p P

so that the canonical cuts are left unchanged if we reverse the order of the chain.

4.3 Sheet geometry

We are going to describe briefly the sheet geometry, see figure ([]) for a better vizualization.

The equation zx(p) = z; has i + s solutions for p, i.e. the curve & is divided into
rr + Si sheets. When zp — oo, 1 solutions approach poy, while s; approach py_. In
other words, r; sheets contain poo, while si sheets contain peo_.

Let us denote Cj the contour which separates the reunion of sheets containing poo+
from the reunion of sheets containing p.—, oriented such that it turns around po. in the
positive direction. That contour Cj will play an important role later. Note that Cj is not
necessarily connected (as in our example figure [).

Let us also denote:

o piik(zk) (=1,...,r) all the solutions of z;(p) = 2, which are on the same side of
Cr than poy,
o e p_jn(z) (j=1,...,s;) all the solutions of z(p) = 2, which are on the same side

of Ci than poo_.

A

S

Figure 1: Sheets for z;: example with ry = 6, s =4 and g = 1. The two black cirlces represent
DPoo+ and poo—. The empty cirles are the r + s + 2g endpoints. The thick lines, going through the
endpoints, are the cuts separating the sheets. Each region separated by lines is a sheet, there are
r + s, sheets. The sheets form “flowers” near poo+ and po— (the petals have an angle 27 /ry, near
Poot and 27/sg near poo—). There are g “handles”, with A4 and B cycles: here A can be chosen as
a cut, and B is represented as a thick dash-dot line. Each cross x (one in each sheet) represents a
point p € &, such that zp(p) = 2.
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4.4 Filling fractions

It is well known that the discontinuities of Wy(zp), i.e. the discontinuities of Z_;(zp) along
the Zy-cuts in the physical sheet are related to the large-IN average density of eigenvalues
of the matrix My:

1 , .
polz0) = —5—(Wo(zo +10) — Wo(z0 —0)). (4.21)
The support of pg is the set of cuts of Z_1(zp), with endpoints the zy(eg;)’s which belong
to the physical sheet.
The ratio of the average number of eigenvalues in a given connected component of the

support of pg to the total number N of eigenvalues is a contour integral:

1 o(eo0,i+1) 1
6 = /Zo(eo’i) p(z0)dzg = ~ 5T %z_ldzo (4.22)
where the contour of integration on & is one of the zg—cuts defined in section [[.2.4], oriented
in the clockwise direction. €; is non-zero only if the contour is a non-trivial contour, or if
it encloses a pole Poot O Poo—.

Therefore, there are at most g + 1 possible values of ¢;, the support of the density has
at most g + 1 connected components.

It is possible to choose the potentials V7, ..., Vs such that all the non trivial cycles A;
are in the physical sheet, and such that the cycles A; are all cuts. The filling fractions in
that case are the A-cycles integrals:

1
= —— _1dzg . 4.23
€ % A 2-1020 ( )
For more generic potentials, we define the filling fractions by eq. (J.23)), eventhough
they don’t really correspond to numbers of eigenvalues. The cuts are integer homological
linear combination of A-cycles.

We also define the chemical potentials as the B—cycle integrals:

L= —% z_1dzp . (4.24)
B;

We will see in part 6.1] that this description remains valid for the densities of all matrices
M;, (and not only My). We will prove (see eq. (6.3)) that pi(2;) the density of eigenvalues
of My, is the discontinuity of zp1 (or equivalently z;_1) along the cuts.

It is easy to prove, by integration by parts, that:

7{ z_1dzg = 7{ Zp_1dzy = —}{ Zp+1d2k (4.25)

A; A; A;

% Z_1d2’0 = % zk,ldzk = —% Zk+1dzk . (4.26)
B; B; B;

7 k3 7

If we anticipate on section p.1], this proves that the filling fractions are the same for all
densities, up to integer linear combinations. If the support of the density of eigenvalues of
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Mj, has my, < g+ 1 connected components [ay ;, by ;] (i = 1,...,my), the filling fractions in

each connected component are:

br,i 1 9t
/ pk(zk)dzk = T Z Ak,i,j €5 (4.27)
Jj=1

Ak,i

where the coefficients Ay, ; ; are integers (possibly nul or negative).

4.5 A or B cycles fixed 7

As we said before, the loop equation is not sufficient to determine all the unknown coeffi-
cients of E. Some additional hypothesis are needed, two of them are often considered in

the litterature:

e condition B: if all the potentials are bounded from below, and the partition function
is well defined, one is interested in finding large-N limits for the free energy and
various expectation values of traces of powers of the matrices. In that approach,
one has to find a solution of the loop equation which gives an absolute minimum
of the free energy. The genus g and the filling fractions ¢; are not known, they are
determined by the minimization condition 0F/d¢; = 0, which reduces to:

Vi=1,...,9 jé z1dzg =0 (4.28)
B;

All the B cycle integrals must vanish. That condition is sufficient to determine g and
all the ¢;, and it is sufficient to determine the unknown coefficients of FE.

This allows to find the large-IV limit of the free energy. Subleading large-IN correc-
tions, i.e. the so-called topological large-IN expansion of the free energy, exist only
if g = 0, as was shown in [f, [[(]. If the genus g is > 1, there exist asymptotics for
the subleading corrections to the free energy, which have no 1/N expansion, they are

oscillating functions.

e condition A: if one is only interested in the formal large-N expansion of the free
energy, one has to find a solution of the loop equation which corresponds to the
perturbation of a given local extremum of the free energy. Therefore, g and the €;’s
are fixed parameters which characterize the minimum around which we perform the
perturbative expansion (moduli). The following equations

Vi = 1, ... g % ZleQ = 2i7l'6i (4.29)
A;

are sufficient to determine all the unknown coefficients of E.

In the following, we will always assume that we have condition A, unless specified.
Most of the results obtained for condition A, immediately translate to condition B, by
exchanging the roles of A and B-cycles, like the large-N free energy. But some quantities,
like the large-IN 2-loop functions, get contributions from the oscillating asymptotics, and

will not be computed in this article. So, from now on, we assume condition A.
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4.6 Parametrization

It is possible to parametrize the algebraic curve £ in terms of 6 functions.
Given g and a canonical basis of non-trivial cycles A;, Bi(i = 1,...,g), it is known [[L6],
[[7] that there exists a unique basis of holomorphic 1-forms du; on & such that:

A;

The matrix of B periods is defined as:

Tij ‘= % duj = Tji (431)
B;

7ij is a symmetric g X g matrix, with positive imaginary part.
If we choose an arbitrary basepoint pg € £, we define the Abel map:

i(p) = /p du (4.32)

0
which defines an embedding of £ into CY.

For any 0 < k < N, zi(p) is a function on &, with a pole of degree ry at poos,
and a pole of degree s; at poo—. 2; must have r, + s zeroes, which we denote py ;(0),

(¢ =1,...,7% + sx). The zeroes must satisfy:
Te+Sk
> ii(pr,i(0) = rpii(poot) + Skil(Poo—) (4.33)
i=1
then:

[T:51°" 0(i(p) — ii(pra(0)) — 2i7)
U(p) — U(poot) — 23 7)%0(U(p) — U(poo—) — 25 7)5k

where 6 is the Riemann theta function [[L6], [[7], Z is an arbitrary non-singular zero of 6.

() = Aig; (4.34)

The ratio of the r.h.s. and the L.h.s. is a function on £ with no pole, therefore it must be a
constant, which we call Ay.
We have a parametrization of £ in terms of 8 functions.
4.7 Two-loop functions and Bergmann kernel
4.7.1 The Bergmann kernel

The Bergmann kernel B(p;p’) is the unique bilinear differential form on & x £ with the
following properties:

e B(p;p'), as a function of p, is a meromorphic form, with only one double pole at
p = p’ with no residue, and such that in any local parameter z(p) we have:

oS (o) — 2 (4.35)

e Vi=1,...,9 fpeAiB(p,p/):O.
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4.7.2 The 2-point function

For 0 < k < N and 0 <[ < N, define the following meromorphic differential forms on

E xC:
_ 0z.-1(p)

By i(p;2) == — dzy(p) dz (4.36)

Vi(2) 21 (p)

5 9z41(p)

Bii(p; 2) = ————= dzp(p)dz . (4.37)

a‘/}(z) 25 (p)

We have the “thermodynamic identity”:
Bii(p; z) = = Bry1,1(p; 2) (4.38)
and 21 + zg+1 = V) (2x) implies:
- dz dz

Byi(p; 2) + Bia(p; 2) = —5k,l% . (4.39)

We are going to prove below that:

Sl

Bri(piz) = =Y B(pip—ju(2)) 0<k<I
j=1
T

Bri(p;z) = > B(pipsju(z)) 1<k<N
j=1
Sl

Bia(piz) = > _ B(pip—jul2)) 0<k<l
j=1
Ty

Bri(p;z) = — Z B(pipyji(2) 1<k<N (4.40)
j=1

where B is the Bergmann kernel, and the p;;’s have been defined in i3
Proof of eq. (4.40)). First notice that eq. (.38) and eq. (f.39) imply:

Bii(piz) = Boy(p;z) 0<k<I

Bii(p;z) = —Bya(piz) 1<k<N (4.41)
and: da(p) d
= zI\p) az
B ; B Z) = 4.42
Consider the two-loop functions introduced in eq. (R.24)):
1 1 Boi(p11,0(2); %)
Woa(z;2') = (t t = : 4.43
O’l(27 i ) < g z — My g z' — M, >C0nn dZo(p+1,0(Z))dz, ( )
1 1 Bya(p-1n(2);2)
W X . — t t = i ! . 444
) = (o) S o 64

z— ; =y Z,%Ml> are well defined inte-

The expectation values <tr ;Mo tr ﬁ> and <tr 1
grals for z in the physical sheet, therefore B ;(p;z’) can have no pole when 2z’ = z/(p) if p
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is in the zg-physical sheet, and BN,l(p; 2') can have no pole when 2’ = z(p) if p is in the
zn-physical sheet. Note that the derivatives 9/9V;(2’) are formally defined only for large
Z', which implies that:

e By ;(p;2') can have no pole when p =py;(2'), j=1,...,m,
e By (p;2') can have no pole when p = p_ji(Z), i=1,....8.
Since the r.h.s. of eq. ((.42) has poles at all p = p;,;(z), we must have:
e By ;(p;2') can have no pole when p =py;(2'), 7 =1,...,m,
e By,(p;2’) has double poles when p=p_; ('), 7 =1,...,s;.
That implies that: .
.
Bi(p; ') = Boa(p;2) + > Bpip—ju(?)) (4.45)
j=1
has no pole when z;(p) = 2/
It obeys the following properties:

e Since Wo(zo) behaves as 1/zp near oo in the physical sheet, W.;(20; 2’) must behave
as O(1/23) near poos, while dzp has a double pole at pe. Therefore By ;(p; z') has
no pole when p — pso, and thus B;(p; 2’) has no pole when p — pooy .

e Similarly, B’Ml(p; 2') has no pole when p — ps—, and with eq. (.43), that implies
that Bp,(p;2’) has no pole when p — po—, and thus By(p;2') has no pole when
P — Poo—-

e Near an endpoint ey ;, Z;_1(2;) has a square root singularity, i.e. the derivative
0zk-1(p)/9Vi(2')]., (p) has an inverse square root singularity, i.e. a simple pole which
is exactly compensated by the zero of dzj(p). Therefore By, ;(p; ') has no pole when
p — ey.i, and so for By(p;2').

e Near any other point, z;_; is an analytical function of zj, and thus By, ; is analytical.
e By ; must satisfy:

74 Byi(p;2') =0 (4.46)
PEA;

and so must B;.

Finaly we find that B; is a meromorphic form with no pole, with all its A cycle integrals

vanishing, therefore: B; = 0. U
Remark. We have:
B(p,p") = dpdy n0(i(p) — d(p') — 2). (4.47)
Notice that ) ) ar
du; (p') B(p,p') = dz(p') - (4.48)

2ir WVo(z0(p'))
Once B is known, eq. (4.48) give an explicit way of computing the Abel map (p).

2 pEB;
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4.8 Abelian differential of the 3rd kind and temperature
4.8.1 Abelian differential of the 3rd kind

There is a unique abelian differential dS on £ with only two simple poles at pso+, such
that:

Res dS=—ResdS =1, Vi=1,...,9 j{ dS =0 (4.49)
Poo+ Poo— A;
It has the property that:
Poo+
dS(p) = / B(p,p). (4.50)
P/ =Poo—

We define:
i ::?é as. (4.51)
B.

3

And, given a basepoint pg, we define the following multivalued function on &:
A(p) = e Jro S (4.52)

A has a simple pole at poo+ and a single zero at poo—, therefore the following quantities are

well defined:

= pié;£10+ j{]((]];)) , 4= lim zx(p)A(p). (4.53)

P—Poo—

Notice that the product v7 is independent of the choice of the basepointpg.

4.8.2 Derivatives with respect to T

Consider the abelian differentials:

0z1._ ~ 0
dSk(p) == %Tl(p) ( )de(p), dSk(p) = %ng(m ( )de(p)- (4.54)
ZE\P ZEe\P

We clearly have (from zj41 + 2zx—1 = V}/(2x) and thermodynamic identity):

dSi(p) = —dSi(p) = dSk41(p) - (4.55)

Therefore dSy and dSj are independent of k.
They have the following properties:

e near pooy, 2—1 ~ 1/z —i—O(zaQ), thus dSy ~ dzp/zp, i.e. dSy has a single pole at poo 4,
with residue —1.

e Similarly dSy has a single pole at poo_, with residue —1, i.e. dSp has a single pole at
Poo—, With residue +1.

e near an endpoint ey ;, Z;—1(2z) has a square root singularity, thus 8%’“7?1 has an

2k
inverse square root singularity, i.e. a single pole at ey, ;, which is compensated by the
single zero of dzf, and therefore dSp has no pole at ey ;.

e near any other point, z is a local parameter and zx41 is analytical in z, i.e. dSy has
no pole.
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e The A; cycle integrals of dSy vanish.

There is a unique abelian differential with such properties, it is the abelian differential of

the third kind defined in eq. (f.49):
dSk(p) = —dSk(p) = dS(p). (4.56)

In particular, we have that:

0

4.9 Derivatives with respect to ¢; (condition A)
Consider:

1 9z,1(p)

B o1 Oz (p)
= 5 Je. dzi(p), dig;(p) = 7= —F—— dzp(p).  (4.58)

Buealp) T 2ir O 21 (p)

25, (p)

We clearly have (from zj11 + zx—1 = V}/(2x) and thermodynamic identity):

dug;(p) = —di;(p) = dug1,(p) - (4.59)

Therefore duy; and diy,; are independent of k.
Following the same lines as in the previous section, we show that duy ; and duy,; have
no poles, i.e. they are holomorphic one-forms. Moreover we have:

5 O¢;
=2 5 4.
7{4. duy, ; D6, i j (4.60)

There exists a unique set of holomorphic one-forms with those properties, it is the holo-
morphic forms du; introduced in eq. (30), therefore:

dakﬂ‘ = —du;m = dul . (461)
This shows that:
oI )
aej = 2T (4.62)

where 7; ; is the matrix of periods introduced in eq. ({.31)).

5. Large N free energy

5.1 The large-N free energy

The free energy F defined in eq. ([L2) has a large-N limit:

F=F9 4+ 0O(N?). (5.1)
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We prove below, a generalization of the formula of [fJ]:

N
2F(©) ::ji:igf(v%(zk)_'%ZkV%(Zk»Zk+1dzk
]—ﬁij—vjoju +> 6l —T?(1+NnT)
= leles (Vie(zk) — —szk(zk))zk 1dzy,
i—]qu+zieifi—T2( 1+NInT) 652)
5.2

where 1 is the generalized version of [[f] and is defined as follows for any p € &:

K= /p:+ (zzo - Zl) dzp + /pi_ <% - ZN+1> dzyr — Tl zg(p) — T'In zar(p) +
N N
D Valz(p) = Y zn-1(p)z(p) (5.3)
k=0 k=1

w is independent of p (indeed dp is a telescopic sum which cancels completely).

Proof of eq. (5.2): we remind that we assume condition A. We define:
Y 1
4K = 2Tu+2 E el — 4F(O) + E Res (Vk(zk) — _ZkaJrl) Zk+1d2’k +
i —o "t 2

N
1
+ ZI]-?/OSE <Vk(zk) — §zkzk_1> Zk—ldzk . (5.4)

Notice that Res ., zk2p—12k4+1d2k + Resp_ 2kzp—12k41d2;, = 0, so that the expression in

eq. (B.4) is the same as in eq. (5.2).

Let us compute:

Vi (2)
}: }: dzp + ATW,
pocs av Zk+1dzk+ R Dui(z) o1t AT

82’k+1

(Vi(2r) — zr2ry1)dzp +

(Vie(zk) — zi2i—1)d2i +
k

T———+2) g—»— .
+2 e ;e (5.5)

de . (5.6)
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By integration by parts, and using eq. (R.17), we have:
oK 2l+1

= —R dz — Res =X dzy + ATW(2) —
oV (2) pofi z— 2z “ pcf? z— 2z At 1(2)

=D Res G((Vi(2k) = 2k41)d2k — 2ndzni) -
k oo

4

) o or;
B ’ o _ _ oT 2 I
2 Bes Ge(Vilar) = 2n-t)dse = i) + 2 gy 2 ciprs

= —Res 2L gz — Res ==L dz + ATWi(2) —

Poot+ 2 — Z] Poo— 2 — Z]
- E Res (r(zp—1d2r — zpdzgq1) —
Poo+

ou ar;
— E — _ or—" 19 E ot
k z]ifﬁ Ck(szrlek dezk 1) + o 71(2) + : 628 l(Z)

= —Res —L dz; — Res -1 dzp + ATW,(2) +
Poot+ 2 — 2] Poo— 2 — 2]
N
+Res Quaydzys = C1z-adzo — > (G = Ce1)z-1dz
~ k=0
~ ~ N ~ ~
+ ZP}GS Coz0dz—1 — (N 12N +1d2N — Z(Ck — Cht1) Zhr1d2,
< k=0
27— + 2 i—. 5.7
lonm 2 v &0)

Near pooy we have z_1 ~ T/z9 + O(z5 %), therefore zo ~ T//2_1 + O(1), and thus ¢_; has a
zero at poor. That implies that:

Res ¢(_1z_1dzg =0, Res Cyvp1zvs1dzn =0. (5.8)
Poo+ Poo—
Moreover, notice that 8"9/12(’“2) dzp_1 = — g‘z};(z 1) dz,, therefore:
Zk—1 2k
P Oz 021 P oVi(ar) Okl
CkP—CkP:/ de:/ dzj = ——2>— .
W@ = | A\ owel, T e, A7 T
(5.9)
Thus:
K -1 - —2_
49K Res Mdzl + Res Mdzl +4TWl(z)+

oVi(z2)  potr z—2z Poo— 2 — 7

+ Res Cnvenvdzasl + Res Cozodz 1+ 2T

+22628V

= Res wdzl + Res Mdzl + 4TWl(z)—

Poo+ Z—Z Poo— zZ—Z 9
5 I
2 .
3

1 . = 1 .
+ ZZ: % %AZ disc 4, (Cozodz—1) + ZZ: % %41 disca, (Cvavdan+1)—

—Res (nvzndza+1 — Res C~oz0dz_1 + 2T
Poo— Poo+ a‘/l
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1 . ) .
_ ; Py 7{% discp, (Cozodz—1) — ; %in jil discp, (Cvanvdza+1)  (5.10)

where we have used Riemann bilinear identity, and disc means taking discontinuity of the
considered multivalued function when crossing cycles.
Now compute du/9dV(z), all terms cancel but:

" /p Ozn 11
0—
20 Poo— a‘/l(Z)

which is independent of p. In particular for p = pso4, this proves that Q:O(pooJr) and

dzpr (5.11)
N

(9,u _ 1 _ /p 8271
Wi(z)  z—alp) Sy, Vi(2)

(N (Poo—) are finite, and:

o = B
Thus:
. . )
]lf\ofi Cozodz—1 = T(o(poot) = Tﬁlgz) =T (pso-) = Ifjoff NN AZN 41 - (5.13)

Now compute the discontinuities (crossing B; is equivalent to going around A;):

~ 6271 862‘
discg, (o = dzg = —2 =0 5.14
iscs; Co i, 20 Vi) (5.14)
this implies that ¢y has no discontinuity along B;, and
~ 8271 arl
discy, (o = dzg = — 5.15

this implies that fo has a constant discontinuity along A;. Moreover zg and dz_; are

monovalued, i.e. they have no discontinuity along A; or B;. Thus:

disc 4. ((pzodz_1) = — zodz_1 = —2imej—— . 5.16
%41 A; (Coz0d2-1) i) %Ai 0dz—1 i) (5.16)
Using similar arugments for zar, we arrive at:
0K 21— 2141 241 — Z-1
4 = —d —d 4T . 1
Vi (2) 1}0(23 zZ— 2 at EZSé zZ— 2 2+ ATWi(z) (5.17)
When [ = 0, by definition eq. (R.§), we have
TWp(z) = Res z1dzo = — Res z_1dzg
Poot+ 2 — 20 Poot Z — 20
= Res z_1dzp = — Res z1dzg (5.18)
Poo— 2 — ZO Poo— 2 — ZO
therefore: S
=0 5.19
() (519)
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which proves that K is independent of V{. In particular we can choose Vjy quadratic, and
then we integrate My out, i.e. we reduce the problem of a chai2n of lenght N with potentials
Vo, ..., Vi to a chain of lenght NV — 1 with potentials V; — %1, ..., V. It is easy to check
directly that:

2 2 T2

Z Z
FN(?O,‘/I,..qVN):FNfl(Vvl_El,"wVN)_TlnT (520)
and thus:
2 z% T2
Kny(Vo, ..., Vy) = KN( Vh---vVN):KN—l(%—Ea---va)+71nT- (5.21)

Therefore, by recursion on N, we find that K is independent of all V's. K could still
depend on T and the ¢;’s. K has been computed for A" =1 and N = 0 [B], and we find:

T2
K = (1+NhT) (5.22)

which is the same result as if all potentials are chosen gaussian (see section B.2). g

Remark. En route, we have proved that for all [, the resolvent of the I*P matrix is:

1 1
Wi(z) = = Res z141dz; = —— Res z1_1dz,
1(2) {pm+z_zl 1+1d2 1pw+z_zll1 1
= —R _1dz; = —=R d 5.23
Tpofgz—zlzl 142 Tposfz—zlzl+1 “ ( )
Remark. we have:
N N
=—-Tln~vyy+ Zeml + Res <Z Vie(2k) Z%—l%) dS (5.24)
k=0 k=1

where dS and v and 5 and 7; are defined in eq. (.49) and eq. (£53).
Proof of eq. (5.24)): Consider the functions:

pT pT
)= [ (e o) = [ (Co—aeda 629
Poo+ <0 Poo— N
They satisfy:
Res ¢pdS =0, Res opardS =0 (5.26)
Poo+ Poo—
and they have the following discontinuities along A; or B;:
disc4, ¢po = —discq, o =1, discg, po = —discp, pnr = 2ime; (5.27)

From eq. (5.) and eq. (f.49), we have:

u = Res pdS = Res dodS + Res ondS — T In~y

Poo+

N
4+ Res (Z Vk Zk sz 1 ) ds. (5.28)

Poo+
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We need to compute Res,, . ¢xdS, we use Riemann’s bilinear identity:

1 1
Res ¢pdS = —Res gndS + > %]{4 disc.a, padS — > T 72 discp, prrdS

Poo+ Poo—

= Zmei. (5-29)

O

5.2 Derivatives with respect to ¢;

We have: p
/e
= (5.30)
indeed, from eq. (5.3), we have:
0 P 0z LG/
- —/ St [ P / NFLL gy (5.31)
O0¢; Poot 0¢; - P Oe; |, "
using eq. ([.61) we have:
Poo—
% = Qiﬂ'/ dui =1);- (5.32)
aEi Poot
We have: )
dr
~T,. 5.33
. (5.33)
Indeed, from eq. (b.4), and using eq. (JL.61]), we have:
OF©)
+ 5 2Tn; 4+ 2T + 2 ; €T + ; f}ofi (Vie(2k) — zr2k41)du; —
- Z Res (Vi (zk) — zizi—1)du; . (5.34)
Poo—
k

Let us introduce the multivalued function:
P
u;(p) == / du; (5.35)
Poo+
its discontinuities along the A and B cycles are:
discA].ui =Tij- diSC_Ajul' = 5i,j . (536)

After an integration by parts, we have:

OF
43_62‘ = 2T'm; +2I'; + 2 ZJ: €Tij — Zk: Efﬁ w; (Vi (zg)dzp — zkp1d2r, — 2pdzig1)+

+ Z §£§ ul(Vk,(Zk)de - Zk—ldzk — dezk_l)
k

=2Tnm; +2I'; + 2 ; €5Tij — % £{£§ wi(zp—1dzg — zrdzg41)+
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+ ; §£§ ul'(Z]H_lek — dezk_l)
=2Tn; +2I'; +2 Z €;7i; — Res w;z_1dzg + Res uznrdzn41+
; Poo+ Poo+
+ Res ujza41dzy — Res u;zpdz—q
Poo— Poo—

= 2Tn; +2I'; + 2 Z €;7i,j + Res wizndzn 1 + Tui(poo—) — Res uizodz—1  (5.37)
- Poo+ Poo—
J

using Riemann’s bilinear identity and eq. (5.24)), we find eq. (p.33).

5.3 Derivatives with respect to T’

We have:
— =—Inv¥ (5.38)

indeed, from eq. (b.3), we have:

o [? 1 0z_1 p 1 0ZN +1
ar /,,Do+ (zo aT ZO) 4z +/oo (zN aT

3

using eq. (4.5¢) and eq. (§£.52), we have:

) dzy —Inzg —Inzy (5.39)

AN

ou P (fdzy dA p dzy  dA
— = — - — — 4+ — ] —Ilnz —1
ar /pw+<zo A>+/poo_<z/\f R A
:ln%—1n’y+lnzNA—ln’y—lnzo—lnzN:—lnfyi. (5.40)
We have: ) N
dF +3
- —,u—T<T+./\/lnT>. (5.41)

Indeed, from eq. (p.4), and using eq. (f.56), we have:

oF ou
48—T =2u+ 2T8_T + 2 ZZ: €N + Zk: ZE{OSE (Vk(zk) — Zkzk+1)ds —

-> Res (Vi(2k) — 2525-1)dS — 4T(1 + NInT)—2NT (5.42)
e

using eq. (5.3§) and eq. (p.24), we find eq. (F.41)).

Remark. The derivative of the free energy wrt to T can be computed directely from
eq. (L.1):

O(F/T? N/ & N
N RS0 (S = S M ) (5.43)
oT & /T T k=1

k=0

The matrix integral is defined for fixed filling fractions, i.e. for fixed €;/T. We can thus

N N
O(F/T?) ¢; OF 1
27 _—— - _
T +ZT66¢ N tkaOVMMk) k§1MkMk1 : (5.44)

i

write:
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Using the change of variable d My = M}, we get the loop equation:

1
2T = N (tr My V(M) — My (My—1 4+ My+1)) (5.45)
which implies:
e 0FT?) 1 .
ie.
F OoF 1 N
QT ~ T Zell1 = kZORes (Ve (My) — Mka{(Mk))Wkdzk +WN+1T  (5.47)

which is equivalent to eq. (p.41]).
Note that eq. (p.49), is nothing but the infinitesimal version of the rescaling M) —
aMj,. In particular one can choose a = /T, and get directely from eq. ([1)):
1
1) N +

~ 91 o~ . €;
F(grj, G o€, T) = TF (ng”Q Lok T 2

= T?InT. 4
a (5.48)

Taking the derivative of eq. (p.4§) with respect to T, gives again eq. (p.41).

6. Other observables, leading order

6.1 Resolvents, leading order

So far, we have found that Wy(z9) and Wys(zxr) obey algebraic equations. We have been
able to determine the resolvents for the matrices at the extremities of the chain, but not
for intermediate matrices. We are going to determine Wy(z) for 0 < k < N.

We start from eq. (5.23):

Wi(z) = _2¢71TT 7€ k L, (6.1)
where the integration contour is Cj, defined in [l.3. Indeed, the residue is a contour integral
around P+, and since equation eq. (5.23) was derived formally for large z (i.e. order by
order in the large z expansion), we have to assume that the contour of integration encloses
all the ry, solutions of z;(p) = z. Moreover, the residue is the sum of poles at the p.; x(2x)’s
and at Poot:

Tk 1 dz
dz, = sz—l(p-i-j,k(zk)) + %7{ 2oy —2

(X Zk

1 Zk—1

2im Jo, 2k — 2

j 1
1 V”(Zkfl)dzkfl — de,Q
= Z—1(P45.k (28 +—7{ Z—
Z TN, ) 2w Jo ! Vi (2k—1) — 2k—2
1 V”(Zkfl)zkfl
= — — " dz_
sz 1 (P4, (2k)) + im j({k V. Gi) Zk—1
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Tk

= 21 (pajnlz) +

Jj=1

Gk—1,dj,_1

. 6.2
Gk—1,d_1+1 ( )

Therefore:

Tk
9k—1,d Jk+1,d
TWi(z) = ———— +sz 1(p+jk(2) = ¢+sz+1 p_jk(2). (6.3)

9k—1,ds,_1+1 = Gk+1,dpy1+1 =
Notice that we have:
L g g
/ k+1,dg 1 k—1,dy_1
> aalpin(2) = seVi(z) + - : (6.4)
J— 9k+1,dp1+1 Gk—1,d,_1+1

6.2 2-loop functions, leading order

From eq. (:40) and eq. (p.3) We find (I < k):

1 1 Tk Ty
T T dzpdz = — B(pi; ;
< v T Ml>c zpdz > Bpgip(ar), pja(z)

i=1 j=1 65)
6.3 2-point one loop functions
6.3.1 Wy 1
Define the following polynomial of two variables:
E(20y oy 2y Zha1y - o 5 ZN
Qk,k+1(zk7 Zk+1) = Res dZo e dzkfldzk+2 N dZN /(\/ + )
e [T20(Vi(25) = 2j41 — 2j-1)
= E(Zm-- Zk 172k72k+17Zk+27---7Z/\/)
Tk
= )™ H gj dj+1 H gjs‘fdjﬂ H (21 — 2rr1(Pjk(2r)))
ji= k:+1 0#£j=—s
Tk+1
= (—1)%+ ng dj+1 H gj dj+1 H (21 — 2k (Dj k41 (2141))(6.6)
j=k+2 0A£j=—sk41

where the Z;(2, z+1) are defined by:

232k 2o1) = 265 ZLpyr1 (2, k1) = 2kl
Zjﬂ(zk, Zpt1) = W(Zj(zka Zk41)) — qu(zk, Z+1) J>k+1 (6.7)
Z; 1(2k, 2141) = V] (Zj (210 2641)) = Zja (2o 2e41) G <k

We conjecture (proved in appendix B for £ = 0):

Qk k+1(2k> 241)/ H] o ;Jd 1 Hé‘\ik-i-Q 9?J+1

175 (1 (0156 (2)) = ze0) TTEE (2 (01 (2g)) — 28)
o TR G — 2o e (2r41)))
= Ikdit1 [T (a1 (P () — 2041)

shin i1 (zha1 — 21 (P—j 6 (28)))

_y '
LA TR (o (D kst (2h11)) — 2k)

1= Wept1(2r, 2611) =

(6.8)
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Remark.
Qo1 (2, 2k11) = Qr—1,6(Vi(2k) — 21, 2k) (6.9)

and we may conjecture that the spectral curves of the differential systems defined in the
appendix of [f] are:

(—1)"* Qi k+1(2k; Zh+1)

det (Zk+117"k+3k - Dk(zk‘)) = Hk_l grj H/\/ gs]~
j=0 Jj5,d;+1 1 Lj=k+15j,d;+1

(6.10)

so that the property eq. (b.9) would be nothing but the duality discovered in [f].

6.3.2 The function U in the large-N limit

Since the function U appears in the r.h.s. of the master loop equation, it is important to
be able to compute it in the large-N limit.
Define (notice that Uy = U):

k—1
Uk(ZOaZka---v'ZN) = 21PO£N W(ZO,"-aZ/\/’) fk,./\/(zka"'vzf\/) HZJ (6]‘1)
yeees e

We shall prove that:

Uk(20, 2k, -y 2n) = Hi (21, -2 20)Wo(20) —

N
_ZP(Zo,...,Zl_l,Zl,...,ZN)—P(ZQ,...,Zl,Zl+1,...,ZN)
z1— 2

xHypi-1(2ks -+ 21-1)

= V/(/(ZN) —Zn—1+

E(Zy, ..., 21,21, 2n) — E(Zoy oy 21, 21415 -+ -5 2
+Z 0 -1, 21 N) (Zo 1y 2141 N)

X
21— 4
XHk,z—1(Zk, =) (6.12)
where
N
Hii(zk, .., 2) == Pol .y H - sz RIERIE (6.13)
Jj=0 j<k  §>l
i.e. Hy; is a polynomial in zg,..., 2, and satisfies:

Vi(zk) = Vi(Z)

Hk-f—l,k =1, ch,l =0ifk>1+1, Hk Hk-i—l,l — Hk;+2’l . (6.14)

2k — L,
In particular for k = 1 eq. (6.13) reduces to:
U(zo,.--,27) = Vir(zn) — 2v—1 +
N—-1
+ Z E Z(], . ,Zk,Zk+1,...,ZN) —E(Z(],...,Zk-+1,Zk+2,...,ZN) %
Py 21 — Lkt
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XHl,k(zla v 7219)

= Hin(21,. .. 280)Wol(20) —
N-1
_ Z P(ZO,...,Zk,Zk+1,...,ZN) _P(ZO""7Z/€+1?Zk+25"'7ZN) x
Py 21 — Zk+1
levk(zl,...,zk) (615)
Proof of eq. (6.12): let us define:
k—1
Ak(20, 2y -y 2N) = Pol sz Treti N (Zis1s - 20)W (20, - - -, 20(6.16)
21500y Zh— 192415 2N =1
Sk(20, 2ky - oy 2N) 1= Pol Jok—1(20, -, 26-1) X
2059 Rk—1,%k+15- 2N
ka+17./\/’(zk+17"'7zN)W(207"'7ZN) (6.17)
(205 2ks - -y 28) = Pol  for—1(20,-.,2k-1)Vi(2k) X
205+ 92N
X fotr 1N (241, - 2N)W (20, - -5 28) - (6.18)
From eq. (R.1(Q) we have:
Uy = Pol Vi Ay — Ups (6.19)
2k
and from eq. (B.2), we have:
(2k = Zi) Ak = Upyr — Sk(Zoy s Zj—1, 2ks - - -, 2N) - (6.20)
That implies:
|74 k) — |74 Zk
Up = (k) = Vi )Uk+1 — U2 —
2k — 2k
_Tk(Zo, . ,Zkfl, Zhoyooo ,ZN) — Tk(Zo, . ,Zk,zk+1, . ,ZN) (6 21)
Zk — Zk ’ '

It is easy to prove (by recursion), that foa — fox—1V}(2k)fet1,0 is linear in zg, in

other words we can write:

fo = for—1Vi(2e) fer1n + 2B (6.22)
where By, is independent of zj, therefore:
Tk(205 -y 2k y2n) — P20, -+ 2k, - - -, 2n) = independent of zy . (6.23)
and thus eq. (.21]) can be rewritten:
Vi(z) = V(2
Up = k(z1) = Vi k)Uk+1 = Ukt2—
2 — Ly
_P(ZQ,. .. ,Zk,l,zk,. .. ,ZN) — P(ZQ, .. .,Zk,zk+1, e ,ZN) . (624)
Zk — Zk

From which, the initial conditions Unry1

= Wo, Uny2 = 0 (easily derived) imply eq. (6.19).
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6.3.3 The extremities correlator Wy x

From eq. (6-19) and eq. (B.14), we derive:

71

E(Zy,..., %, Z .7
Wo.n (20, 2v7) Z 0 b ity s ZN) (6.25)
— (k- Zk N Zrt1 — Zis1)
where:
Zy = zp(p11,0(20)) Zy = zp(p—1n(2n)) - (6.26)

7. Subleading epxansion

The aim of this section is to generalize the calculation of [[0, [I], and compute the next
to leading 1/N? term in the topological expansion. In this purpose, we expand the various
observables in a 1/N? power series:

1
Zn(z0) = 2 (20) + mz%o) +... (7.1)
P(zo,...,2n) = PO(z,...,2z) + mP<1>(zo,...,,w) +... (7.2)
and so on. Then we expand eq. (B.I]) to order 1/N?2:
N
S 20 () Ex — PO (20, 2, ..., 20) = U (20, 2., 20 ) (7.3)
where:
(0)
B, = OE"®) (z9,...,2x7) . (7.4)
Oz, ;0
2j=2;

From the definition of the Zy’s eq. (B-§), we easily find:
Z{V(20) = Hipo1 20" (20) (7.5)
where (the Hy,;’s have been defined in eq. (6.13))):

Hip = Hp(Z9,. .., 2 (7.6)
We have:
Hy_1=0, Hip=1, Hy,=V!(Z; 7\ ))Hlk 1—Hig o (7.7
i.e. N ( )
= O frr(z1,. .., 2k
Hy = : . 7.8
Lk 0z1...0z szZ(O) ( )
J
Therefore eq. (F.2) reads:
PO (5 ,Z(O),.. (0) + U(O) 20 Z( ), ) Z(O)
Z0(z) = (20, Z3 V) (20, 23 0) . (7.9)

Zkzl Hi 1 By

Similarly to what was done in [[[(, [J], we determine the polynomial P @), by the condition
that Zfl)(zo) has singularities only at the endpoints eg; in the zp-—sheet. That condition is

sufficient to determine all the unknown coefficients of P(). Now, let us compute U ;(00).
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7.1 Computation of Uyg(z,...,2z; )
Notice that there is no explicit depedence on Vp in eq. (R.23), therefore:

8U(20,... ,ZN)

A5 (7.10)

Uo(20,---,2732) =

For k > 1, write 2z, = Zlgo) + (i, and Taylor expand eq. (p.15) in the (’s:

Ul(zo,---,2n) = Vir(zn) — 2nv—1 —

N k—1
Z (Ek + Gk Ekk + Z GiEk z) (ﬁl,k—l +) Cz‘ﬁuc—m‘) (7.11)

=1 i=k+1 =1

where Ej, was defined in eq. (F.4), and Ey, is:

2EO) (z, ... zN)‘
el = ——— (7.12)
’ 021,07,
RO Zj:Z](.O)
H; ), was defined in eq. (F.6) and:
— 0H .
; PP G IR ) (7.13)
0z; 70
J
From eq. (6-13) and eq. ([.6) we derive:
Hypi= V”’( ZNHyo1 Hisg (7.14)

Then take the 9/0Vy(z) derivative, using 9¢;/0Vy = —0Zy/0Vp, and take the ¢ — 0

limit:

N (0) 970
020, 29, ..., 29 0By 04" Epk _ i
AT I = 2\ v o) 2 gavo(z) by | Fkert

+§:E OH 1 1 Z : (7.15)
ra aVb aVb lkfl;] . .

From eq. (2.), one easily derives:

0 0

k\Zp ") — =1k (7.16)

o(z) ~ OVo(?) o) T an()

and from eq. (7.6)
0 k—1 (0)
aHlk 1 < ¢ r7(ONTT I7 aZJ T
Z Hy; 1H; _1=2 Hip_1.5. 1

e Z:: B V VH 1 j1Hj 151 ]Z:;OVO(Z) 1,k—1;j (7.17)
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7.2 Computation of JFE}/0Vj(z)
Let us define Z;(20, 21):

Zo(20,21) == 20, Z1(20,21) == 21, Zj1(z0,21) = Vi (Zj(20,21)) — Zj-1(20, 21) -
(7.18)
We have:
— - k—1
0Z (20, 21) - 0*Z (20, 21) (70
— =Hyj1, —Fa V; H Hj1p-1-
azl ZIZZEO) J 62% 21=Z£O) jzl J 1,5—1 J
(7.19)
Consider the polynomials defined in eq. (f.6):
Qo1 (20,21) = EC )(70(20,21) - ZN(20,21))
S0
= C(z 1 H 21 — z1(p—j,0(20)))) (7.20)
(where C' = HJ 1 gj 4, +1), and take its derivative (using eq. ([19)):
N 50
0Qo,1(20, 21) - (0)
T 172(0) = ZEJ H17j_1 = CH(Zl —z21 (p—j,O(zO))) . (721)
2 1 j=1 j=1
That implies:
i 0 Hy 1+i 011
st oVo(z) 7 st T oV(2)
_ Z 02" 9m(piolz0)| | Titi Fifio (729
aVO( ) 8VO(Z) b1 Z}O) — Zl(p,l,o(ZO))

U (20, 27,....20;2) = ZO: ( 02" 321(P—j,0(20))

S B H
3Vo(2) Mo (2)

AR 1,0(20))

kkHlk 1— ZZ@V z)Ek,]Hlk 1—

N
>
k=1 k=1j>k
N
Z

k=1 57(0)
] Ek Hip1,5

_ 9z1(p—j0(20)) ' ) Zé\; Ej Hyj-
Mo (2) 7 — 21(p_1.0(20))

>k

Eyk =
( Hlk 1+ZE]€_]H1]€ 1 Hijo 1)
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??‘

N k-1
Z EyV"(ZOVH ; Hipiha
k:l

0

<.
Il
-

(Zj:lEjﬁlvj*1>
(0) *
w0 2y — z21(p-1,0(20))
N
RYAN Z (S0 B ) _
MWo(z) = Zfo) — 21(P-1,0(20))

1020
BENC ZZEk]Hlk 1 Hijo1—

_ N 921(0—j0(20)
= ; Vo)

k 15=1

1 aZ(O) N k=1

C20Vp(z ZZE Vi’ Z(O))HU VHjig-1- (7.23)
k 1j5=1

Take the second derivative of eq. ([.20):

N S0
9%Qo (20, 21) — 1
7 =2 E E]’ Hl,jfl E

=

0z 2=2{" = 7" —2’1(19 lo( 0))

_ZZEkJHlj 1H1] 1+2Ek ka(QO ) (724)
k=1 j=1 A1 =7
plugging eq. ([24) and eq. ([.I9) into eq. (F-23), we get:
0 0 s
U o 217, Z057) ! 021(p—j0(20))
= - _

>ie B Hy i = 200 — z1(pro(zn) V() Ly -
7.25

which can be compared to [L1].

7.3 Next to leading order
Using eq. ([2) into eq. (F9), and using eq. (JE40), we get the 1/N? correction for the

resolvent:

S0 PO, 20 20 & 1 921(p_j0(20))

1 (20) = N = —Z o) o
2> k=1 H k1 B =1 21— z1(p-1,0(20)) 0(z0) I,
N 1 B(p-1,0(20), p1,0(20))

- 21(p1,0(20)) — 21 (p—1,0(20)) dz0(p1,0(20))d20(p—1,0(20))
PW (2,2, ..., 2z
Zi\/zl Hi 1 Ex

and we remind that P() is completely determined by the condition that Zfl)(zo) has

l

n (7.26)

singularities only at the endpoints eq; in the zp—sheet, and has vanishing B-cylce integrals.

From there, it should be possible to extend the calculation of [[[0} [] to the chain of
matrices, and compute the 1/N? term in the free energy for the chain of matrices. This
will be left for a later work.
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8. Examples

8.1 Example: one-cut asumption (genus zero)

Let us assume that the genus is g = 0.

It was already discussed in [[{] that for multimatrix models, the so called one-cut
asumption should be replaced by a genus zero asumption. Indeed, in that case, the number
of zg—endpoints, i.e. the number of zeroes of dzy is equal to the number of sheets, therefore
there is exactly one cut in the physical sheet. £ is in one to one correspondance with

the complex plane C, and it is well known [[L6], [4] that the parametrization eq. (f.34) is
P—Poo—
P—Poo+

rational, and with s = , it can be written:

zk(s) = Z ag; s (8.1)

1=—38k

z(s) has two poles: one pole of degree rj at s = oo, and one pole of degree s at s = 0.
This parametrization is identical to the one found in [[[3] by the biorthogonal polynomial’s
method.

The set of equations:

Vilzk(s)) = zrg1(s) + zx—1(s)
Vo(z0(s)) = z1(s) ~

§700 (0,18

Ts

Vil () = 2xa(s) vy

Qo1 =QN,_1=7=7

is sufficient to determine all the ay,; (one is free to impose a1 = ap,—1 because s can be
changed into any constant times s).
The abelian differential of the third kind is:

d
as = -2 (8.3)
S
The Bergmann kernel is:
ds ds’
N —
B(S,S)—m. (84)
8.2 Example: gaussian case
Consider all potentials quadratic (i.e. dx = 1):
k
Vie(zg) == %zi (8.5)
A direct computation of the matrix integral eq. ([.9) gives the free energy:
T2 1
F=r0 = Doy — NTJ“T2 InT. (8.6)
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Define:

) )

Dk,l = det 1 5 Dkkfl = 1, Dkk72 =0.

1
I a
The function fi; of eq. (B.10) is:

Jreg=2k...21 Dy
thus the polynomial P is a constant:
P(zy,...,2xv) = Don
and the polynomial F is:
E(20,...,2x5) = (9020 — 21)(gnzn — 2v—1) = TP.
The leading order loop equations are thus:

Zk+1 + Zk—1 = JkZk z_1znv+1 =TP.

(8.7)

(8.10)

(8.11)

Note that eq. (JLI5) implies that the genus is necessarily g = 0, and thus there is a

rational parametrization of the form eq. (B)), with 7, = s = 1, namely:

2 = % (Dovk,ls + DkH,Ns_l) .
We find:
o T
Y=7= Do
and:

pw=T+TInDygy—-TIT =T —TIn~vyy
and it is easy to check that eq. (p.2) coincides with eq. (B.6).
8.3 Loop equations of the 2 matrix model

Let us take T'= 1. The 2-matrix model corresponds to N' = 1 we have:
fo1(z0,21) = Vg(20)Vi(21) — 2021,  fra(z1) = V{(21)

i.e.

N 2o — My z1 — My
1 Vi(z) = V(M) 1 >

P(z0,21) = 1 <tr Vi (z0) — Vi (M) V{ (1) — Vf(M1)> .

tr

U 12) = (t
(ZO,Zl’Z) < rZQ—MO Z1 —M1 Z—MO

and the master loop equation reads:
1
(V5(Zo) = 21)(V{(Z1) = Z0) = P(Zo, Z1) = 15U (%0, Z0; Z0o)

with Z; = VJ(20) — Wo(20). We recover the equation of [, [[3}, [L].
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8.4 The 3 matrix model

Let us take T'= 1. The 3-matrix model corresponds to N = 2, i.e.:

foo(z0,21,22) = Vg(20)V{(21)V5 (22) — 2021 V5 (22) — 2221V (20) (8.19)
fra(z1,22) = Vi(21)V3(22) — 2122 (8.20)
i.e.
Vo (20) = V5 (Mo) V'(Zl) Vi(My) Vy (22) Vs (Mz)
p _ Yo 0 1 1 2 2
(20’21’22) 2N < : 20 — M(] M1 M2 +
L/ Valee) — Vo (M) V{(Zl) Vi (M) Vo z0) — Vo (Mo)
2N 29 — M2 Ml z20 — MO
1 ! — V(M 1 ! M-
1/ Vo) = Ve(Mo)\ L/ Va(ze) — V(M) (8.21)
N zZ0 — MO N - M2
1 1 V,(Zl) - V,(Ml) V,(Zz) - V/(Mz) 1
U )= =t 1 1 2 2 ¢
(20721722’2) 2<rZO—M0 Zl—Ml ZQ—MQ I‘2—1\40 +
. Va(ze) = Vo(M) Vi(z1) —Vi(My) 1~ 1 3
2 ZQ—MQ 21—M1 Zo—MQ Z—MO
bt gy (8.22)
— r r .
zZ0 — Mo zZ — MO c

and the master loop equation is:

(Vi(Z0) — 20)(Vi(Za) — Z1) — P(Zo, 21, Za) = —5U(Zo, 21, Za: Zo) (8.23)

N
with Z() = 20, Zl(Z(]) = ‘/8(20) - Wo(ZO) and ZQ(Z()) = V{(Zl) - Z(].

Large N one loop functions. We define:

Z1(22) = Va(22) = Wa(z),  Zo(z) = V{(Z1(22)) — 2 (8.24)
0 1(20, 1) POI ‘/E](Z())W() 1(20, Zl) (825)
1 2(21, 2) = POI VQ(ZQ)Wl 2(21,22) (826)
Wi 15(20,21,22) = Pol Vi (20)Va (22)W (20, 21, 22) - (8.27)
equ. (p.29) reads:
1 E(z ,Z , 2 E(zy, 21,2
WQQ(Z(),ZQ) = = ( 0 1~ 2) — ( 0 ! 2) (8.28)
AR z0 — 2y 20 — 43
eq. (p.19) reads:
E Z
UQ(Z(), 22) = PO] ‘G(ZQ)WQQ(ZQ, 22) = M (829)
22 z9 — Z2
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eq. (p.19) reads:

U(z0,21,22) = P12(z20,21,22)

E —F 7
— V2/(22) _ + (20721722) (ZO, 1722) +

Z1 — Zl
v/ — VI (Z1) E(20, 2
Vi) = Vi(Z) Bz, 21, 29) (8.30)
21 — Z1 29 — Z2
eq. (B-5) implies:
V() —V{(Z) P12(20,21,22) — P12(20, Z1, 22)
P, — 1 1 W, _ , ) ) s ; )
1,1 po— 0,2(20, 22) —
_ (Vll_zo —2’2) E(Zo,Zl,ZQ) _ E(20721,22) n
(Z1— Zh) (21— Z1)(20 — Zo) (21— Z1)(22 — Z2)
+1 _ E(ZO’Z13Z2) _ (831)
(21 = Z1)(21 — Z1)
We have the relationships:
~ E(z ,Z , 2
(21 — Z1)Poo(20, 21, 22) = % — Wi 1520, 21, 22) (8.32)
0 — 40
. E(z0,Z E(z20, 2
(Zl - Zl)W(ZQ,Zl,ZQ) _ ('{0, 1,'22)~ - (ZOa 1522)
(21 — Zl)(ZO — ZO) (Zl - Zl)(z2 - ZQ)
Zy — Z1)Wy | 5(20, 21, 22
(2= 20)Wy 520,21, 2) .

(21— Z1)(21 — Z1)

But so far, we have not been able to compute W, 5. We conjecture:

(20 + 22 — Vl/(zl))W(),l,Q(ZOazlaZQ) = E(20,21,22) — (Vg (20) — 21 — Wy 1 (20, 21)) %
X (V3(22) — 21 = W, 5(21, 22)) (8.34)

indeed, both sides are polynomials in zy and 2y with the same degree and same large zg,
z1 and z9 behaviours.

9. Conclusion

We have written the loop equations in a very explicit way. To leading order the loop
equations become algebraic, and using that fact, we have derived many observables, like
the free energy and many correlators.

We have computed some mixed correlators and we have given conjecture for others.
So far, the complete one-loop function has not been computed, and we don’t even have
a conjecture (except in the 3-matrix model). The mixed correlators are important in the
study of boundary operators [20].

It would also be interesting to generalize [[[0] to the chain of matrices, and find the
next to leading large-IN corrections to the free energy.
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A. Some usefull formulas with residues and polynomial parts

We make an abundant use of the following formulas:

z z dz
1 = Pol = Pol = —
zoz—Z gz—M Resz—Z
zdz
= —R
“C=2)z— M)
V'(2) V'(z2) = V'(Z) V'(2)dz
Pol = 3 =V
gz—Z z—7Z ’ Res 2 —7 Vi2)
Pol V'(2) 1 V’(z)—V’(M)_V’(Z)—V’(M)
: (z=2)(z—M) z2-Z2 z2—M Z-M
Res V'(2)dz _ V(Z)-V'(M)
(z—2)(z— M) Z-M
VIOM) _ V() V) -VIM) V) V()
2—M z—M z—M - M gz—M
M z z z
= —1= — .
z—M z—M z—M Pglz—M

B. Determination of W
Define the following polynomial of zg:
Wy 1(20,21) = Pz?)l Vi (20)Wo 1 (20, 21)
eq. (B.5) implies the following identity (to large-N leading order):
(z1 — Z1)(1 = Woa(20,21)) = 21 — V§(20) + W(),l(ZO7 21)

which can also be written:

Vo(20) — W 1 (20, 21)

21

(1 - é) (1= Woi(z0,21)) = 1 —

21

Notice that the r.h.s. is a polynomial in zg.
Take the log:

A
In (1 - —1> =—In(1—-Wyi(20,21)) +1n (1 -

<1

VO/(ZQ) — WGJ(Z(), 21)>

<1
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take the fractionary part (Frac f := f — Pol f), we find:

—In(1 - Wo(20,21)) = Frac <ln (1- Zl(zO)))

i.e.

Wo(z0,21) = 1 — exp (- Frac <ln(1 - Zl(zO))))

in other words:

—In (1 —Wo1(20,21)) = 1 y{ ﬂl))l))lII(l_Zl_@)

2 e€Co 0 — Z(]( Z1

1 dz,(p) 1n<1 Zo(p)>

% C1 Zl(p)—21 a

e (n{1- 52

=In(1- ZO(Zl)) - onl <1n (1 _ Zol=)

20 20

where the second equality is obtained by integration by parts.
In other words we have that:

(1 — W0,1(2'07 2’1))(21 — Zl(ZQ)) = Polynomialin 20

S1

(1 — Wo,l(ZQ, 21)) H(ZQ — Zo(p_j71(2’1))) = Polynomialin Z1
J=1

that implies that:

Qo,1(20, 21)
(21 = Z1(20)) [ 1551 (20 — Zo(p—j,1(21)))

1 —Woi(z0,21) =

(B.8)

(B.9)

(B.10)

where Qo 1(20, 21) is some polynomial in both variables, of degree 1 + s1,79 + s, which

vanishes each time there exists p such that zp = Zy(p) and z; = Z;(p). That implies that:

S1

Qo.1(20,21) o [ (20 = Zo(p41(21)) [ [ (20 = Zo(p—j1(21)))

j=1 j=1
x [[(z1 = Zi(p150(20))) [ [ (21 = Z1(p—j0(20)))
j=1 j=1

i.e. Qo1 must be equal to (same degree, same zeroes):

E(z0,21,22,...,2N)
N—-1 )
[L= (z 42— = Vi(25))

QQJ(ZO, Zl) XX %dZQ e dZN

We thus have:

Qo,1(20, 21)
(21 = Z1(20)) [ [311 (20 — Zo(p—j,1(21)))

Wo,i1(z0,21) =1 —

— 492 —
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i.e.

[T5L1 (20 = Zo(p+5,1(21)))
(21 — Z1(p+1,0(20)))

Wo,1(20,21) = 1+ go,do+1

(B.14)
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